
Preventing Theft of Quality of Service
on Open Platforms

Kwang-Hyun Baek and Sean W. Smith
Department of Computer Science

Dartmouth College
Hanover, NH: 03755�

jbaek,sws�@cs.dartmouth.edu

Abstract

As multiple types of traffic converge onto one network,
frequently wireless, enterprises face a tradeoff between ef-
fectiveness and security. Some types of traffic, such as
voice-over-IP (VoIP), require certain quality of service
(QoS)guarantees to be effective. The end client platform is
in the best position to know which packets deserve this spe-
cial handling. In many environments (such as universities),
end users relish having control over their own machines.
However, if end users administer their own machines, noth-
ing stops dishonest ones from marking undeserving traffic
for high QoS. How can an enterprise ensure that only ap-
propriate traffic receives high QoS, while also allowing end
users to retain control over their own machines?

In this paper, we present the design and prototype of
a solution, using SELinux, TCPA/TCG hardware, Diffserv,
802.1x, and EAP-TLS.

1 Introduction

Many enterprise IT infrastructures are experiencing
“convergence.” Increasingly many types of information
services—such as telephony and multimedia—are moving
onto users’ general-purpose computers, and onto the net-
work. Indeed, our university has already migrated to VoIP,
and plans to run only one network in new dormitories, in-
stead of three (intranet, telephone, and cable TV).

However, in order to provide acceptable performance,
some of these applications require the network to ensure
higher minimal QoS for their traffic. In a large campus envi-
ronment, with users, occasionally uncooperative, who value
individual and departmental autonomy over their machines,
this situation creates a set of challenges:

1. The network and the user machines need to conspire

together to ensure that traffic from appropriate appli-
cations receives the appropriate quality of service.

2. Rogue users, even with root access to their own ma-
chines, should not be able to steal high QoS for traffic
from applications that do not merit it.

3. The users need to otherwise retain the control over
their own machines to which they are accustomed.

1.1 Quality of Service

Quality of Service (QoS) is a concept of how “good” of-
fered networking services are. QoS can be characterized by
a number of specific parameters, ranging from low-level pa-
rameters, such as packet loss and guaranteed bandwidth, to
end-to-end notions, such asdelay(how long it takes to send
information from one end node to another) andjitter (the
variance of delay when sending multiple packets). When
collision occurs or a a router’s routing queue is exhausted,
packets may be lost—resulting increased delay or jitter.

Specific applications may have specific QoS needs. For
example, a multimedia network application might need to
reconstruct audio and video signals from a stream of packets
it receives. If the traffic experiences delay, the application
gives an unpleasant half-duplex feel to the users. If it ex-
periences jitter, the audio and video signals get interrupted
causing distortion and unintelligible audio.

QoS architectures can provide QoS in terms ofguaran-
teedservices ordifferentiatedservices. Guaranteed services
can guarantee certain QoS for a network application. Thus,
a network application can specify the minimal delay, jitter,
packet loss for its traffic. In contrast, differentiated services
attempt to provide better QoS to special classes of traffic. In
this case, a network application may ask the network routers
to treat its traffic with special priority. The routers may ex-
pedite the forwarding of the application’s packets or assure

Appeared at the 1st IEEE/CREATE-NET Workshop on Security and QoS in Communication Networks, Sep 2005. 1



that the application’s packets do not get dropped. Differ-
entiated services, however, do not make any guarantees on
QoS.

Two networking architectures dominate current practice
for QoS.Diffserv[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 7] is an example
of differentiated services. In contrast,Integrated Services
(Intserv)[11, 12, 13, 14, 15, 16, 17, 18] offers guaranteed
services. While Intserv gives the network more control over
which application can be given specific QoS, Diffserv’s ap-
proach is more simple and scalable.

1.2 Theft

However, when Bob authorizes Alice to use his QoS-
enabled network, he wants to make sure that Alice does
not abuse the QoS architecture. For example, Bob may
want to enforce that Alice’s peer-to-peer file-sharing traf-
fic, which Alice modified to resemble VoIP traffic, does not
hoard the network resources that the VoIP traffic from other
users needs. To guard against this kind oftheft of QoS, Bob
might set up aQoS policythat dictates what level of QoS
that Alice’s applications should receive.

Current QoS networking architectures enforce their QoS
policies at the routers or gateways. These devices inspect
the packets themselves, to determine which deserve higher
QoS. Routers and gateways, however, cannot gather enough
information from packet inspection to identify which appli-
cation at the end nodes generated the packets—especially
when the end nodes can shape their low priority traffic to
appear as high priority traffic. Routers and gateways may
attempt to use information in the packets—hardware ad-
dress, IP address, port number, application protocol num-
ber, length of the data, identifiable patterns in the data.
However, many existing techniques, such as MAC address
spoofing and IP address spoofing, can easily change these
values and bypass QoS policy enforcement at the router or
gateway.

1.3 The Problem

Standard QoS networking architectures thus require that
the network believes the application-labeling information
that end nodes put on packets—except the root users on
some end nodes may wish to cheat. We need a way to ensure
that the network can believe this labeling information, de-
spite such adversaries, while still providing users with open
computing environments.

1.4 Our Solution

In this project, we provide a solution to this problem
using trusted computing hardware now becoming commer-
cially ubiquitous. To gain access to the network, an end

node must prove knowledge of a private key. A kernel-level
module at the end node can use this private key—and also
is responsible for marking the QoS level on packets. When
operating correctly, this module will follow the enterprise’s
QoS policy. Integrating measurements of the operating en-
vironment for this module into an on-boardtrusted platform
module (TPM)ensures (for some level of adversary) that
the module can use the private key only when it is operat-
ing correctly. Building this in Linux permits users to oth-
erwise have freedom in configuring their machines; using
the NSA’s SELinux variant protects against malicious users
with root access, who might otherwise subvert the packet-
marking or steal use of the network-access private key.

This project builds on our previous Enforcer Linux and
SELinux projects [19, 20, 21], and uses the 1.1b TPM from
theTrusted Computing Group (TCG)(formerly theTrusted
Computing Platform Alliance, TCPA) [22, 23].

