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Abstract
In the recent years, vulnerabilities found in the packet parsers
of Bluetooth Low Energy (BLE) protocol have called for a
need to have secure lightweight protocol packet parsers for mi-
crocontrollers. Since these packet protocol grammars consist
of packets of limited size it is possible to parse them efficiently
via Finite State Machines (FSM). However, parsing via FSMs
would require developers to either express the grammars via
regular expressions or constructed hand-coded parsers. Unfor-
tunately, hand-coding parsers is error-prone; furthermore, due
in part to certain constructs found in such grammars which
are not commonly found in text-based regular grammars. In
addition, expressing binary grammar constructs in regular
expression is not only challenging and error-prone but the
resulting expressions are often complex and unreadable. Thus
the lack of an alternative language for describing these con-
structs is a hindrance to the use of finite state machines to
generate parsers which are safe, secure and computationally
bounded. This paper presents a novel secure parser generation
framework which consists of an easy-to-use parser descrip-
tion language called "Microparse" and a toolkit that utilizes
finite state machines to generate lightweight parsers for micro-
controllers. To demonstrate the viability of this approach, we
have applied our framework to generate parsers for the BLE
protocol running on an Ubertooth One Microcontroller. We
demonstrate that the generated FSMs are lightweight enough
to be run on devices with very limited resources, and are eas-
ier to use for developers; we offer this method as a potential
solution for the various bugs found in the implementation of
the BLE firmware in the recent years.

1 Introduction

In the recent years, numerous vulnerabilities have been discov-
ered in the packet parsers of the BLE microcontrollers [13].
These parts of the parsers that were vulnerable were respon-
sible for parsing the Link Layer of the BLE packets. These
vulnerabilities are significant not only because of the ubiquity
of the BLE protocol [12] but also because of their severity.

The revealed vulnerabilities allow a remote attacker in the
wireless range of a BLE device to achieve Denial of Service
(DoS) and potentially Remote Code Execution (RCE) on the
target device.

It is important to note that the discovered vulnerabilities were
not due to a flaw in the BLE protocol; rather, it was the buggy
implementation of the protocol that made them possible.

These discoveries not only show that many Bluetooth Low En-
ergy (BLE) devices have vulnerabilities in the lower layers of
their BLE stack but also demonstrate a need for a simple and
secure parsing mechanism for packet parsers operating in low-
resource environments. These parsers need to be lightweight,
requiring minimal memory and computing resources; they
need to be easy for developers to construct; and they need to
provide secure parsing for packet protocols.

We posit that finite state machines can be used to construct
secure computationally-bounded parsers but remain under-
utilized - despite the availability of lightweight compile time
regular expression libraries for microcontrollers - because
writing regular expressions to parse binary grammars is not
only challenging and error-prone but results in expressions
which are complex and unreadable.

To that end, this paper makes the following contributions:

• We provide a method to develop secure parsers for
resource-constrained environments and thus prevent im-
plementation vulnerabilities in packet parsers found in
microcontrollers.

• We develop Microparse, an alternative parser descrip-
tion language (PDL) for developers to easily represent
the finite state machines that can parse grammars com-
monly found in network protocol packets.

• We provide a compiler from this parser description lan-
guage to C code for packet validation.

• We verify the memory safety and termination of the
functions in the provided parser combinator library used
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by the generated C-code.

• We use these tools to construct an implementation of a
BLE link layer packet parser for microcontrollers in C
without using any external C libraries (thus making it
feasible to run inside such resource-constrained systems.

Figure 1: Architecture diagram of the system. The Microparse
compiler takes the grammar description then generates C
code.

Developer extracts grammar
from protocol specification

Developer converts parser
specification into Mi-
croparse

Toolkit generates abstract
automaton

Toolkit generates C code

Toolkit parsing
library verification
(done once only by
us)

Developer deploys parser on
microcontroller

System Architecture

It is pertinent to mention that although this paper demonstrates
its techniques on the BLE LL packet format, the general
technique is applicable to any wireless packet format. In the
future, our hope is to apply it to other IoT protocols.

The intuition behind having a developer write a description
in an easy-to-use parser description language and then use
a tool that generates the parser from that description is that
bugs are inevitable when coding in low level-languages which
do not provide memory safety like C. In addition, expressing
binary grammars in regular expression - although theoretically
possible - is very hard, unreadable and error-pone.

