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ABSTRACT
Currently, work on malware attack and defense focuses pri-
marily on PCs. However, as lightweight computing devices
with embedded operating systems become more ubiquitous,
they present a new and very disturbing target for botnet de-
velopers; and as embedded devices become more integrated
and networked with general-purpose computing, they can
easily become the launching point for many attacks on the
enterprise network in which the embedded devices are de-
ployed. In this paper, we showcase a variety of practical
attacks we were able to launch on an enterprise network
using already widely deployed set-top-boxes. We identify
challenges associated with securely deploying and managing
these embedded multimedia boxes. We also present a solu-
tion to these attacks by hardening these embedded devices,
using the Enforcer LSM and SELinux.

Categories and Subject Descriptors
H.4 [Embedded Systems Security]: Trusted Computing

1. INTRODUCTION
As networked embedded systems become more ubiquitous
and integrated into an enterprise network, they present a
very enticing launching point for remote attacks on the net-
work. Indeed, we see small networked computers with light-
weight or embedded operating systems in all sorts of scenar-
ios: in grocery stores, factories, hospitals, power substations
and other SCADA systems, kiosks, and in unexpected areas
of the home and office. Because they are less powerful and
limited in their computational power and functionality, the
need to protect them has not yet become part of the mass
consciousness. Moreover, the networked embedded systems
run a single application; they are meant to be deployed “as-
is” without many changes in their configuration. Thus, up-
dates and patches for these embedded devices are much less
frequent than PCs, and they often suffer from variety of
existing security vulnerabilities.

At the same time, we see a trend in embedded devices to use
commodity software, including commodity operating system
like embedded Linux. The commodity OS that runs on these
embedded devices is often customized in their configuration,
and unwanted modules are removed from it, so that the ker-
nel configuration and the built-in modules match the pur-
pose of the device. Moreover, the user-level software stack
is often greatly reduced to both accommodate the limited
hardware environment and remove undesirable or unneces-
sary software that can be exploited by attackers.

Nevertheless, because of the complexity of commodity OS
and inter-dependencies of different functionality, removing
certain functionality may not be feasible. Moreover, it is
hard to be assured that all the unwanted functionality is
removed from the platform even with costly whole-system
analysis. Finally, removing kernel modules and user-level
binaries in this way may not be able to stop the attackers
from gaining all the functionality they need by exploiting
functionality that is already available in the system in an
unexpected way.

In this paper, we present a case study, how we have remotely
transformed off-the-shelf media systems (widely deployed at
our university and elsewhere) into general-purpose devices
under our control, and the implications of the botnet we
could create with these devices. In doing so, we also demon-
strate that securing embedded systems by ad-hoc removal of
unnecessary functionality is not enough, and that the princi-
ple of least privilege—allowing only the necessary privileges
to perform the task at hand—is a better way to protect
the embedded systems. We prototype our solution using
Trusted Platform Module (TPM), the Enforcer Linux Secu-
rity Module (LSM), and Security Enhanced Linux (SELinux)
to protect the integrity of the software stack and guarantee
the principle of least privileges.

2. RELATED WORK
2.1 Attacking Embedded Systems
A number of recent Blackhat and Defcon talks have been
devoted to devices surreptitiously placed in enterprise envi-
ronments by penetration testers or attackers. The associated
techniques make use of the fact that a familiar entertain-
ment or appliance device does not attract undue attention
(at least not until after the damage has been done). De-
vices featured include a modified version of the DreamCast



game console [4] and a sniffer disguised as a UPS device [14].
Similar work subverted innocuous devices, such as printers,
that are already a visible part of the enterprise computing
environment [3, 2], and showed some of the ways in which
a device with limited capabilities could be targeted as an
entry-point for an attacker or a passive observer in an orga-
nization. (In contrast, in our attack we discuss the ease with
which a large number of similar media devices could be sub-
verted without resorting to sophisticated kernel exploitation
techniques and used in aggregate to create a much larger,
scarier threat than a one-off version).

