
Parsing, Performance, and Pareto
in Data Stream Security

J. Peter Brady and Sean W. Smith
Department of Computer Science

Dartmouth College
Hanover, New Hampshire 03755

Email: {jpb, sws}@cs.dartmouth.edu

Abstract—Adding in-line LangSec filtering to network data
streams can improve security (e.g., by protecting the receiving
end from crafted input attacks) but can lead to considerable
performance overhead. This paper presents our GUARDS (Global
Unified Approach for Reliable Data Stream Security) approach
to balance between system performance and the effectiveness of
in-line filtering, by allowing dynamic prioritization of security
measures in high-risk regions. Our research shows that this
model and DFDL parsing can effectively validate and secure
the Network File System version 4 (NFSv4) protocol, achieving a
balance between parsing efficiency and data integrity. This con-
tribution helps improve the ability of network communications
to withstand and maintain functionality in response to changing
data representation difficulties.

I. INTRODUCTION

Balance between performance and security is crucial in
the dynamic landscape of data representation and processing.
Performance demands rapid system operations, whereas robust
security measures often entail comprehensive parsing and
verification, potentially impeding speed. This dichotomy is
particularly vexing in network communications, where speed
may be critical and adding parsing to what’s typically passive
communcation may be seen as an unnecessary extra.

The Data Format Description Language (DFDL) (e.g. [1],
[2]) offers a schema-driven approach that enhances data de-
scription and facilitates the creation of adaptable and dis-
tributable data format descriptions, and related software for
comprehensive data access. DFDL enables parsers to dissect
data into identifiable segments for subsequent analysis by
defining a set of rules for data stream formats. Its declarative
nature allows for the accurate interpretation and manipulation
of any data format.

Our research focuses on leveraging DFDL to flexibly im-
prove security of data stream systems without sacrificing
performance. We develop a DFDL schema specifically for
validating network protocols, emphasizing the Network File
System version 4 (NFSv4) protocol [3]. As a first step, our
paper assesses the effectiveness of DFDL-generated parsers
in verifying complex network protocols, which is crucial for
safeguarding data integrity and security in network communi-
cations.

Dans ses écrits, un sage Italien
Dit que le mieux est l’ennemi du bien.1

–Voltaire, La Bégueule [4]

As Section IV-A discusses, complete LangSec mediation
incurs significant overhead. To mitigate the performance costs
associated with improved security measures, we introduce
GUARDS (Global Unified Approach for Reliable Data Stream
Security). This framework incorporates novel mediation tech-
niques, including Pareto calculations and signaling game the-
ory, to optimize the performance of our DFDL parser by
identifying and prioritizing network procedures that are most
susceptible to failure or corruption; rather than trying to find
a difficult-to-reach “best”, we can look for a point where we
have good performance and security goals.

By focusing on the most significant vulnerabilities that
could lead to parsing failures, GUARDS allows efficient re-
source allocation to address the most critical risks, thus ensur-
ing a harmonious balance between performance and security.
This methodology improves the practical application of DFDL
parsers in software systems and demonstrates a strategic
approach to maintaining optimal operational efficiency and
resilience in the face of security challenges.

Section II provides background information, while Sec-
tion III details our methodology for solving the problems.
Section IV describes our results, Section V discusses these
results and describes future work, and Section VI provides
the conclusion.

II. BACKGROUND

A. LangSec

Language-Theoretic Security (LangSec) (e.g., [5]) is a
multidisciplinary field that intersects computer science, infor-
mation security, and formal language theory. Many security
vulnerabilities arise from discrepancies and ambiguities in
interpreting input data, and such data can be considered a form
of malformed language. The primary concern of LangSec is
to address and correct the insecure handling and processing
of input data, mitigating the risks associated with crafted-
input software vulnerabilities. It is a fundamental principle to
mitigate software vulnerabilities by treating the target software

1Translation: In his writings, a wise Italian said that the best is the enemy
of the good.
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as a Turing machine for which the protocol parsers serve as
the input recognition mechanism.

LangSec posits that for a system to be secure, the parsers of
that system must have a well-defined, unambiguous, and finite
grammar, effectively making them recognizable by machine as
low as possible in the Chomsky hierarchy.