Moreover, if the parser’s input language (the packet format)
is overly complex, writing a parser according to the program-
mer’s expectation can be undecidable in the general case -
i.e no general algorithm may exist that can verify the input
validity correctly and no amount of patching can fix it. This
is because if a complex packet format is modeled as a formal

language it may fall into an language category that is not
Turing decidable. This is an insight we gather from the prior
work done by the LangSec community.

Although it seems unlikely that may be the case for simple
protocol formats, automata theory reveals that even a finite
automaton augmented with two counters is equivalent to a
Turing machine. Thus it is important to model these languages
as formal grammars to really see how expressive they are and
constrain their expressivity to prevent exploits.

Furthermore, modeling parsers using a language-theoretic
approach allows us to define a parser description language
which provides us the ability to prove parser equivalence.

We posit that an easy-to-use parser description language
(PDL) should be used for generating parsers as opposed to
hand-writing parsers. The PDL will be a language with lim-
ited expressivity by design, and this limited expressivity will
reduce the bugs in parser that are often found in low level
code.

This idea of using domain specific languages is not new and
is already common place in other areas of computer science,
such as SQL [11] for databases and the P4 language [9] for
defining software defined network’s control plane.

This concept has also been applied for parser generation be-
fore to create parser description languages such as Kaitai
struct [2] and DFDL [1].

Prior work has constructed verified parsers for various gram-
mar formalisms [8] [19] [18]. Some [23] have also constructed
verified parsers expressed in a PDL which guarantees that the
generated parser does not have memory-corruption vulnera-
bilities and will eventually terminate.

However, prior research does not aim towards deploying their
code on resource constraint devices like microcontrollers.
Our work aims to address this limitation and provide secure
parsers for ready for deployment on such devices. The parsers
generated by our approach are able to be deployed on devices
with as little as 16K bytes of RAM. Our parser implemen-
tations are verified to ensure parser termination and that the
parsing function is memory corruption free. In addition, our
parsers do not function only as validators i.e. they extract the
data from the payload by storing them in named registers thus
eliminating the need for writing hand writing parsers.

Moreover, researchers [20] have also looked at developing
new language classes by augmenting regular languages with
additional features to allow them to handle binary grammati-
cal constructs such as the length field.

Our approach differs from theirs in that we assume the ex-
istence of a maximum finite length value for the length con-
struct. This allows us to use finite state machines to parse
these binary formats. We argue that, in practice, this assump-
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tion is realistic as most binary formats have a limit on the
maximum size a packet can have and are thus expressable via
a finite state machine, albeit a very large one.

We argue that to prevent parser vulnerabilities, a PDL with
known formal expressivity has to be designed and imple-
mented. To that end, we have identified a formal automaton
(Finite State Automata) which is has known decidable prop-
erties and have compiled the PDL to it. This limits the com-
putational power of the parsers that can be generated from
the PDL to the computational power of the automaton and
thus ensures that a only parsers with limited computational
complexity can be defined.

Generating parsers based on finite state machines raises the
obvious question: why not use regular expressions directly to
describe these parsers, rather than an alternative PDL? One
major limitation of regular expression is that the design of reg-
ular expressions makes it cumbersome and unintuitive to de-
scribe common constructs found in binary grammars. In con-
trast, the PDL we propose ("Microparse") is designed specif-
ically for generating parser for binary formats, and avoids
these limitations. Further, along with Microparse, we also
provide a compiler which generates parsers in C code from
their description in Microparse.

Currently, crafting a finite state machine parser for machine
binary languages requires coding one up by hand which gives
rise to various bugs and vulnerabilities. By providing a frame-
work to generate an FSM implementation from Microparse
we aim to stymie the rise of such vulnerabilities in the wild.

2 Microparse Description Language

Microparse is a domain specific language written in Clojure
[15]. It is a high-level description of the parser - hence, it fo-
cuses on providing a simple, readable and easy-to-understand
description of the grammar at hand, rather than on the imple-
mentation details for parsing data.