This Paper

Section 2 reviews the building blocks of our design. Sec-
tion 3 describes how we put these pieces together and
presents the big picture of the proposed system. Section 4
discusses our prototype and presents some performance
measurements. Section 5 provides a security analysis. Sec-
tion 6 discusses related work. Section 7 concludes with
some directions for future work.

2 Building Blocks

2.1 The Diffserv Architecture

We need a network architecture to provide quality of ser-
vice.

As discussed earlier, Diffserv [1] is a QoS architecture
that categorizes network traffic into QoS classes so that traf-
fic of a higher priority class receives better QoS than the
traffic that belongs to a lower priority class. Diffserv ap-
pears to be the QoS architecture most widely used in prac-
tice.

Diffserv consists of components for packet classifica-
tion, packet marking andper hop behavior (PHB)enforce-
ment. In Diffserv, network QoS policies divide network
traffic into different QoS classes. TheDifferentiated Ser-
vices Code Point (DSCP)value in theDifferentiated Ser-
vices (DS)field1 in the IP header is used to classify a packet.
The network specifies what type of packets belong to which
class and maps the classes to different DSCPs (packet clas-
sification). Ingress network nodes, such as border routers
and gateways, inspect packets and mark the DSCP of each
packet according to the QoS policy of the network (packet

1The DS field supercedes the IPv4 Type of Service octet and the IPv6
Traffic Classifier octet.

Appeared at the 1st IEEE/CREATE-NET Workshop on Security and QoS in Communication Networks, Sep 2005. 2



Figure 1. The limitations of centralized Diff-
serv.

marking). Other routers of the network then handle the
packet according to the QoS level associated with the DSCP
value of the packet (PHB enforcement). PHB mechanisms,
such asassured forwarding(AF)[3] andexpedited forward-
ing (EF) [4], are used to provide better QoS to the traffic
with higher priority.

As we discussed in Section 1, because the ingress net-
work nodes do not know which application is issuing the
packets, they must rely on the information within the header
of each packet when they classify and mark the pack-
ets. This limitation hinders the network administrator from
making an application-level QoS policy. Once the attacker
figures out the packet-level QoS policy, the attacker can
form low-priority packets to resemble high priority pack-
ets to bypass the QoS policy enforcement. As shown in
Figure 1, End Node 1 can get all its packets—including the
ones issued by malware in its machine—classified illegit-
imately as “Gold” by using a modified network hardware
driver that can spoof the source MAC address. Furthermore,
End Node 2 can get all of its peer-to-peer file sharing traf-
fic marked “Premium” by hacking the program to modify
the packets to resemble VoIP traffic, which often uses RTP
protocol and destination port 5004.

Thus, it is desirable to move classification and mark-
ing to the end nodes that produce the packets, where we
know which applications are issuing the packets. Then we
can have more fine-grained, application-based QoS policy.
However, this approach works only if we can guarantee that
all the end nodes will obey the network QoS policy when
marking the DSCP field of the packets. We can provide such
guarantees using trusted computing hardware and higher-
assurance operating systems.

2.2 TCG Hardware

We need a way for the network to be able to trust the
QoS labeling carried out on end nodes.

Trusted computing tries to answer the the following
question: how can Alice trust computation that occurs in
Bob’s computer? The TCG has come up with an answer for
general-purpose computing platforms that targets a tradeoff
between affordability and security. In the TCG design, a
Trusted Platform Module [22, 23] measures and attests the
configuration of Bob’s computer to Alice. The TPM can
provide further assistance in security protocols by provid-
ing sealed storagethat binds data (such as private or secret
keys) to a specific configuration of Bob’s computer.

In the PC implementation, the TPM is mounted on the
motherboard and (via careful interleaving with bootstrap)
measures the host machine’s hardware and software config-
uration to sixteenplatform configuration registers (PCRs)
in the form of SHA-1 digests, loaded in a one-way format.
The first eight PCRs are filled with hashes of BIOS, hard-
ware configurations, ROM, the bootloader and its configu-
ration. The usage of the other eight PCRs is up to OS and
application designers, and may be used to record the config-
uration of the applications and drivers. As noted earlier, the
TPM can also seal data items to the system configuration,
as represented by a suite of specific PCR values. If a data
item is an RSA private key, the TPM can also be configured
to never unseal it—but rather only perform the RSA private
key operation when the system configuration is appropriate.

The 1.1b TPM has been shipping on many IBM plat-
forms for several years. A 1.2 version has been announced,
but (at the time of our experiments) was not yet available.

Whether or not one agrees with the TCPA/TCG archi-
tecture or some of its potential commercial applications,
two facts remain. This hardware is becoming commer-
cially ubiquitous, so a feasible deployment base exists if
one wants to build a trusted computing application. Also,
the specifications for the TPMs are public, so onecanbuild
to it.

2.3 The Enforcer LSM

We need a way for the end node OS to actually work with
the TPM.

The TCG has specified aTCG Software Stack (TSS),
and an open-source implementation of this recently became
available [24]. However, we hadn’t wanted to wait for that,
so our lab had earlier built theEnforceropen-source integra-
tion of the TPM with Linux, independent of the TSS [19].
Sailer et al. presented a design extending the TSS approach
to the application layer in Linux [25].

For our experiments, we chose the Enforcer plat-
form [21].

Appeared at the 1st IEEE/CREATE-NET Workshop on Security and QoS in Communication Networks, Sep 2005. 3



Figure 2. Enforcer’s long-lived configuration.
The TPM reports the configuration of hard-
wares, BIOS, ROMS, and the bootloader in
the first 8 PCRs. The Enforcer uses PCRs 8–
12 to report the configuration of the rest of
the long-lived components.

The TPM architecture binds data to host configuration.
Standard PKI-based authentication and authorization sys-
tems use a keypair, whose private key belongs to that entity
and whose public key has been certified by some author-
ity. Using such a scheme in a TPM-equipped host naturally
suggests using the TPM to bind this private key to the host
configuration. The configuration of the host machine, how-
ever, may change frequently, for example, with each change
to a trivial file. Does such a change preserve the original en-
tity, or not? If so, do rebind the secret somehow, or must the
host make another trip to the CA?

The Enforcer architecture solves the problem by sepa-
rating the configuration of a host machine into three lev-
els: long-lived kernel and hardware configuration, medium-
lived software, and short-lived operational data.