B. DFDL

DFDL (e.g., [1], [2]) is a powerful tool that enables the
manipulation of structured data in a standardized and platform-
independent manner. The declarative nature of its data de-
scription capabilities makes it highly valuable in various areas,
encompassing data integration, transformation, validation, and
legacy system integration. Consequently, it contributes to
improving data interoperability and optimizing data-related
operations.

DFDL encompasses additional components that expand
upon the XML Schema Description Language (XSD) capa-
bilities to provide a comprehensive means of specifying the
structure and presentation of data items.

DFDL is a data modeling language that enables the precise
description of data formats, regardless of their complexity.
Whether we are dealing with binary data, XML, JSON, or
custom data formats, DFDL allows us to define the data
structure, constraints, and semantics, making it self-describing.
This feature means that data consumers can understand the
format and meaning of data without relying on external
documentation.

Another advantage of DFDL is its platform and pro-
gramming language independence. It provides a consistent
way to work with data formats across different systems and
technologies, making it a valuable tool for data integration,
transformation, and validation tasks.

There are two versions of DFDL: an open source version re-
leased by the Apache Software Foundation [1] called Daffodil,
and a commercial version sold as part of the App Connect
Enterprise software by IBM® [2]. We completed our research
and testing with Apache Daffodil. DFDL has the capability
to handle data integration, exchange data between different
platforms, convert messages, and serialize data. However, the
specific aspect that is significant to us is data validation.

The DFDL framework facilitates the implementation of
rigorous data validation by defining the regulations and limita-
tions related to data formats. The use of error detection mecha-
nisms facilitates the identification of errors and inconsistencies
within the incoming data, providing informative error signals
to ensure quality assurance. Therefore, we can use it to write
parsers.

Furthermore, we can utilize a completed DFDL schema
to generate that parser implemented in the C programming
language. Subsequent source code can be compiled into a
target application, resulting in a lightweight, resident native
parser. The current C-code generator handles a subset of
DFDL but has been sufficient for our study [6].

C. Pareto Analysis
Vilfredo Pareto (1848 – 1923) was an Italian economist and

sociologist. In his 1896 book, Cours d’économie politique [7],
Pareto observed that 20% of the population owned approxi-
mately 80% of the land in Italy. From this observation, he built
a large set of income data from all over Europe and North and
South America.

In the 1930s, Joseph M. Juran, a Western Electric quality
engineer, noticed that the production defects were not equal
in frequency. When ordering defects by frequency, he found
that 20% of the defects caused 80% of the problems [8]. If
the work was focused on fixing that 20%, it could have a
significant impact on the defect rate with minimal effort.

The principle states that in a result, only the “vital few”
cause the bulk of the results, while the more significant
number of contributors, the “useful many,” provide much less.
Therefore, the vital few should receive priority.

One way to find the vital few contributors is to create a
Pareto chart or Pareto histogram. An example is shown in
Figure 1. Here, we count the number of times data elements
are used and then place them in order on the graph from
highest number of calls to lowest. We then draw a line (blue
in the figure) showing the cumulative total or a cumulative
distribution function (CDF). Looking at the line, we see that
the curve’s knee is at element D (red line on the figure), which
divides the vital few from the useful many.

Looking at this from a coverage point of view, modification
of elements A-D covers 88.7% of the total data elements, and
if we narrowed that down to just elements A-C, we still cover
73.6%.
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Figure 1: Sample Pareto chart, suggesting a principled way to
guide allocation of limited defense resources.

D. Game Theory
Game theory (e.g., [9]) seeks to develop models to observe

how various decision options affect an outcome. Originating
from the work of John von Neumann and Oskar Morgen-
stern and the contributions of John Nash [10], this theory
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outlines the mathematical frameworks necessary for analyzing
decision-making processes within various game structures,
ranging from simultaneous and sequential games to repeated
games.

The theory dissects games into fundamental components,
generally players, strategies, and payoffs, and categorizes them
into zero-sum, nonzero-sum, cooperative, and noncooperative
games, each with distinct implications and equilibria.