Real world binary protocols commonly use grammatical pat-
terns that cannot be easily expressed in regular expressions.
We have constructed Microparse so that it permits developers
to intuitively describe these patterns while also remaining
computationally bounded.

2.1 Structures found in IoT binary protocols
Before we can understand the design of Microparse, it is
important to know the kinds of grammar structures commonly
found in packets of IoT protocols.

The commonly found structures are as follows:

• SEQ: SEQ is the simplest construct. It represents a se-
quence of fields that come after one another. One ex-
ample would be finite size bit field, coming one after

Figure 2: An illustration of the TAG construct. It allows only
A, B and C as valid values for the "Packet Type" field. An
example of what we call the TAG construct is the "PDU" field
in the BLE LL packet format shown in Figure 5.

TAG Construct

Packet DataPacket Type

A

B

C

} Valid packet types

Figure 3: An illustration of what we define as the CASE
construct. This illustration shows that there is a different
payload grammar for each unique packet type. In the BLE
LL packet format the payload grammar is determined by the
value of the "PDU" field in the header. The CASE construct
captures this relationship.

CASE Construct

PayloadPacket Type

A

B

C

Payload Grammar A

Payload Grammar B

Payload Grammar C
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Figure 4: An illustration of an optional field. The red arrow
shows the dependency relationship between the two fields.
The optional data will be present only if the "is optional
present?" field has a non-zero value.

Optional Data

Optional Data... Is Optional Present?

another. For example: A 16 bit integer value followed by
another 16 bit integer value.

• TAG: The TAG represents a field (a set of bit/bytes in the
input) which is allowed to have a known set of values.
(See Figure 2.) For example: a packet type field can only
have a known set of values which represent the type of
packets that are valid.

• LEN: The LEN construct consists of a number N, fol-
lowed by N bytes of data. The LEN Field is the bits/bytes
representing the number N and the LEN Data is the data
which is of the size N.

• REPEAT: The REPEAT construct consists of a repeating
set of bits/bytes.

• CASE: The CASE construct captures the dependencies
within a grammar such as partial grammars which are
conditioned on the parsed result of another field. (See
Figure 3). Different types of payloads have different
payload grammars. To parse a payload one needs to
know a payload type which is contained in the header
of the packet. In such cases, the grammar of the payload
packet is dependent on the type of the payload. CASE
construct represents such dependencies present within
grammars. Additionally, the CASE construct can also
represent optional fields found in some grammars. For
example, the Figure 4 shows an optional data field which
is present only if another field contains a certain value.

As mentioned earlier, these constructs show the various struc-
tures found in IoT protocol grammars. Microparse allows a
way to represent grammars as a combination of these con-
structs allowing the parser representation to be readable and

easy-to-understand in sharp contrast to regular expressions.

Microparse consists of functions which represent these con-
structs. Each of these functions in Microparse thus is respon-
sible for describing the bits and bytes that are represented by
the corresponding construct.

Parser composition Microparse is designed so that simple
parsers can be constructed by generating combinations of
the provided functions of SEQ, TAG, LEN, REPEAT, and
CASE constructs. This allows a developer to combine the
individual parser functions together to construct a parser for
the complete packet. This design choice has been inspired by
the parser combinator paradigm [16].

2.2 Language complexity of Microparse

Microparse is no more expressive than a finite state ma-
chine. The Microparse-to-C compiler converts the input to a
finite state machine which can be visualized by our toolkit (if
needed) and then used to generate the C code.

Expressing the same finite state machines with a regular ex-
pression results in expressions which are unreadable. Further,
it is inconvenient to express certain grammatical constructs
like the length construct as a regular expression. Microparse
allows developers to describe such finite state machines with
ease while still remaining readable. Although, a length con-
struct with an unbounded payload size requires automata
more powerful than a finite state machine to parse, in practice,
the maximum size of the payload is bounded. This bound
allows our framework to parse it using a finite-state machine
by constraining the maximum size of the payload.

2.3 Implementation of the Microparse Lan-
guage

As mentioned earlier, Microparse is modeled after the afore-
mentioned constructs. Microparse implements parser descrip-
tion functions for each of the aforementioned language con-
structs. This subsection will provide the details of those func-
tions and how they are used to construct parsers.