Su et al. discussed subverting modern mobile phones using
worms that spread through Bluetooth [15]. However, mobile
phones are different from the media systems we are consid-
ering in several ways. Their threat model often targets the
mobile phones themselves, such as the personal information
stored in the phone, whereas we are trying to use our media
system as a launching point to access data on other devices.
Moreover, mobile phones do not use IP for routing (with few
exceptions that use 802.11); thus, it is harder to use them
to attack the infrastructure that uses IP routing, which is
most prevalent today. Finally, mobile phones are mobile
and dynamic. Thus, it may be challenging for the attacker
to administer them since it is hard to predict their location
and targets.

SCADA (Supervisory Control and Data Acquisition) sys-
tems have been another area of intense security research [1]
in recent years. SCADA systems are used in a variety of crit-
ical infrastructures around the country, including in most
utilities, such as power and water. However, much of the
concern with SCADA security is not focused on the actual
embedded devices deployed as part of the system, but rather
on the protocols by which those devices relay their data to
central servers, or the servers from which the system is con-
trolled. Instead of examining security concerns in systems
that include embedded devices, we consider in this paper
the security problems that the embedded devices themselves
present to the system.

2.2 Securing Embedded Systems
Trusted Computing
There is an ongoing effort to put trusted hardware like TPM
on an embedded platforms, such as PDAs and mobile phones
by Trusted Computing Group, an industry consortium [17].
TPM is a certified chip that performs an authenticated boot,
measuring hardware and software components of the plat-
form it is mounted on [18]. It can perform the attestation
of its configuration to a remote party, so that the remote
party can verify the attester’s hardware and software con-
figuration. Moreover, it can store cryptographic keys, and
the access to these keys can be restricted by the TPM de-
pending on the measurements from the authenticated boot.
Thus, if the measured configuration of the hardware and
software component is different from the one that the key is
wrapped to, the TPM will deny the access to the key.

Seshadri et al. proposed using software-based attestation for
sensor network device (SWATT) without any special hard-
ware [13]. SWATT uses randomized access pattern to com-
pute the checksum of the running code in such a way that
if the attacker were to produce the correct checksum, the

checksum calculation takes observably longer. The embed-
ded systems we are considering—set-top boxes and kiosks—
are much more powerful than the sensor node, and we sus-
pect that these systems will soon be equipped with trusted
hardware, so we simply used a TPM-enabled platform.

Mandatory Access Control
NSA developed Security-Enhanced Linux (SELinux) [9, 19],
which enforces Type-Enforcement Mandatory Access Con-
trol (MAC) through system call hooks. Jaeger et al. an-
alyzed that SELinux can provide the full mediation of all
Linux system calls [8, 7]. SELinux MAC policy labels each
process, user, and files into domains, defines a policy for
each domain, including domain transitions.

Tomoyo [16] Linux implements simple pathname-based Type
Enforcement mandatory access control for embedded Linux.
It uses domain transition history to determine the correct
domain of the subject. Unlike SELinux, its policy uses sim-
pler file system attributes (read, write, execute for a specific
path) rather than mimicking all the system call hooks. It
has smaller memory footprint and suffers less performance
degradation than SELinux, and does not require static inode
attributes. However, Tomoyo Linux cannot enforce as fine-
grained and comprehensive the policy as SELinux. Further-
more, even though coming up with a working SELinux policy
that accommodates multi-application commodity PCs and
servers, profiling single-application embedded system with
limited functionality is much easier.

3. BOTNET THROUGH SET-TOP BOXES
In this section, we discuss our experience of attacking net-
worked embedded systems that are deployed in our network.

3.1 Description of the Set-Top Boxes
During the examination of our local network, we noticed
hundreds of networked set-top boxes deployed in dormitories
and administrative buildings, across different subnets. Each
of these boxes is equipped with comparatively slower process
(compared to that of commodity PCs) and 100 megabit Eth-
ernet interface, and an SDRAM and a flash memory chip,
where the OS image is stored. These boxes are meant to
be deployed on the network, “as is”, and require minimal
administration.