The Enforcer software includes modified boot code and a
Linux Security Module (LSM). For PKI-based host authen-
tication, the Enforcer uses the TPM to tie the use of the
RSA private key to a known, trusted long-lived configura-
tion of the host machine through the use of PCRs. Figure 2
illustrates the long-lived configuration of the host machine
reported by the PCRs. During the boot-up of the host, the
PCRs are populated with with measurements reflecting the
hardware configuration, and key software such as BIOS, the
kernel, and the Enforcer code. If the PCRs matches the
known configuration, then the TPM makes secrets available
to the Enforcer for that boot cycle. One of these secrets is a
private key matching a public key that has been certified in

an X.509 identity certificate isssued for this machine.
For medium-lived software and files, a remoteSecurity

Admin issues a signed policy which describes a file struc-
ture that it believes to be trustworthy. The Enforcer, at the
beginning of each boot cycle, checks the signature of the Se-
curity Admin’s policy and loads the policy into the memory.
To prevent from using a forged policy, the Security Admin’s
public key is hashed in a PCR and is part of the long-lived
configuration, so if an attacker tries to modify the public key
file, the secret bound the long-lived configuration becomes
not accessible. At run time, the Enforcer intercepts relevant
syscalls touching files and checks them against this policy.

Finally, the short-lived operational data is protected
through the use of an encrypted loopback filesystem. If tam-
per is detected in the long-lived or medium-lived configura-
tion, the Enforcer can unmount the filesystem and deny the
access to the secret necessary to decrypt the data.

Marchesini et al. [19] showed that the Enforcer platform
can be used protect the integrity of SSL server to give higher
level of assurance to its customer that the private key is
well-protected. In their implementation, an Apache Web
server’s private key is bound to the long-lived configura-
tion of the Enforcer platform and is certified by the CA that
vouches for the Enforcer kernel. The Enforcer enforces the
medium-lived configuration of Apache, necessary scripts,
and libraries through the use of the Security Admin’s policy.
Finally, operational data is kept in the encrypted loopback
filesystem.

2.4 Adding SELinux

We need a way to protect against malicious root users.
Even with TCG hardware, the superuser in the traditional

Unix/Linux access control model can nullify the binding
between the configuration and the secret. For example,
the superuser can use a debugger to read the memory lo-
cation where the secret is loaded after it is released from
the TPM. To solve this problem, Marchesini et al., in their
later work [20] addedSecurity Enhanced Linux (SELinux)
to the Enforcer to providesoftware compartmentsto limit
the superuser. SELinux [26, 27] is a Flask-based operat-
ing system that offersmandatory role-based access control.
In the mandatory role-based access control model, a policy
assigns roles to subjects—processes and users—and types
to objects—memory locations, devices, files and sockets—
and then describes how the subjects in each role can access
the objects in each type. Using the mandatory role-based
access control policy, SELinux can confine each application
to its own compartment of objects calleddomain. Separat-
ing objects in the system into separate domains can, thus,
prevent the superuser from spying on arbitrary memory lo-
cation of the domain where it does not have permission to
read memory.

Appeared at the 1st IEEE/CREATE-NET Workshop on Security and QoS in Communication Networks, Sep 2005. 4



3 Putting the Building Blocks Together

TCG hardware with the Enforcer and SELinux LSM pro-
vides a practical way to bind a secret to trustworthy kernel-
level code, which in turn can use a host-specific private key
only when the rest of the machine abides by some policy
schema. In the SSL example, the Enforcer will not export
the SSL private key outside the use of Apache web server,
and ensures that the server can use it only when it is config-
ured according to the latest safety guidelines and the Web
content is suitably guarded by the OS.

We can use a similar approach to solve the QoS theft
problem. We choose a standard PKI scheme to require au-
thorization for network access. We set up the trusted mod-
ule at the end node to know that host’s secret—and also to
ensure that packets exiting the machine into the secure tun-
nel are marked correctly according to the network’s QoS
policy.

3.1 Distributed Packet Marking

We introduce an additional remote party called theQoS
Admin, who, similar to the Security Admin, issues a signed
policy. This policy maps each network application to a
DSCP. During the machine’s bootup process, the QoS Ad-
min’s public key is also loaded into the PCR along with the
Security Admin’s public key, and the policy’s signature is
verified when the Enforcer loads the policy. The QoS Ad-
min may need to consult the Security Admin policy when
creating the QoS policy, since what an application does
when executed can depend on other aspects of the system
configuration besides the binary. Additionally, by granting
an application the right to use a high QoS, the QoS Admin
may also be granting that right toforked children.

Figure 3(a) describes how our kernel-level code can cor-
rectly identify the mapping between the packets and net-
work applications. We added socket hooks to the En-
forcer/SELinux LSM so that when INET or INET6 type
sockets are created, the LSM records the socket’s inode
number, the program that created it, and the DSCP for the
program in the QoS Admin’s policy. The hook verifies that
the program is listed in the Security Admin’s policy and
looks up the QoS Admin’s policy for the hash of the pro-
gram and the corresponding DSCP. If the program is not in
the Security Admin’s policy, the socket is not recorded and
all the packets issued from the socket are dropped. More-
over, if the DSCP for the program is not specified in the
policy, the packets from the socket will be assigned the de-
fault DSCP and will only receive best-effort service from
the routers.

Figure 3(b) shows how we use the recorded socket in-
ode and DSCP value to mark the outgoing packets. Packet
marking happens at a POSTROUTING Netfilter hook [28]

(a) Socket hooks.

(b) Marking DSCP.

Figure 3. Socket and Netfilter Hooks. (a) We
added hooks to socket syscalls to map socket
inode numbers to programs. We then use
this mapping to identify which programs are
issuing which packets. If the socket is cre-
ated by a program that is not listed in the
Security Admin’s policy, the hook does not
record the socket inode; all the packets is-
sued from such a socket to get dropped at
the kernel IP stack. The hook also finds the
DSCP for the program in the QoS Admin’s
policy and records this value along with the
socket’s inode number. If the QoS Admin’s
policy does not include the program, then the
hook records the default DSCP. (b) The Netfil-
ter POSTROUTING hook at the kernel IP stack
uses the recorded socket inode and DSCP
values to mark the DS field of the IP packet
before the packet is sent to the device driver.
If the hook does not recognize the socket in-
ode, then the packet is dropped.