SEQ construct The sequence construct is defined by the
gen-seq function in Microparse. This function takes a list of
constructs as an input and sequences the constructs together to
make a new parser which is a combination of these individual
parsers. An example of the use of this construct can be seen in
the definition of packet-grammar in Figure 6. After the parsers
for the individual constructs inside a packet are defined, they
can be sequenced together in order to generate a single parser
of the whole packet.
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TAG construct The TAG construct in Microparse is defined
by gen-tag function. This function takes as input the dataunit,
a count, the map of valid values and a string description of
the construct. The dataunit informs the parser if input is to be
read in bits or bytes. The count tells how many of bits/bytes
to read. The map is given as input to inform the parser about
the possible valid values and their names. The description is
a textual description of the parser for debugging purposes.

Figure 6 shows the Microparse parser definition of the PDU
tag located inside the header of the BLE Linked Layer packet.
The PDU defines the packet type and is a 4 bit wide field. The
valid values it can take are shown in the dictionary passed as
argument to the function. The keys in the dictionary name
the various kinds of valid packets types and the values of the
dictionary are the binary value the packet type field would
take if the packet is of that type. These values are defined by
the protocol specification.

LEN construct The LEN construct in Microparse is de-
fined by gen-len function. The length function takes as input
the dataunit (bit or byte), the endianness (LSB or MSB), the
number of bytes and a string consisting of the description of
the parser. The function is called gen-len and an example of
the length construct is shown in Figure 6. In this example
length construct is defined by calling the gen-len function.
This function takes as argument the dataunit (byte), the size
of the field (2 bytes), the endianness (LSB) and a description
as a string. The length construct will ensure that the parsers
which follow it will only be allowed to consume the num-
ber of bytes defined by the length field’s input, and that the
parsing would halt afterwards.

REPEAT construct The REPEAT construct is represented
by the gen-tag function in Microparse. The repeat construct
takes as input a dataunit (bit/byte), a count as a second argu-
ment which defines how many bytes/bits to repeat. It can take
a special argument called "##Inf" if the repeats are to have
no limits on them. It can also take in two optional arguments
called min-repeat and max-repeat which define limits on the
minimum and maximum times a bit/byte can repeat itself. If
these optional arguments are given they will take precedence
over the non-optional count argument. An example of the use
of this function in Microparse is shown in Figure 6.

CASE construct In Microparse, the CASE construct is
represented by the gen-case function. The gen-case function
takes as input a tag construct and a dictionary. The dictionary
is a key-value pair of tag values and the subsequent parsing
function to run if that tag value is the parse result. An example
of this construct is shown in Figure 6 in the definition of the
payload-grammar. The PDU is a tag which goes as argument
to this function. The possible parsing result of this tag function

Figure 5: Structure of a BLE link layer packet. The red arrow
shows the length of the payload is determined by the value
contained in the Len field.

Header
(2 Bytes)

Payload (size de�ned by header Len)

PDU
(4 Bits)

RFU
(1 Bit)

ChSel
(1 Bit)

TxAdd
(1 bit)

RxAdd
(1 Bit)

Len
(8 Bits)

go in as the keys of the second dictionary argument to the gen-
case function and the corresponding values are definitions of
other parsers, whose definition is omitted for brevity, which
will be run if that tag value is the parse result.

2.4 Example: BLE LL packet format descrip-
tion in Microparse

As an example, we show how the design of Microparse cap-
tures all valid ways in which a BLE LL packet can be con-
structed. To do so, we shall first provide a description of the
BLE LL packet. The BLE LL packet format is shown in the
Figure 5.

The BLE LL packet consists of a two byte header followed
by a variable sized payload.

The header consists of:

• A 4 bit PDU type field which describes the type of
packet.

• A 1 bit RFU field which is reserved for future use.

• a 1 bit ChSel field which signals if the device supports
BLE 5.0 channel select algorithm 2.

• A 1 bit TxAddr field which informs if Tx addr is ran-
domized.

• A 1 bit RxAddr field which informs if Rx addr is ran-
domized.

• An 8 bit length field which defines in bytes the size of
the payload.