Game-theoretic security (e.g., [11]) examines and analyzes
the dynamics between defenders and attackers. It organizes the
many ways attackers and defenders interact in strategic games.
The interactions make it possible to understand conflict and
cooperation in security contexts and analyze and create robust
defense mechanisms.

We are interested in a simple signaling game for our re-
search; our game has only two players: a sender and a receiver.
The sender begins first by sending their signal; in our case, an
NFS network packet. The receiver then observes the signal; in
our case, parsing the packet and checking correctness. The two
players receive or are denied a reward depending on the signal
chosen by the sender and the observation of the receiver.

E. NFS

The Network File System (NFS) is a distributed remote file
system protocol originally developed by Sun Microsystems in
the 1980s [12]. NFS allows multiple systems to share data
through a Remote Procedure Call (RPC), where programs
make a call to a local library that transmits a data request
on a network, which another system receives and processes,
returning results or status [13]. NFS has a centralized, 1-to-n
remote architecture, which supports its traditional function of
providing a remote file server to a cluster of clients.

There are four major revisions of NFS, with version 4
(NFSv4) being the latest. Version 4.0, abbreviated NFSv4.0,
last revised in RFC 7530 [3], is the current major release.
Compared to earlier versions, it contains performance im-
provements, additional locking, security modes, and a state-
ful protocol. Version 4.1, a minor release defined in RFC
8881 [14], provides extensions for clustered servers and paral-
lel access to files distributed over multiple servers. We studied
both NFSv4.0 and 4.1.

F. Related Work

In a preliminary work-in-progress report, we demonstrated
data mediation and Pareto optimization to add LangSec to
software applications by evaluating the data structures of the
application and their interaction with other data through its
operation [15]. (This paper significantly revises and extends
our earlier WIP report.)

To date, many DFDL samples tend to deal with parsing
fixed record data, such as CSV, iCalendar, or GIF images [16].
Although these samples provide best-practice ways to write
good DFDL code, they are of limited use for our work, as
most deal with static blocks of data, where NFS requests and
replies are more dynamic in size and content.

Some examples are protocols transmitted over networks,
such as the National Automated Clearing House Association
(NACHA) electronic payment messages, which move money
between financial institutions, or ISO8583, used for card-based
transactions such as point of sale. Finally, the samples also
include one for Ethernet, IP, TCP, UDP, ICMP, DNS, which
are raw Ethernet and the low-layer protocols that make up the
backbone of Internet communication.

Strayer et al. [17] use DFDL to parse Link-16 [18], a secure
communications protocol used by US and NATO.

III. METHODOLOGY

GUARDS builds on the components from Section II: we use
DFDL to build LangSec filters for NFS, and then use Pareto
analysis and game theory to dynamically balance mediation
and performance. We call our proof-of-concept implementa-
tion nfsfilter, a C-based daemon designed to run on a Linux
system; it is an intermediary or “bump in the wire” between
the Network File System (NFS) client and the server.

The nfsfilter program intercepts NFSv4 commands from the
client and uses Pareto analysis and game theory to assess the
frequency and likelihood of error of each command. Com-
mands identified as likely to fail are subjected to additional
examination through DFDL parsing to confirm their accuracy.
We transmit valid commands to the designated NFS server.
Erroneous commands result in an NFS error message sent back
to the client to avoid propagating possibly harmful packets
to the server. By doing this, we may avoid parsing every
command, which enhances performance.

We continuously adjust our error threshold while the dae-
mon is running. Suppose that an adversary uses different
commands not currently in the error threshold to attempt to
disrupt the server’s operation. Since we keep a game counter
for all the NFS commands sent, no matter if it is currently
parsed by DFDL, increasing the number of commands may
increase the counter enough to push the command above the
error threshold. In addition, we use the DFDL parser to analyze
the return message from the NFS server and include any faults
detected by the server in the error count for each command.

The operational versatility of the nfsfilter daemon is an
aspect of its design, allowing it to be deployed in multiple
configurations to suit different network topologies and security
requirements. It can function on an independent daemon on a
separate system, acting as a front-end service that interme-
diates communication with a local NFS server. This setup
enhances the security posture by isolating the NFS server
from direct client interactions, providing an additional layer
of scrutiny to incoming commands.