Appeared at the 1st IEEE/CREATE-NET Workshop on Security and QoS in Communication Networks, Sep 2005. 5



in the kernel IP stack to capture all outgoing packets at the
IP layer just before it is sent to the network driver. (Net-
filter is firewall utility integrated in the Linux kernels since
version 2.4.) The Netfilter hook looks up the socket inode
where the packet is coming from. If the socket is recorded,
then it modifies the packet’s DSCP value with the recorded
DSCP. If the socket is not recorded, then the hook drops the
packet.

3.2 Network Authorization

To restrict network access only to machines with trust-
worthy QoS markings, we useExtensible Authentication
Protocol-Transport Layer Security (EAP-TLS)client au-
thentication [29] for network authorization. EAP-TLS is a
PKI-based authentication method for 802.1x port-based ac-
cess control. In EAP-TLS authentication, the client holds a
keypair and a certificate that is signed by a CA the network
trusts. The client gains the access by proving to the net-
work’s authentication server the knowledge of his private
key.

3.3 Big Picture

Figure 4 shows how the components of our system fit
together. In our approach, the client’s platform generates
an RSA keypair and binds the private key to the long-lived
configuration of the platform. An enterprise CA certifies
the public key and issues a certificate vouching for the long-
lived configuration of the client’s platform.

In our current design, the private key file of the platform
lives in the encrypted loopback filesystem, which is only
accessible when the Enforcer is in the configuration that the
private key is bound to. Enforcer and SELinux limit the
access to the key only to the 802.1x supplicant program that
does not export the key or make visible to other processes.
Enforcer also detects integrity changes to the medium-lived
software using the Security Admin’s Policy.

During EAP-TLS authentication, the authentication
server verifies that the certificate is signed by the enterprise
CA and that the client has the knowledge of the private key.
From these two facts, the authentication server can deduce
that the client is in a “good” configuration, in which the En-
forcer/SELinux LSM will mark the packets according to the
QoS Admin’s policy.

Figure 5 shows the resulting security functionality. Note
that the same End Node 1 and 2 that were able to steal QoS
in centralized diffserv in Figure 1 now cannot steal QoS in
our distributed diffserv model. TPM detects at boot time
that the End Node 1 modified the hardware network driver
and denies access to the authentication private key. The End
Node 2 cannot have the hacked P2P file filesharing applica-
tion to steal QoS because the Enforcer detects the tamper

Figure 5. Distributed Diffserv with the En-
forcer and SELinux LSM.

of the application and the QoS Admin’s policy prevents it
from getting undeserved QoS.

The power of our design lies in the non-restrictiveness
of the approach. Our usage of the Enforcer/SELinux LSM
allows Alice to have the freedom to administer her plat-
form and add/remove applications as she wishes. The only
restriction is that, should Alice want non-default network
QoS, she needs to install an application that has been ap-
proved by the QoS Admin, in a configuration blessed by the
Security Admin. SELinux compartmentalization will help
here by restricting Alice’s superuser privileges. The sys-
tem also will not allow Alice to load arbitrary kernel mod-
ules, since a malicious one could potentially compromise
the packet marking.

4 Prototype Implementation and Perfor-
mance

We implemented our design on an IBM Thinkpad T40
with Pentium M 1.3GHz, 256MB RAM, TPM 1.1b, and In-
tel Wireless Pro 2100 device, running Linux kernel 2.6.11
with the -mm patch [30] and the Debian testing distribu-
tion. This Thinkpad came pre-installed with a 1.1b TPM,
and the kernel we used included the driver for the TPM. We
also usedlibtpm 2.0 from IBM [31] as the TPM library
code. For SELinux libraries and utilities, we used Russell
Coker’s SELinux Debian packages [32]. We used the exper-
imental Enforcer LSM patch that works with the SELinux

Appeared at the 1st IEEE/CREATE-NET Workshop on Security and QoS in Communication Networks, Sep 2005. 6



Figure 4. Our modified Enforcer/SELinux platform. (This figu re is based on Figure 2 in [20].) We
introduce another remote party called the QoS Admin who issu es a signed application-based QoS
policy. The long-lived configuration also enforces the QoS A dmin’s policy by marking all its outgoing
packets according to the policy. The authentication server can be assured that the platform will
obey the network’s QoS policy simply by the fact that the plat form can prove the knowledge of the
authentication private key, which is certified by the Enterp rise CA because the CA vouches for the
fact that platform’s kernel will obey the QoS Admin’s policy .

LSM.

For 802.1x EAP-TLS client authentication, we used
xsupplicant version 1.0.1 [33]. In addition, we also
wrote a QoS Admin utility, which, using a configuration
file, can build QoS Admin’s policy and sign it using QoS
Admin’s private key.

To limit the power of the superuser account, we added
new roles to the SELinux policy for the Security Admin and
the QoS Admin. We restricted access to the Security Ad-
min’s policy and the QoS Admin’s policy to the users who
have these roles. We also added a domain for xsupplicant
and all the kernel driver modules used for the wireless de-
vice, and we restricted access to this domain to prevent the
superuser from spying on the key for network encryption.

Finally, we created a domain for the TPM library functions
and the TPM driver; we restricted access to this domain to
prevent the superuser from spying on the private key for
network authentication.

With the LSM framework, one can implement one’s
own socket hook functions, such assocket_create(),
socket_post_create(), socket_bind(),
and socket_connect(). These hook functions
get called when user code makes socket syscalls
such as socket(), bind(), and connect().
We modified socket_post_create() and
socket_shutdown() to bookkeep which applica-
tions are using which sockets. Because a socket is
completely shut down only when theclose() syscall

Appeared at the 1st IEEE/CREATE-NET Workshop on Security and QoS in Communication Networks, Sep 2005. 7



linphone ices firefox exim4 ssh/sftp
Min 2275 11550 5489 14379 1529
Max 47649 11931 7938933 325801 212549
Average 4859.47 11655.25 358324.71 24492 7065.02

Table 1. Added latency by the socket hook
(µs).

is called, we added an an LSM hook in theclose()
syscall to see which sockets get deleted. We also added
a Netfilter hook function that gets called when a packet
arrives in the predefined hooks in the kernel IP stack,
called trustednet_ip_postroute_last(). This
function captures all the packets right before they leave the
kernel IP stack, and marks each packet according to the
recorded DSCP value for the socket it is coming from. If
no value is recorded, the function drops the packet. We
also perform bookkeeping to detect packets a machine
is sending to itself. Our bookkeeping occurs after the
SELinux hook functions since SELinux policy may prevent
the socket from being created and the packets from leaving
the machine.