The payload grammar differs based on the type of the packet.
The inner sections of the payload have similar grammatical
constructs and their details have been omitted for brevity.
Figure 6 show the parser description of this packet format.
The packet-grammar definition consists of a sequence of
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Figure 6: An example of Microparse code, this figure shows
how the gen-tag, gen-len and gen-len functions can be used
to describe a parser for the BLE LL packet. (Note that many
definitions have been omitted for brevity.)
;; PDU defined as a TAG construct
(def PDU
(gen-tag :bit 4

{:ADV_IND "0000"
:ADV_DIRECT_IND "0001"
:ADV_NONCONN_IND "0010"
:SCAN_REQ "0011"
:SCAN_RSP "0100"
:CONNECT_IND "0101"
:ADV_SCAN_IND "0110"
:ADV_EXT_IND "0111"
:AUX_CONNECT_RSP "1000"}

"PDU"))

(def repeat-bytes
(gen-repeat :byte ##Inf))

;; definitions of ADV_* SCAN_*, AUX_*
;; not shown for brevity.
(def payload-grammar
(gen-case PDU
{:ADV_IDV ADV_IND
:ADV_DIRECT_IND ADV_DIRECT_IND
:ADV_NONCONN_IND ADV_NONCONN_IND
:SCAN_REQ SCAN_REQ
:SCAN_RSP SCAN_RSP
:CONNECT_IND CONNECT_IND
:ADV_SCAN_IND ADV_SCAN_IND
:ADV_EXT_IND ADV_EXT_IND
:AUX_CONNECT_RSP AUX_CONNECT_RSP}))

(def len-construct
(gen-len :byte :LSB 2 "header"))

;; some definitions not shown for brevity.
(def packet-grammar
(gen-seq
[PDU RFU ChSel TxAdd
RxAdd len-field payload-grammar]))

parser definitions (PDU, RFU, ChSel etc.), and these indi-
vidual parser definitions correspond to parsers for the fields
shown in the BLE LL packet diagram.

3 Methodology

3.1 System Architecture

The architecture of the overall system is shown in Figure 1.
The developer will read the specification and write a parser
in Microparse. The compiler will then produce the abstract
automaton and use this to generate C code. The generated C-
code calls certain predefined functions which simulate parts
of of the FSM. The C code consists of these functions along
with addition code which invokes these functions to simulate
the FSM.

The predefined functions are part of the provided toolkit. We
used the Frama-C [10] static-analysis framework to verify
these functions to ensure that they terminate, that they only
access memory that they require, and that they are free of
memory corruption bugs.

The generated code then invokes these functions to simulate
the automaton and complete the parsing process.

These predefined functions are modeled after the functions in
Microparse. The gen-tag corresponds to the tag_cons function
in the generated C code which is responsible for parsing
a single TAG construct. The return value of the tag_cons
function is an integer which contains the tag value read from
the input.

The gen-len corresponds to the len_cons function in the gener-
ated C code which is responsible for parsing a LEN construct.
It does so by ensuring the number of bytes in the len field is
exactly the same as the remaining bytes in the input. In case,
there is a mismatch in the remaining bytes and the value read
it halts the parsing. This ensures that there are a finite number
of transitions that the parsing FSM can take after running this
function and that this number is equal to the value read from
the input.

The len_cons function returns the value of the LEN field it
read from the input as in integer.

The repeat_cons is similarly modeled after gen-repeat func-
tion in Microparse. It returns a tuple of the type parsed_result
which contains information about the start and end position
of the repeating bytes on the input.

The gen-case of Microparse does not correspond to any func-
tion in the C code. Instead this Microparse function results
in a switch statement in the C code. This switch statement
is conditioned upon the result of the tag parser on which the
gen case depends and inside the individual case statements it
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outputs the C code that is to be run if that particular tag value
was the result of the parse the CASE is predicated upon.

An example of the C code generated by Microparse is shown
in the Figure 8.

3.2 Compiler construction

The Microparse to C compiler is written in Clojure [15] which
is a dialect of lisp. The compiler also has the ability to vi-
sualize the finite state machine of the automaton as well so
the developer may use this for debugging. The compiler gen-
erates C code which simulates a finite state automaton. As
mentioned earlier, the compiler dynamically generates the C
code and also outputs the pre-defined verified automaton sim-
ulation functions so that the generated code is able to simulate
the automaton.