Alternatively, in a commercial setting, nfsfilter could be
configured by an IT department to run directly on the client
machine, where it interacts with the NFS server. This deploy-
ment strategy facilitates the pre-validation of commands before
their transmission to the server, optimizing network traffic
by filtering out erroneous or malicious requests before they
physically leave the client.
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Figure 2: The order of operations (a) from an NFS client to nfsfilter, the either on to the NFS server, or return an error
depending if the data parsed correctly, and (b) from an NFS server, through nfsfilter, and back to the NFS client. The four
“update” boxes provide feedback for our dynamic reprioritization (Figure 3)

Finally, the nfsfilter daemon’s design can be deployed
directly on the NFS server system itself. In this configuration,
it acts as a gatekeeper, scrutinizing and processing commands
as they are received before the NFS service executes them.
This deployment strategy effectively integrates the security and
validation processes into the server’s operational workflow,
minimizing latency between daemon and server. Organizations
can directly reinforce their server’s security defenses by run-
ning nfsfilter on the NFS server, ensuring that only verified
and correct commands are processed.

These three approaches enhance the security framework and
leverage the daemon’s flexibility to adapt to various network
security architectures, safeguarding the server through an
intermediary layer, and ensuring comprehensive coverage and
protection across the client-server communication spectrum.

Although DFDL is a highly effective network packet parser,
our approach for the daemon design is modular and could
incorporate different parsers if necessary.

The remainder of this section will examine some of the
ideas pertaining to the daemon’s operation in greater detail.

As mentioned in Section II-D, we use a signaling game to
assign points to determine whether a transaction is successful.
We assign points to indicate failure rather than success; the
more points an NFS operation accumulates, the more likely
the command will be either frequently used or subverted.

Unlike a simple signaling game, we have no foreknowledge
of whether the sender is sending good or bad input data and
no direct way of discerning the sender’s payoff. One way to
obtain foreknowledge of the sender’s packets is to design our
packets specifically to get the information needed. We create
special packets that work as either ideal or malicious users.

Any failures are assigned additional point values.
We call “foreknowledge points” for each operation α(op)

and β(op). They give us the tendency of an NFS operation to
be incorrect; the higher the number of points, the less reliable
we believe the command is. An α(op) > 0 means that the
operation op was incorrectly interpreted when the data were
correct. A β(op) > 0 means that the operation op was parsed
as correct when the data were incorrect.

We run known-good and known-bad data through the dae-
mon, then quantile bin the percentage of errors to give them
values of 0 through 4. We store these as constants for the
daemon to use.

Since we deal with a fixed set of NFS commands and each
NFS command has a unique value, each NFS command has a
game counter σ. For every command parsed correctly,

σ(op) = σ(op) + α(op) + 1 (1)

If the command gives an error when parsed, then

σ(op) = σ(op) + β(op) + 2 (2)

Giving more weight to errors puts a bias into our game to
prioritize errors over often-called operations. The larger the
σ(op), the more significant the potential number of errors for
that command.

In Equation 1, note that we constantly add one to σ(cmd)
if correct. If we have an implied perfect system, that is,
α(cmd) = β(cmd) = 0, we will rely on the commands used
the most to be the ones that are Pareto selected until the system
collects unexpected errors.

If α(cmd) ̸= 0 or β(cmd) ̸= 0, we should closely monitor
the command cmd as it has demonstrated a tendency to have
an error. Its σ(cmd) will grow faster, which means that it has
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a higher chance of being above τ and constantly being tested
by LangSec.

Suppose that a client’s command packet fails the NFS
parser. In that case, the nfsfilter module will generate a “bad
data” reply packet and transmit it back to the client, prohibiting
potentially malicious data transmission to the NFS server. If
the command packet is correct, nfsfilter transmits it to the
NFS server for further processing. The point value for that
command updates depending on the outcome.

Figure 2a illustrates the transmission of packets by an
NFSv4 client on port 2049, the NFSv4 interface port. The filter
service operates on port 2049 to conceal the NFS server’s true
identity from the clients.

In Figure 2b, the NFS server returns the status to nfsfilter,
which parses the status for correctness before sending it back
to the client. The point value for the command’s reply packet
updates depending on the outcome.