To evaluate the performance of our implementation, we
measured how long the added hooks take to mark the pack-
ets. We measured the added latencies for the following five
applications:linphone, a VoIP application,ices, au-
dio streaming program,firefox, a Web browser,exim4,
mail-transfer agent , andssh/sftp, secure shell and file
transfer protocol. We note that the time that the socket calls
take is generally dependent on how much computing re-
sources are available. If the platform runs out of physical
memory and has to page and swap, the performance de-
grades dramatically. The maximum numbers reflect such
events.

The socket hook operation is time-consuming, since we
have to calculate the hash of the program to compare with
the entry in the Security Admin’s policy, and it also has to
search the DSCP for the program in the QoS Admin’s pol-
icy. Thus, the time that socket hook takes is proportional to
the size of the program binary for which it has to calculate
the hash. Table 1 shows the added latency for the socket
hook for socket_post_create(). Even though the
socket hook operation is costly, the program only needs
to do this once to create the socket prior communication.
Thus, the number of times socket hooks are called much
less often than the Netfilter hooks.

The Netfilter hook operation is less costly, as shown in
Table 2, since all it needs to do is look up the packet’s socket
inode number in the recorded values and mangle the DS
field in the IP packet. The operation occurs much more
frequently than the socket hook operations since a single

linphone ices firefox exim4 ssh/sftp
Min 4 4 4 5 4
Max 3822 2083 5301 34 12926
Average 8.722 17.74 18.821 11.4835 40.5053

Table 2. Added lantency by the Netfilter hook
(µs).

socket may issue multiple packets.
Performance benchmarks for some specialized hardware

show that Diffserv marking can be done without any added
latency [34]. Thus, our approach may introduce some la-
tency to the end-to-end communication that uses these spe-
cialized hardware. However, according to the International
Telecommunications Union [35], the recommended maxi-
mum round trip delay in a voice system is 0 to 150 millisec-
onds. Thus, the time that the local packet marking adds is
easily absorbed in the total round trip time.

In summary, we showed that our implementation does
not hinder the performance of the network applications.
Furthermore, because we are distributing the computation
that the edge routers or gateways traditionally perform for
all packets they serve, our solution is more scalable than the
centralized traditional Diffserv architecture.

Our code will be available for open-source download.

5 Security Analysis

In this section, we discuss several possible threat models
to our distributed QoS enforcement and show how we can
prevent them.

Since the DSCP marking happens at the kernel IP stack,
it is possible for the attacker to modify the packet after it is
marked by the Enforcer and before it arrives at the network
interface driver. In Linux, a user can use netlink sockets
and divert sockets to intercept, modify, reinject packets.We
use SELinux to restrict the permission to use these sockets
that can interfere with the QoS marking rules. Note that
many useful programs, such as iptables firewall utility, use
such sockets, however. Restricting netlink usage greatly de-
creases the functionality of these programs. Alternately,we
can also use digital signatures to detect tamper although this
approach may greatly reduce the performance of the system.

The attacker may try to use another machine between
the Enforcer platform and the network to try to modify
the packet. Because EAP-TLS authentication produces
Medium Access Control (MAC) layer encryption and in-
tegrity session keys, which encrypts the IP header of the
packet, the attacker needs to migrate the session key to
the untrusted man-in-the-middle machine and modify the
DSCP in the IP header. Again, we use SELinux to ensure

Appeared at the 1st IEEE/CREATE-NET Workshop on Security and QoS in Communication Networks, Sep 2005. 8



that the memory location of the session key is readable only
by the network interface driver. Furthermore, we use the
Security Admin’s policy to include only the network inter-
face driver which does not reveal the session key to other
processes. Moreover, we use SELinux to guard against the
superuser.

The attacker can also try to stand between routers to
modify the packets after they have been decrypted by the
access point or the switch. However, this attack requires
physical access to the wires that connect the routers and ac-
cess points. Thus, when physical security is present, this
attack is very hard to do.

We also discuss the benefits our various components of-
fer.

The TPM alone offers configuration measurement of the
platform and binding of an RSA private key to the configu-
ration of the platform so that the private key is only accessi-
ble only when the platform is in certain configuration. How-
ever, in order to provide high assurance, the TPM, if used
alone, needs to report the comprehensive configuration of
the platform including a snapshot of the filesystem. Thus, a
small, trivial change in the platform’s filesystem causes the
secret key unaccessible.

The Enforcer LSM is added to break down the configura-
tion of the platform into three levels—long-lived kernel and
hardware, medium-lived software and libraries, short-lived
operational data—and to let the TPM to bind the private key
only to the long-lived configuration of the platform. The
Enforcer LSM then works as an intrusion-detection system
for the medium-lived componenets, enforcing the Security
Admin’s signed policy. The Enforcer LSM also provides
encrypted storage for the short-lived configuration and can
bind the secret key to the long-lived configuration, so that
the encrypted data is only accessible when the correct ver-
sion of the Enforcer is running. Thus, through the use of the
Enforcer LSM, the small change that would have made the
private key inaccessible would not affect the access to the
private key in the Enforcer-assisted TPM.

However, the TPM and the Enforcer alone cannot pre-
vent the superuser of the platform from spying the mem-
ory location where the secret is loaded from the TPM.
Furthermore, the Enforcer alone can suffer from time-
of-check/time-of-use attacks if the user can modify the
memory location that stores the Security Admin’s policy.
SELinux is added to provide software compartments to pro-
tect the Enforcer platform from the superuser. It also gives
more strict control over all the objects in the platform, in-
cluding memory, to ensure that implicit flow of confidential
information does not occur.