Upon analysis, we discovered that each of the set-top boxes
contains following:

• a custom Linux 2.4 kernel,

• a custom BusyBox shell1,

• a minimal web server for web-based configuration,

• a telnet server for remote management,

• a set of update scripts,

• and a copy of wget, which is used by the update scripts
to download the upgrades.

1BusyBox is a UNIX shell replacement designed for small
embedded systems that combines tiny versions of many com-
mon UNIX utilities into a single small executable.



The boot loader process unpacks the root filesystem image
stored in the flash memory chip and mounts it on a ramdisk.
The free space on the ramdisk is limited to around a hundred
kilobytes. Even though there is around tens of megabytes of
free space available, we found that writing to the flash drive
and not restoring the flash drive back to the original state
prevented the device from booting again. This integrity pro-
tection uses a database containing the MD5 hash of the en-
tire flash drive and some of the stored files. From observing
the hexadecimal dumps of the code, we found that the MD5
hash database is signed using a 1024-bit RSA key. How-
ever, the public key to verify the signature of the file is also
contained in the image itself. Thus, an attacker can insert
its own public key and recalculate the hash of his modified
code and the matching signature, to bypass the integrity
protection mechanism.

3.2 Root Access
Surprisingly, we were able to gain root access to the set-
top box via telnet, using the default password we found
from searching the Internet2. Because the box mounts and
unpacks the root filesystem from the read-only image, any
changes to the root password are reverted back to the de-
fault password upon each reboot, as are any changes to dis-
able telnet server in the init scripts. The vendor may have
wanted a way to revert to the default password if the admin-
istrator forgets the password he set for the box. The reason
for running a telnet server can be that, lacking keyboards
and displays, these boxes can only configured via a network
connection—and the goal to minimize end-enterprise admin-
istration pushes this task to the remote vendor.

3.3 Regaining Removed Functionality
Even though we gained root access to the machine, we found
that most basic binaries found in commodity Linux systems,
such as chmod and insmod, were not available in the set-
top boxes. Moreover, when we used wget to fetch statically
cross-compiled tools like tcpdump, wget stripped the execu-
tion bits to the downloaded files. Thus, eliminating chmod

from their system was apparently an intentional effort to
stop attackers from executing arbitrary binaries.

However, although the box lacked chmod binary, we found
three ways to turn on the execution bits of the downloaded
files. First, we used tar, which was available in the box,
since tar preserves the permission bits of the files in the
tarball. Second, we were able to add the execution bit by
simply overwriting an existing executable with cat. Finally,
we discovered that the box’s kernel also included support
for Network File System (NFS), so we simply exported the
directory containing cross-compiled tools to the media boxes
from a remote server. Making the tools available via NFS
enabled us to quickly add remove new tools to all media
boxes under our control, and it also gave us a lot more stor-
age than what the boxes are capable of.

In order to demonstrate the potential of a botnet consisting
of these types of networked embedded devices, we trans-

2In another application domain, the power grid, we have
seen one vendor actually brag about how their products are
more secure because their default passwords are slightly less
obvious—and include a nice summary table of brands, mod-
els, and defaults passwords, to prove the point.

Attacks Throughput (KB/sec)
none 5252.21
(1) simple MitM 4221.04
(2) NFS logging 2744.59
(3) filter, mangle 949.6

Table 1: Throughput measurements between the

target victim and a remote server in Kilobytes per

second. The first measurement shows the effect

on bandwidth when we launch simple man-in-the-

middle sniffing attack that logs the sniffed traffic in

the local filesystem. The second measurement shows

the same attack, except that we log the sniffed re-

sult in the NFS mount. The third attack shows the

effect on bandwidth when we actively modify the

traffic at the set-top-box.

formed these set-top boxes into platforms for sniffing, inter-
cepting, relaying and injecting traffic into our university’s
switched network. We found that the Linux 2.4 kernel in-
cluded yet another unexpected functionality—the support
for Berkeley PF packet capture and filtering architecture [6],
as well as support for raw sockets. This unexpected func-
tionality enabled us to use the libpcap [5] library for packet
sniffing and the libnet [12] library for shaping and inject-
ing arbitrary packets. Using these two popular libraries we
were able to launch man-in-the-middle attacks to achieve
(1) sniffing of the traffic on our university’s switched sub-
nets, (2) logging of sniffed data in our NFS share, and fi-
nally (3) packet filtering, modification and injection, These
tools allowed us a significant degree of control over the local
subnets where each box was placed.