τ is our point value threshold, where operations with a
σ(op) > τ will be fully parsed and those below τ will not
be. The initial setting for τ is 0, allowing the DFDL parser
to process every command; over time, τ will increase as
nfsfilter runs, first by the commands called the most, then the
commands containing errors will start to bubble up to the top.

We recalculate τ when the program is in an idle state and
the last recalculation was more than 15 seconds ago. Figure 3
shows a flow chart of this operation. We calculate a Pareto
CDF by ordering the current points of all the operations
that are greater than zero, and then calculating the knee of
the curve. If the difference between the old and new values
exceeds the tolerance, the new value becomes τ .

One way to find the knee of a Pareto CDF is to calculate
the perpendicular distance from each point on the curve to
the line representing the linear decrease from the first to the
last point on the curve; we use the L-Method [19] to calculate
this. The point on the curve with the maximum perpendicular
distance to the line is the knee of the curve.

Finally, we implemented a SQLite database to store the
data for each operation and the current τ . SQLite reads the
information from permanent storage at initialization and stores
it in a structure in the application. The updated information
is returned to the storage medium before the application
terminates.

Limitations

Our approach currently has some limitations. While DFDL
is robust, the DFDL to C converter does not currently handle
all the commands and attributes available in the language.
Due to these limitations, we cannot fully realize some NFS
operations in our model and must make some adjustments. For
example, the dirlist4 structure used by the readdir command
is a linked list structure that does not supply a count, only
an end variable equal to zero for the last entry. While DFDL
can set an unlimited count for the structure, the C converter
cannot. We generated comments with any limitations to our
parser’s DFDL code.

Check 
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Time 
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Start

Calculate Pareto 

Histogram

Calculate Pareto 

Curve Knee

Change > 
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Set new Tau 

value

Exit

N
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Figure 3: Calculating a new τ in nfsfilter, using the feedback
updates from Figure 2.

The accurate representation of every NFS operation and the
detection of out-of-bounds values in that operation are crucial
for detecting any modifications that an attacker introduces.
Misses in detection lie not with DFDL itself but rather with
the model developer’s responsibility to ensure strict adherence
to the NFS standards.

We designed nfsfilter as a demonstration application; there-
fore, it is not ready to use on production systems or networks.

IV. RESULTS

For our tests, we set up nfsfilter as a daemon on the
NFS client that interfaces with the NFS server. Although the
daemon can accept more than one connection, we run only
one client connection to collect accurate timing.

Our NFS client is a Dell XPS 13 laptop with an i7-7500U,
2.7GHz processor, and 16GB of RAM. Our NFS server is
an HP Zbook 17 laptop with a Core i7-4910MQ, 2.9GHz
processor, and 32GB of RAM. Both test systems are Linux-
based and run Ubuntu 22.04, with all the latest updates.

Both systems connect to a 1Gb Ubiquiti USW-Lite-16-
PoE network switch; we did not isolate the switch from the
backbone network, but the switch management system showed
off-switch interactions averaging 254Kbps during testing. The
nfsfilter daemon receives connections on the client’s localhost
(127.0.0.1) at port 2049 and forwards accepted packets to and
from the server’s NFS port 2049.
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Our toolchain uses Apache Daffodil version 3.7.0-
SNAPSHOT for DFDL and NFS versions 4.0 and 4.1 for NFS
connections. The clang C compiler version 15.0.7 with -O3
optimization was used to compile nfsfilter.

A. Scenario Timing Tests

To test the latency of adding nfsfilter, we recorded NFS
sessions between a local client and a server (direct) and a
local client running through nfsfilter (indirect). Each scenario
is a bash shell script that uses standard Linux commands
that interact with the NFS server. The scenario’s time was
collected by running Wireshark, filtering for NFS packets on
the appropriate interface, and collecting the clock times. We
run each scenario with τ set to zero, (i.e., all packets checked)
five times, and then we took the mean of the results. We
performed the following scenarios:

• Mount a directory, get its listing, and unmount.
• Mount a directory, read a 70KB file, and unmount.
• Mount a directory, remove a file, write a new 70KB file,

and unmount.
We use both NFS versions 4.0 and 4.1 to test the scenarios,

as they use different underlying commands to mount and
unmount directories. By testing both versions, we test the
broadest command set possible.