Finally, SELinux alone does not provide integrity pro-
tection for the hardware and software configuration. Thus,
if the program binaries or the kernel itself have been mod-
ified while SELinux is not running (this is possible if the

user can boot non-SELinux kernel and mount the filesys-
tem), SELinux cannot detect the tamper.

6 Related Work

6.1 Trusted Computing

Our work is similar to Trusted Network Connect
(TNC) [36], an ongoing effort by the Trusted Computing
Group to enforce security for end-point host connections.
The goal that TNC is trying to achieve is different from our
work, however. TNC focuses on protecting the end nodes
from malware and ties the security level of end nodes to the
level of access to the network. Our work differs in several
respects. We are trying to secure not just network authoriza-
tion, but QoS markings as well; we are also distinguishing
not just good nodes from bad nodes, but also between ap-
plications within nodes.

The specification of TNC has not been finalized yet. Cur-
rent sources [37] indicate plans to use VLANs and 802.1x
with EAP andRemote Authentication Dial In User Service
(RADIUS).

6.2 Secure QoS

Intserv is a signal-based QoS architecture, where the
node desiring better QoS makes a request to the network
via Resource ReSerVation Protocol (RSVP) [38] and re-
serves network resources such as bandwidth and drop rate
for the connection. There has been some work to se-
cure RSVP messages from modification and eavesdrop-
ping [39, 40, 41]. However, that research focuses on out-
sider attacks and does not address insider attacks. More-
over, because Intserv requires the routers keep track of the
flow that has reserved certain resources, it is not as scalable
and popular as Diffserv.

6.3 IEEE 802.11e

The IEEE 802.11e working group is currently working
on MAC-layer QoS for 802.11 wireless networks [42]. Zhu,
et al. [43] give a good survey of the QoS schemes in the
MAC-layer.

MAC-layer QoS for wireless networks focuses on a dif-
ferent problem from IP-layer QoS. Because an access point
can service only one wireless node at a time, when more
than one node transmits a packet at the same time, a colli-
sion occurs and the nodes must retransmit after a back-off
period. In wireless QoS schemes, the nodes that are send-
ing high priority traffic might back off for a shorter period
of time than the nodes that are sending low priority traf-
fic. However, misbehaving nodes may always back off for

Appeared at the 1st IEEE/CREATE-NET Workshop on Security and QoS in Communication Networks, Sep 2005. 9



a short enough time to always win the transmission oppor-
tunity.

Some researchers have proposed solutions to this greedy
misbehavior [44, 45, 46]. These solutions use probabilistic
algorithms for detecting MAC-layer misbehavior. Thus, it
is possible for sophisticated attackers to bypass the detec-
tion, and the detection scheme can mistake a well-behaving
node to be misbehaving.

In our design, we have the Security Admin approve only
the network interface drivers that is tested to not misbehave.
Thus, the users who wish to authenticate to the network can-
not use network interface drivers that are not approved by
the Security Admin.

6.4 Application-based Packet Filtering

In a forthcoming paper, Yin and Wang present an
application-awareInternet Protocol Security (IPSec)using
a socket monitor [47]. Similar to our socket LSM hooks,
their socket monitor provides their IPSec policy engine
knowledge of which application is running on which socket
interface, allowing application-based IPSec policy. How-
ever, this work does not provide mechanisms to detect and
prevent tampering of the software and kernel, so it may be
possible for the attacker to fool the IPSec policy enforcer by
modifying the program binaries of the IPSec policy engine
or the socket monitor.

Other researchers, like application-based firewall devel-
opers, used/proc filesystem to find which port is being
used by which application [48]. However, although this ap-
proach is more space-efficient, processing each packet in
this design is more time-consuming than having a socket
monitor.

7 Conclusions and Future Work

In this paper, we described a design and prototype of
distributed enforcement of the network’s QoS policy using
trusted computing hardware, open source trusted computing
tools, and Diffserv. In the Diffserv architecture, a network
application can request the necessary QoS by marking all
of its outgoing packets with that class of service. However,
the enforcers of the network’s QoS policy, such as the edge
routers or gateways, are unaware of which network applica-
tions issued the packets they see. Consequently, a malicious
node can modify the low priority traffic to resemble the high
priority traffic.

Thus, we argued that it would be better to move the en-
forcing to the end nodes, which are aware of the mapping
between the outgoing packets and the programs—but this
move requires that we can trust that each node will obey
the network’s QoS policy. To solve this problem, we used
trusted computing to bind the node’s network authentication

secret to the node’s configuration that obeys the network’s
QoS policy, and then have kernel-level code at these au-
thenticated nodes to mark the packets according to the QoS
policy of the network. We use SELinux to protect the opera-
tion of this authentication and marking code from malicious
applications and root-level users.

We implemented our design by adding socket and Net-
filter hooks to the Enforcer LSM and by binding the node’s
private key for EAP-TLS authentication to the modified En-
forcer with marking abilities. We showed that our imple-
mentation does not suffer performance and increases scala-
bility due to distribution of marking duties.

Several areas remain for future work.

7.1 Policy Update Verification

Currently, there is no way for the authentication server
to know whether the policies of the Security Admin and the
QoS Admin in the end node’s Enforcer platform are up-to-
date; the server knows only that the policy the Enforcer is
enforcing has a valid signatures2. Once an update is re-
leased, it is the responsibility of the Security Admin and
the QoS Admin to patch the system in timely fashion. Al-
though it is possible to attest the policies to an unused PCR
in the TPM and map the new configuration to the certifi-
cate, this idea goes against the Enforcer’s design of sep-
arating the medium-lived software configuration from the
long-lived core. Moreover, adding attestation to EAP-TLS
authentication may require changes to the current standards.