The compiler creates the automaton which reads the input
from left-to-right and parses the input. It is designed so that
it consumes a bit or byte of input for every transition of the
automaton and thus it finishes parsing in O(n) time where n
is the size of the input.

The compiler generates the finite-state machine as C code with
invocations to predefined functions. This code is optimized to
ensure that it can simulate an FSM with a very large number
of states.

4 Verification of the C code

In order to ensure that the predefined functions written in C
do not have vulnerabilities in them, we have verified them
using Frama-C [10]. Frama-C is a static analysis engine for C
code.

The verified C-code functions takes as input the array of input
bytes of type uint8_t, the length of the input buffer (in bytes)
and the arguments of the grammar construct to be parsed.

Frama-C allows the user to define pre and post conditions on a
function and also annotate the function to ensure the functions
are memory safe and they can only access the parts of memory
they are allowed to access. Annotations also ensure that the
function eventually terminates. The annotations are added
at the top of the function definition for each of the function
verified. The annotations apart from checking for termination,
check that the size of the input buffer is not zero, and each
element in the array is a valid memory location. Further, it
ensures the function is not allowed to write to any non-local
memory.

We added these annotations to the functions in C code to
ensure that it is safe and free from memory corruption vulner-
abilities and that it terminates.

5 Optimizing the compiler

Initial Attempt In our initial attempt, we generated an en-
coding of the FSM from Microparse and asked the C code to
simulate a very large FSM. The FSM was encoded as a struct
and was defined as a global constant. This struct consisted of
an an array of tuples (consisting of a start node and end node)
representing the transitions of the FSM graph.

Depending on the size of the graph, the length of the transition
array can be very long. This can have a significant effect on
the size of the binary.

These results showed that this approach is not feasible for
small microcontrollers as the binary produced was too large
for the Ubertooth One which has a microcontroller with 16K
of RAM.

Improvement To optimize the size of the resulting binary,
we rewrote the simulation function to multiple smaller func-
tions each of which simulates a single construct found inside
the grammar. And then instead of generating an encoding of
the entire FSM and passing it as an argument to a simula-
tion function, we redesigned the compiler to output C code
which is designed to call individual parsing functions one
after another to carry out the parse. It is importance to note
that the resulting functionality of these smaller functions is
still equivalent to a large FSM but these smaller functions
are much more efficient to execute for a resource constrained
device like a microcontroller. Furthermore, we also utilized
the use of write-once-only registers to reduce the number of
states of an FSM drastically.

The difference of this approach to the old one is that this
approach eliminates the use of transition table required by the
first approach. The code generated in C is a series of function
calls to a hardened library and thus very readable and easier to
debug. The code is simple and easy to understand as well as
it only has function calls to the parsing functions and simple
if and case statements only.

6 Evaluation

6.1 Deployment on microcontroller

For evaluation, we deployed the generated code on the Uber-
tooth One device [4]. This device runs on a ARM cortex
M-3 microcontroller with an open source firmware. The max-
imum RAM size is 16K bytes. The device comes with an
open source BLE scanning application which can be installed
on the microcontroller. It is present in the bluetooth_lxtx
folder of the Ubertooth One’s repository [14]. This applica-
tion also has a corresponding host application which can parse
and display packets received from the Ubertooth One device.
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Figure 7: An example FSM visualization generated by the compiler: this shows the resulting FSM when three TAG constructs
(PDU and RFU and ChSel) are concatenated by the SEQ construct. The green arrows signify that a ’1’ input bit is read, and red
arrows signify that a ’0’ input bit is read. States can be reduced if the value of constructs is stored in write-once-only registers. In
this example, since the PDU value is stored in a write-once-only register, multiple edges from the leaf nodes in the PDU FSM
subgraph (S17-S23) can go to the same subsequent nodes (S32/S33). All green edges from PDU leaf go to RFU-ON (S33) and
all red ones go to RFU-OFF(S32). Without the use of fixed registers, for each leaf node, there will be a separate FSM sub-graph
which would parse the remaining fields.
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Figure 8: The optimized result of the Microparse compiler.
The code shown below is autogenerated from the Microparse
description shown in Figure 6. The functions tag_cons,
len_cons, repeat_cons are parsing function which parse the
TAG, LEN, REPEAT construct respectively. The result of the
TAG and LEN function is the value of the tag or the length. In
case of repeat, it returns a tuple of type parsed_result which
has the start and end position of the bytes successfully parsed
by the construct. If any of the constructs fails to parse and the
parser halts.
int run_parser() {
// T is input tape
// T_LEN is tape length