Moreover, we found that the box’s performance is good
enough for most of our attacks even when we had the set-top
boxes write to the NFS mount. We used the ttcp tool for
estimating the maximum bandwidth between a target and
a remote server beyond the local gateway while the set-top
box is performing the attacks. Table 1 shows the throughput
measurements. First, we measured the throughput between
the and the remote server without running any network tools
as a comparison. Note that, using NFS, even when we “en-
hance” the media boxes with our binaries, we do not modify
SDRAM, kill any process, or modify the kernel. Indeed, we
were able to use the set-top box for its normal functionality,
while we were connected to it remotely. As a consequence
we do not expect users to notice when we are running our
binaries.

3.4 Automating Botnet Creation
We have demonstrated that our media box’s kernel includes
support for many network stack features central to attacking
its home network. In particular, it supported raw Ethernet
frame injection, capture and forwarding. Moreover, it was
easy to download and run the cross-compiled versions of
tools— fragrouter, fragroute, arp-sk, and dnsspoof, the
multipurpose relaying tool socat and the like. Given unlim-
ited access to the fundamental Linux system calls that all
of these tools rely on, we chose among the existing network
attack tools at will. Moreover, it was easier to make these
tools available in the set-top-box due to the combination of



Figure 1: Ad-hoc functionality reduction versus

least privilege enforced by SELinux. Removing all

the unwanted functionality is difficult because of the

complexity and interdependencies of the functional-

ity within a commodity OS. For embedded systems,

it is easier to leave all the functionality but permit

only the necessary privileges, using a strong MAC

policy.

programs that are already present on the box, such as wget
and tar, and telnet, which are intended to be used by its
firmware update scripts.

Making a widestread botnet of these set-top-boxes is lit-
tle more than a shell script and a few statically compiled
C programs to compensate for the shell commands absent
from the platform’s BusyBox shell. Thus, propagating the
code to another media box is a simple programming exercise.
Although we stopped short of creating a worm that would
propagate our campus network through these set-top-boxes,
we found no technical obstacles preventing this scenario.

Our subversion of the set-top boxes via such “unexpected”
functionality demonstrates that an ad-hoc approach to re-
ducing functionality is not enough to guarantee the security
of these embedded boxes and are too error-prone to be used
in real systems. Even if we deal with our findings, attackers
will be able to find yet another clever way to reuse existing
functionality to achieve what they want. Thus, more robust
security mechanism needs to be in place that can guaran-
tee information flow and integrity of the software even when
the extra functionality is not entirely eliminated from the
system.

4. SECURING EMBEDDED SYSTEMS
In this section, we present our solution to enhance security
of the networked embedded platforms.

4.1 Information Flow and Least Privilege
We argue that using the principle of least privilege is a more
systematic approach to securing the system. Removing func-
tionality may leave undesirable attack paths that the engi-
neers did not expect during their development phase. Be-
cause the functionality that networked embedded systems
achieves is simple, single-application oriented, it is not dif-
ficult to profile what the expected behavior of the system
should be. As we mentioned earlier, SELinux provides full
mediation of Linux system calls and can provide very fine-
grained policy. We simply allow only the necessary permis-

sions to achieve the functionality that the networked embed-
ded systems. Furthermore, after we define the domains of
all the necessary components, we group all the other compo-
nents as undefined, and restrict permissions from the unde-
fined domain to any of the marked domain. Thus, there may
be available functionality in the system, but our restrictive
SELinux policy will deny access to it (see Figure 1).