We are thinking of ways to allow the Enforcer, rather
than the TPM, attest to the medium-lived core’s policy.
This idea allows the attestation hierarchy to match the hi-
erarchy of the configuration. We propose the use ofX509
attribute certificates[49] in conjunction with the enter-
prise certificate for EAP-TLS authentication. In our pro-
posed scheme, in the beginning of each boot cycle, after
the Enforcer/SELinux LSM checks the signature of the Se-
curity Admin’s policy and the QoS Admin’s policy, the
Enforcer/SELinux LSM generates attribute certificates for
these two policies and signs them with the authentication
private key—thus vouching for the timestamp, version num-
ber, and issuers of the policies. When the Enforcer platform
authenticates to the network, it presents these attribute cer-
tificates along with the network certificate to the authenti-
cation server so that the authentication server can find out
what version of the policy the platform is enforcing. Since
EAP-TLS authentication supports validation of a chain of
certificates, we are hoping that using the attribute certifi-
cates may save us from making any changes to the standard
EAP-TLS authentication protocol.

2The Enforcer does offer a way to record the serial number of the Secu-
rity Admin’s policy it uses and to reject its use if the policy’s serial number
is less than the recorded one. This feature, however, only addresses roll-
back, not freshness.

Appeared at the 1st IEEE/CREATE-NET Workshop on Security and QoS in Communication Networks, Sep 2005. 10



7.2 Automated Policy Update

Policy update verification is also useful when the En-
forcer platform is used in multiple domains that have dif-
ferent QoS policies. Thus, it is desirable for the Enforcer
platform to keep multiple QoS policies signed by different
QoS Admins, and use the appropriate one when crossing
the domain. For users who may not have multiple policies
installed, it would be ideal to support dynamic update of the
QoS policy. In this model, the network detects an Enforcer
platform which is not properly configured with the policy
that the network approves. By creating an “quarantined”
VLAN, we can limit the user’s network access to where the
user can download the signed QoS policy of the network.
Once the policy’s signature is checked, the Enforcer plat-
form can restart using the updated QoS policy and be able
to gain access to the network.

7.3 Usability of Policy Writing

In general, it can be hard to come up with a policy that
matches the conceptual model and allows the system to op-
erate correctly. If not carefully written, the policy may not
deliver the security that we need. Too restrictive policy may
cause the system to lose important functionality. Dynami-
cally linked executables requires the Security Admin to val-
idate the linkers and dynamically loadable libraries as well
as the program binaries. In our current implementation, we
included all the libraries and modules and linkers in the Se-
curity Admin’s policy to increase assurance against attacks
that use dynamically linked executables.

In our current implementation, the policies from the Se-
curity Admin and the QoS Admin are locally generated.
The timestamps on executables cause the hashes of the bi-
nary compiled in different platform to be unique, making
it hard for the Security Admin and the QoS Admin to is-
sue general, universal policies for all the Enforcer/SELinux
platforms. In order to support automatic policy update,
we plan to investigate on ways to make the policies more
portable across different platforms.

7.4 Usability of Open Platforms

Another area of future work will be to validate, with user
studies, that this approach (a trustworthy network QoS mod-
ule within SELinux) still results in a sufficiently flexible and
open platform to satisfy users who like to retain administra-
tive control of their machines. Verification of the SELinux
policy will also be necessary.

Acknowledgement

This work was supported in part by Cisco Corporation,
the NSF (CCR-0209144), Internet2/AT&T, Sun, Intel, and
by the Office for Domestic Preparedness, U.S. Dept of
Homeland Security (2000-DT-CX-K001). The views and
conclusions do not necessarily represent those of the spon-
sors.

We also gratefully acknowledge John Marchesini, Chris
Masone, Jason Jeffords, and Josh Stabiner for helpful sug-
gestions and advice.

References

[1] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss, “An Architecture for Differentiated Services,”
IETF RFC 2475, Nov. 1998.

[2] K. Nichols, S. Blake, F. Baker, and D. Black, “Definition of
the Differentiated Services Field (DS Field) in the IPv4 and
IPv6 Headers,” IETF RFC 2474, Dec. 1998.

[3] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, “As-
sured Fowarding PHB Group,” IETF RFC 2597, June 1999.

[4] V. Jacobson, K. Nichols, and K. Poduri, “An Expedited
Fowarding PHB,” IETF RFC 2598, June 1999.

[5] B. Davie, A. Charny, J.C.R. Bennett, K. Benson, J.Y.
Le Boudec, W. Courtney, S. Davari, V. Firoiu, and D. Stil-
iadis, “An Expedited Forwarding PHB (Per-Hop Behavior),”
IETF RFC 3246, Mar. 2002.

[6] A. Charny, J.C.R. Bennett, K. Benson, J.Y. Le Boudec,
A. Chiu, W. Courtney, S. Davari, V. Firoiu, C. Kalmanet,
and K.K. Ramakrishnan, “Supplemental Information for the
New Definition of the EF PHB,” IETF RFC 3247, Mar. 2002.

[7] Y. Bernet, S. Blake, D. Grossman, and A. Smith, “An Infor-
mal Management Model for Diffserv Routers,” IETF RFC
3290, May 2002.

[8] D. Grossman, “New Terminology and Clarifications for Diff-
serv,” IETF RFC 3260, Apr. 2002.

[9] F. Baker, K. Chan, and A. Smith, “Management Informa-
tion Base for the Differentiated Services Architecture,” IETF
RFC 3289, May 2002.

[10] G. Armitage, B. Carpenter, A. Casati, J. Crowcroft,
J. Halpern, B. Kumar, and J. Schnizlein, “A Delay Bound
alternative revision of RFC 2598,” IETF RFC 3248, Mar.
2002.

[11] F. Baker, J. Krawczyk, and A. Sastry, “Integrated Services
Management Information Base using SMIv2,” IETF RFC
2213, Sept. 1997.

[12] F. Baker, J. Krawczyk, and A. Sastry, “Integrated Services
Management Information Base Guaranteed Service Exten-
sions using SMIv2,” IETF RFC 2214, Sept. 1997.

[13] S. Shenker and J. Wroclawski, “General Characterization
Parameters for Integrated Service Network Elements,” IETF
RFC 2215, Sept. 1997.

Appeared at the 1st IEEE/CREATE-NET Workshop on Security and QoS in Communication Networks, Sep 2005. 11



[14] S. Shenker and J. Wroclawski, “Network Element Service
Specification Template,” IETF RFC 2216, Sept. 1997.

[15] J. Wroclawski, “The Use of RSVP with IETF Integrated
Services,” IETF RFC 2210, Sept. 1997.