The results and the reduction in throughput using nfsfilter
are in Table I. At the bottom of the table, we show the mean
for all tests, where our aggregate time to parse 100% of the
NFS operations ranged from 54.7% to 113.9% slower than
connecting directly to the NFS server. We can attribute some of
the speed issues to sending and receiving through the nfsfilter
daemon and some inefficiencies in coding the daemon when
reading and writing larger files.

The results did not give us the best view into how well
our mediation system worked, so we changed the daemon’s
session handler to capture the session’s time. We read the
processor time with clock() when a client session begins after
connecting to the server but before the handler processes
the first command. We reread the processor time when the
client closes the session and calculate the difference; these
calculations show only the work done by the parser code
without any network overhead.

We used the three scenarios listed above, setting τ to zero,
running each scenario five times, and then taking the mean of
the results. We modified the session handler to not parse any
commands, parse all commands, and parse only 50% of the
commands to see what the parser costs us in speed.

Table II shows the time spent in the session handler sending
and receiving commands. Examining the mean at the bottom
of the table, we can see that allowing 100% mediation costs
approximately 44% more than simply passing the data through
without parsing. If we only parse 50% of the data, the cost
drops by half in the worst case and by nearly six times in the
best case.

The variation in parsing speed is due to the differing
complexities of each NFS operation; some have more variables
to parse than others. Combining the data from both tables, we

observe that our parsing cost is only 7.3% of the mean for
NFSv4.0 and 4.7% for NFSv4.1 based on 100% parsing. Note
that by mediating our parsing to only the most used or most
error-prone operations, the percentage of operations parsed
will probably be less than 50%; the number of operations
is fixed (37 in NFSv4.0 and 51 in NFSv4.1), and many are
specialized operations and not used in day-to-day operation. In
our test network of two systems, we use 10 to 12 operations the
most, so we might only mediate 25% to 33% of the commands
at worst. We discuss this more in mediation testing.

B. Mediation Testing

Mediation testing assesses the ability of our algorithm to
identify NFS operations that are prone to errors or have a high
likelihood of errors. We created a scenario that mounts the
remote directory, reads a file in the initial directory, navigates
to a different directory, deletes a file, writes a new version,
and finally unmounts the directory. We chose this scenario to
exercise the commonly used NFS operations. We will utilize
our read/write scenario with versions 4.0 and 4.1 to evaluate
the different NFS operations used in session management.

We ran our test scenario from a script, then captured the
packets using Wireshark so we could play them back with
tcpreplay. Binary NFS packets allowed us to perform some
simple data fuzzing; we can easily insert errors and send those
packets to nfsfilter for parsing.

Our first test did not add foreknowledge points to the
command base; every operation parsed correctly, so we only
collected usage counts. We ran our test scenario with NFSv4.1;
Table III shows the commands called. Calculating τ from
the Pareto CDF reveals the knee of the curve at GETATTR,
shown in Figure 4, so only the SEQUENCE, PUTFH, and
GETATTR commands parse, and the other commands pass
through nfsfilter. Our parsing cost is approximately 5.9% as
we mediate 3 out of the 51 possible operations NFSv4.1 has.

We then reran this test but added ten CLOSE operations to
the end of the sequence. Since the test sequence had already
closed the files and terminated the session, the NFS server
returned the error “no filehandle” as part of its reply to the
client. nfsfilter parses the reply, reads the error, and updates
the error count for CLOSE. With no foreknowledge set, we
collect 2 points for each error, so CLOSE now has 21 points,
one correct CLOSE plus 10 in error. CLOSE is now above
the current τ threshold, so all CLOSE commands from this
point are fully parsed. When we next recalculate τ , these data
are taken into account, as shown in Figure 5. Our parsing cost
increased to 7.8%; we now mediate 4 out of the 51 possible
operations.