To prove our point, we profiled an expected behavior of an E-
voting machine, where the platform goes through a series of
domain transitions from kernel to init to an init script which
loads the E-Voting binary and domain transition to the E-
voting domain. We profiled the policy so that E-voting do-
main can only be entered via this expected sequence. More-
over, we allow only the set permissions necessary to run the
E-voting software, which resulted in a platform even though
login console is available (functionality), no one can login to
run a shell (privilege).

4.2 Integrity Protection
In order to fully guarantee the information flow, we need to
protect the integrity of the SELinux policy and the kernel
image, as well as important configuration files for the system.

As mentioned earlier, the set-top box’s integrity protection
mechanism can be subverted since there is no protection for
the public key within the compressed image3. Moreover,
once the system boots, no check is made on the binaries the
platform loads, leading to time-of-check, time-of-use (TOC-
TOU) attack. Thus, until the system reboots the attacker
may carry out his attack by modifying the system files. This
TOCTOU attack may be more detrimental to the embed-
ded systems than commodity PCs since embedded systems
are expected to go through power cycle much less frequently
than the PCs.

We use the Enforcer LSM [11, 10] with TPM to make the
integrity protection more robust. Enforcer LSM is similar
to the set-top box’s integrity protection mechanism, except
that it does load-time check of the important files while the
system is running rather than just during the boot-time.
Moreover, it relies on the TPM’s authenticated boot to mea-
sure the public key that is used to verify the database of
the hashes. It relies on the TPM to deny access to a pro-
tected key if a wrong key is used to verify the database.
Furthermore, this protected key in the TPM is used for the
authenticating to the network, so that only the boxes that
are running certified kernel image and enforcing the correct
database of hashes can use the key to authenticate to the
network.

5. IMPLEMENTATION
We upgraded Enforcer code to run on Linux 2.6.20. We
customized a static kernel image including Enforcer LSM,
SELinux, and the support for hardware that the platform
needs to boot and perform E-voting, including its graphics
card support and USB input devices. We achieved 4.8 MB
of uncompressed kernel image and 2.0 MB of compressed
kernel image. Because we were not able to find the latest

3As we were testing the boxes, we made several systems
unbootable. In order not to make too many systems un-
bootable, so we decided not to carry out the actual attack



version of TPM on a simpler hardware that is designed for
networked embedded device, we used a commodity PC to
run the prototype E-voting software; thus, we had to in-
clude the support for SCSI and various hardware support
necessary to boot the commodity system. We argue that if
the kernel is customized for a dedicated single board com-
puter (SBC), the kernel image will shrink even more, re-
ducing the footprint of the kernel image on the disk. For
example, we removed part of the kernel we believe is un-
necessary for SBCs, such as SCSI, IDE controllers, and the
kernel’s size shrank few hundred kilobytes more, resulting
in a compressed image of approximately 1.8 MB. The mem-
ory footprint of the entire system, 27MB, is bigger than the
set-top-box’s—15MB—which uses an optimized 2.4 Linux
kernel and binaries. Nevertheless, our system, which has
not been optimized for embedded systems, can still fits in
the 35 MB SDRAM in the set-top box, making it possible
to upgrade the existing kernel to our more secure one.

6. CONCLUSION AND FUTURE WORK
We presented a case study of practical attacks on an en-
terprise network using networked embedded devices. We
believe that the next frontier for botnet developers may be
lightweight embedded devices like the set-top boxes we ex-
plored. They are ubiquitous but largely invisible in our day-
to-day lives. We view our subversion of media boxes as
one case among many possible instantiations. In particular,
we note that embedded device developers are increasingly
turning to generalized commodity software, particularly op-
erating systems, for a low-cost way to get their products
to market; customization always results in a higher price.
In the case we examined, the developers had not disabled
unnecessary functionality in an operating system (versions
of which are also used on desktop PCs). We presented our
solution using Enforcer LSM and SELinux. Our solution
provides integrity protection and the principle of least priv-
ilege to the development of the set-top boxes, in the hope of
raising the bar of embedded system security.
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