[16] J. Wroclawski, “Specification of the Controlled-Load Net-
work Element Service,” IETF RFC 2211, Sept. 1997.

[17] S. Shenker, C. Partridge, and R. Guerin, “Specificationof
Guarateed Quality of Service,” IETF RFC 2212, Sept. 1997.

[18] B. Davie, D. Oran, S. Casner, and J. Wroclawski, “Integrated
Services in the Presence of Compressible Flows,” IETF RFC
3006, Nov. 2000.

[19] John Marchesini, Sean W. Smith, Omen Wild, and Rich
Macdonald, “Experimenting with TCPA/TCG Hardware,
Or: How I Learned to Stop Worrying and Love The Bear,”
Tech. Rep. TR2003-476, Department of Computer Science,
Dartmouth College, Dec. 2003.

[20] John Marchesini, Sean Smith, Omen Wild, Josh Stabiner,
and Alex Barsamian, “Open-Source Applications of TCPA
Hardware,” in20th Annual Computer Security Applications
Conference, Dec. 2004.

[21] “Enforcer homepage,” http://enforcer.
sourceforge.net/.

[22] “TCG PC Specific Implementation Specification Version
1.1,” http://www.trustedcomputinggroup.org,
Aug. 2003.

[23] “TCG PC Specific Implementation Specification,”http:
//www.trustedcomputinggroup.org, Aug. 2003.

[24] “TrouSerS—The open-source TCG Software Stack,”http:
//trousers.sourceforge.net/.

[25] R. Sailer, Zhang X., T. Jaeger, and L. Van Doorn, “Design
and Implementation of a TCG-based Integrity Measurement
Architecture,” inProceedings of the 13th Usenix Security
Symposium, San Diego, CA, Aug. 2004, USENIX.

[26] Peter Loscocco and Stephen D. Smalley, “Meeting Critical
Security Objectives with Security-Enhanced Linux,” inPro-
ceedings of the 2001 Ottawa Linux Symposium, July 2001.

[27] Peter Loscocco and Stephen Smalley, “Integrating Flexible
Support for Security Policies into the Linux Operating Sys-
tem,” in Proceedings of the FREENIX Track: 2001 USENIX
Annual Technical Conference, Feb. 2001, pp. 29–42.

[28] Rusty Russell and Harald Welte, “Linux netfilter Hacking
HOWTO,” www.netfilter.org/, July 2002.

[29] B. Aboba and D. Simon, “PPP EAP TLS Authentication
Protocol,” IETF RFC 2716, Oct. 1999.

[30] “The -mm patches to the Linux kernel,”http://www.
kernel.org/patchtypes/mm.html.

[31] “IBM Watson Research—Global Security Analysis Lab:
TCPA Resources,” http://www.research.ibm.
com/gsal/tcpa/.

[32] Russell Coker, “Security Enhanced Linux Information,”
http://www.coker.com.au/selinux.

[33] “Open Source Implementation of IEEE 802.1x,”http://
www.open1x.org.

[34] The Tolly Group, “LinleyBench 2002 Test Results–Ezchip
NP-1c 10 Gigabit 7-Layer Network Processor,”http://
www.linleygroup.com, 2001.

[35] ITU-T Recommandation G.113, “Transmission Impairments
Due to Speech Processing,” Feb. 2001.

[36] “Trusted Network Connect to Ensure Endpoint Integrity,”
http://www.trustedcomputinggroup.org, May
2004.

[37] “Trusted Network Connect Frequently Asked Questions,”
http://www.trustedcomputinggroup.org, May
2004.

[38] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin,
“Resource ReSerVation Protocol (RSVP)—Version 1 Func-
tional Specification,” RFC 2205, Sept. 1997.

[39] D. Scott Alexander, William A. Arbaugh, Angelos D.
Keromytis, Steve Muir, and Jonathan M. Smith, “Secure
Quality of Service Handling SQoSH,”IEEE Communica-
tions Magazine, Apr. 2000.

[40] Vanish Talwar and Klara Nahrstedt, “Securing RSVP for
Multimedia Applications,” inProceedings of the 2000 ACM
workshops on Multimedia, Los Angeles, 2000, pp. 153–156.

[41] F. Baker, B. Lindell, and M. Talwar, “RSVP Cryptographic
Authentication,” RFC 2747, Jan. 2000.

[42] IEEE 802.11e WG, “Draft Supplement to IEEE Standard
for Telecommunications and Information Exchange between
Systems—LANMAN Specific Requirements,. Part 11:Wire-
less LAN Medium Access Control (MAC) and Physical
Layer,” IEEE Std 802.11e-D3.3, Oct. 2002.

[43] Hua Zhu, Ming Li, Imrich Chlamtac, and B. Prabhakaran,
“A Survey of Quality of Service in IEEE 802.11 Networks,”
IEEE Wireless Communications, vol. 11, no. 4, pp. 6–14,
Aug. 2004.

[44] Pradeep Kyasanur and Nitin H. Vaidya, “Detection and Han-
dling of MAC Layer Misbehavior in Wireless Networks,” in
Dependable Systems and Networks (DSN’03), San Franciso,
California, June 2003, pp. 173–182.

[45] Maxim Raya, Jean-Pierre Hubaux, and Imad Aad,
“DOMINO: A System to Detect Greedy Behavior in IEEE
802.11 Hotspots,” inACM MobiSYS 2004, June 2004, pp.
84–97.

[46] J. Bellardo and S. Savage, “802.11 Denial-of-Service At-
tacks: Real Vulnerabilities and Practical Solution,” inPro-
ceedings of USENIX Security Symposium, Aug. 2003.

[47] Heng Yin and Haining Wang, “Building an Application-
aware IPsec Policy System,” inProceedings of the 14th
USENIX Security Symposium, August 2005, pp. 315–330.

[48] “FireFlier—A Project for Interactive Firewall Admin-
istration,” http://fireflier.sourceforge.net/
features.html/.

[49] Stephen Farrell and Russell Housley, “An Internet Attribute
Certificate Profile for Authorization,” IETF RFC 3281, Apr.
2002.

Appeared at the 1st IEEE/CREATE-NET Workshop on Security and QoS in Communication Networks, Sep 2005. 12