// PDU
int reg4144=tag_cons(T, T_LEN, BIT, 4);
// RFU
int reg4145=tag_cons(T, T_LEN, BIT, 1);
// ChSel
int reg4146=tag_cons(T, T_LEN, BIT, 1);
// TxAdd
int reg4147=tag_cons(T, T_LEN, BIT, 1);
// RxAdd
int reg4148=tag_cons(T, T_LEN, BIT, 1);
// len cons
int reg4149=len_cons(T, T_LEN, BYTE, LSB, 2);

switch (reg4144) {
case 0b0001: {

// :ADV_DIRECT_IND
// AdvA
// parsed result is a tuple of
//start and end position
parsed_result reg4150;
reg4150=repeat_cons(T, T_LEN, BYTE, 6);
// Target A
parsed_result reg4151;
reg4151=repeat_cons(T, T_LEN, BYTE, 6);
break;

}
case 0b0011: {

// :SCAN_REQ
// ScanA
parsed_result reg4152;
reg4152=repeat_cons(T, T_LEN, BYTE, 6);
// AdvA
parsed_result reg4153;
reg4153=repeat_cons(T, T_LEN, BYTE, 6);
break;

}
...
default:
debug_printf("ERROR:No case match!");
return 1;

}
}

We used this host application to verify the accuracy of the
packets validated by the injected parser.

We modified the firmware image of the BLE application so
that it verifies each packet before it gets processed by the
rest of the application code. The firmware receives bits from
the radio as an array of uint8_t bytes. The verified parser
takes the array, the integer length of this array, and the gen-
erated parser code. The packet is processed if the validator
accepts the packet thereby protecting any vulnerable code
from attacks.

We tested it out by carrying out malformed packet attacks on
the Ubertooth One device deployed with our hardened parsers.
These attacks were launched from a NRF52840 dongle [3]
which intentionally sent malformed Link Layer(LL) packets
to the Ubertooth One device. We chose to send malformed
LL packets because this is the layer in which the parsing
vulnerabilities were discovered.

The malformed packets contained invalid values for tags and
extraordinarily large length field values. It also sent packets
which were incomplete packets.

We also tested for packets of different types (such as sending a
SCAN_REQ packet when the grammar only accepted ADV_IND
packets) and observed that only the packets which match the
grammar description were allowed through by the hardened
parser as valid. Further, the Ubertooth One device was able
to discard all the malformed packets.

Experimental Results We measured the size of the
firmware after injecting the verified parser in the firmware
and of the unchanged firmware image file and experimental
results show that the injection of the packet validator in the
BLE firmware increased the firmware size by 5%.

The hardened parsers were built for ensuring the valid struc-
ture of the BLE LL packet. The hardened parsers deployed
on the Ubertooth One were able to successfully able to filter
out malformed packets sent by the NRF52840 device.

6.2 Comparison with regular expressions
As we have observed, it is theoretically possible to describe
BLE LL packets with regular expressions. However, we posit
such a description is difficult to understand and complex in
comparison to Microparse.

This subsection will evaluate the difference in their ap-
proaches by demonstrating an example of the two ways of
describing the same FSM.

Consider the case where the developer wants to describe a
length construct which has a length field with a finite size.
The length construct places "depth constraints" on branches
of a FSM where the depth is defined by the input. Since
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the "constraints" can only take a finite number of values, it
is possible to parse such a grammar via regular grammars.
However, describing a readable regular expression for such a
grammar is not trivial.

One regular expression could be: 1 E1|2 E2 where E1 is the
regular expression if length constraint is one byte and E2 is the
expression if the length constraint is two bytes and so on. Such
a regular expression is clumsy and unreadable. For an n-bit
length field, the resulting description requires 2n repetitions
of a very similar expression. In contrast, Microparse provides
a simpler way to describe such constructs as shown in Figure
6.

Consider another case where a developer wants to describe a
TAG and CASE pattern as is the case in the BLE LL packet
where the values of the PDU (the TAG pattern) will later
determine the format of the payload (the CASE pattern).

Writing a regular expression of such a construct is unintu-
itive but one attempt might be to first check the PDU field
only allows the predefined values. This can be done by using
the choice operator among the valid values of the PDU field.
Such an expression would look as follows: (0000| 0001|
... 1000) where the bit-strings are the valid values for the
PDU field. In contrast, Microparse allows the developer to de-
fine the same grammar as shown in Figure 6. The description
has human-readable description of the valid bit-strings which
can later be used when defining the case construct. To condi-
tion the payload format on the value read in PDU, can also
be challenging when constructing regular expressions. One
way to do so might utilize the ˆ operator which will see if the
packet starts with the relevant bit-string and depending on the
result run the regular expression defining the payload format.
For example, the expression might look like: (^0000) E1 |
(^0001) E2 | ... where E1 and E2 are regular expressions
for the payload format when the PDU value is 0000 or 0001
correspondingly.

In contrast the Microparse code is more readable and easier
to construct. As shown in 6 the language allows the developer
to use the human readable name of the bit-strings to define
the case pattern.

As we can see from these examples the regular expressions
are unreadable, unintuitive, cumbersome to write and may
end up extremely long. Coming up with a regular expression
to describe the LEN construct was not intuitive and we con-
tend that alternative regular expressions for expressing the
same grammar will share similar issues because regular ex-
pressions are catered towards expressing patterns found in
human-readable text and not binary grammars.

Consequently, it is difficult to capture the structures present in
FSM of binary grammars in regular expressions in a readable
and concise manner. For example, the conditional relationship
between the PDU field and the payload format found in the

specification of the protocol cannot be easily expressed in
regular expressions. In contrast, the Microparse description
of the same packet format is easy to read and understand.

7 Related Work

Prior to our work, researchers have proposed various hard-
ened parser construction toolkits. The Hammar project built
a hardened parser combinator toolkit for binary files and bi-
nary protocols. It provided a way for developers to describe
grammars via a parser combinator like syntax [22].

Later, Nail [5] was proposed which improved upon Hammar
by adding the ability to handle dependent fields and stream
transformations. In addition, it improved on Hammer’s limited
ability to parse the length constructs.

Various verified implementations of parsers of known for-
mal languages classes have also been proposed in the past.
For instance, Barthwal et al. [6] built a parser generator for
SLR grammars and verified the generated parser’s soundness,
completeness, and non-ambiguity using HOL4 proof assis-
tant [25]. Koprowski et al [17] constructed a verified parser
interpreter in the Coq [7] proof assistant for Parsing Expres-
sion Grammars (PEGs). And Blaudeau [8] et al proposed
a packrat parser interpreter for PEGs verified via the PVS
verification system [21].

Lasser et al [18] built a verified LL(1) parser generator. They
also used the Coq [7] proof assistant to verify that the genera-
tor and produced parsers are sound, complete and terminate
on all possible inputs.

More recently, Everparse [24] proposed verified parsers for
authenticated message formats. Their parsers were verified
in the F* programming language [26] to be safe correct and
non-malleable.

However, none of the aforementioned parser construction
toolkits are designed for resource constrained devices. Our
work aims to address this shortcoming in the literature. Mi-
croparse is designed specifically for resource constrained de-
vices and aims to provide a way to generate secure parsers
for them.

8 Conclusion

We have presented Microparse, a parser description language,
for describing IoT binary protocol grammars. In addition, we
have presented a compiler which can generate parsers de-
scribed in Microparse to parsers in C code which are safe,
readable and capable of running on microcontrollers with
limited resources. Our approach avoids the pitfalls of hand-
writing parsers and the problems associated with constructing
parsers using regular expressions, while at the same time
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ensuring the ease of developing parsers in an expression lan-
guage and preserving the efficiency of parsers written in a
low level language like C. Our experimental results show that
this approach can be successfully used on microcontrollers in
practice to secure them against attacks.

In the future we plan to model more IoT protocols and model
more layers of the BLE protocol in Microparse. We also plan
to look at the applicability of our parsers in Bluetooth and
WiFi microcontrollers found in otherwise resourceful devices
such as smartphones and laptops.
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