V. DISCUSSION AND FUTURE WORK

As seen in the prior section, our parser is efficient, but
we need to enhance the efficiency of the remaining parts of
the daemon. nfsfilter needs to test its alternative modes of
operation: one on a dedicated server and the other as a front-
end to the NFS server; this may lead to increased efficiency
compared to running it on the client. We will refactor or
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Test No Daemon With nfsfilter, 100% Parsing (Percent slower)
v4.0 v4.1 v4.0 v4.1

Directory list 35.4 ms 80.2 ms 60.0 ms (69.5%) 124.4 ms (55.1%)
File read 48.2 ms 97.2 ms 137.2 ms (184.6%) 163.6 ms (68.3 %)
Delete, then write a file 50.0 ms 88.6 ms 88.6 ms (77.2%) 123.6 ms (39.5%)

Mean of tests 44.5 ms 88.7 ms 95.3 ms (113.9%) 137.2 ms (54.7%)

Table I: Scenario Timing Tests for complete mediation where the time is calculated by obtaining start and stop times from
Wireshark, so this describes the whole round-trip on the network.

Test v4.0 v4.1
No Parse Parse 100% Parse 50% No Parse Parse 100% Parse 50%

Directory list 4.42 ms 6.3 (42.5%) 4.68 (5.9%) 3.56 ms 5.86 (64.6%) 4.78 (34.3%)
File read 4.34 ms 5.48 (26.3%) 4.34 (0%) 4.04 ms 5.72 (41.6%) 4.34 (7.4%)
Delete, then write a file 5.6 ms 8.98 (60.4%) 6.42 (14.6%) 5.48 ms 7.26 (32.5%) 6.9 (25.9%)

Mean of tests 4.79 ms 6.92 ms (44.6%) 5.15 ms (7.5%) 4.36 ms 6.28 ms (44.0%) 5.34 ms (22.5%)

Table II: Using the Scenario Timing Tests to calculate latency in the parser for nfsfilter. We display the times for no parsing,
parsing all operations, and parsing half the operations. The numbers in parentheses are the percent slower than no parsing.

Operation Usage Count

SEQUENCE 16
PUTFH 13
GETATTR 12
ACCESS 2
EXCHANGE_ID 2
GETFH 2
PUTROOTFH 2
CLOSE 1
CREATE_SESSION 1
DELEGRETURN 1
DESTROY_CLIENTID 1
DESTROY_SESSION 1
NULL 1
OPEN 1
READ 1
RECLAIM_COMPLETE 1
SECINFO_NO_NAME 1

Table III: Initial NFS4.1 mediation test with τ and foreknowl-
edge points equaling zero.

rework certain nfsfilter networking functions to enhance their
efficiency, mainly to move beyond a proof-of-concept.

More involved mediation tests will also occur. We plan to
take the current scenarios and run them through a dedicated
fuzzer such as AFLNET [20], which will mutate the scenario
packets and present them to nfsfilter for processing.

We must also assess our effectiveness in detecting adver-
saries attempting to compromise or crash the daemon or send
malicious packets to the NFS server through out-of-band or
other novel methods.

For example, one issue of concern is slow delivery rate at-
tacks, where an attacker delivers carefully constructed packets
at random intervals to disrupt or confuse a server. Another area
is slow or low-rate Denial of Service (DoS) attacks, such as
SlowDrop [21], which emulate multiple nodes interacting with
a server through an inconsistent network connection rather
than overwhelming it with a large volume of packets at once
like the usual DoS attack.
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Figure 4: Pareto CDF finding the knee of the initial mediation
test.

Further research is needed to evaluate security against an
adversary who is knowledgeable about the functioning of dy-
namic mediation; one objective is to classify the harmful data
transmitted by an attacker. A practical approach involves using
a pseudo-hash, such as Simhash [22], as a unique identifier
to recognize similarities in incorrect commands transmitted
promptly. Although Simhash is best known for fast searches
for similar documents in large-scale collections, a version of
Simhash is also employed to detect malicious data in network
traffic monitoring and security evaluation (e.g., [23], [24]).

Finally, it would be beneficial to incorporate external data,
such as vulnerability announcements, to update the foreknowl-
edge points and adjust the prioritization of the mediation
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Figure 5: Pareto CDF finding the knee of the mediation test
with CLOSE errors.

process for one or more NFS operations.

VI. CONCLUSION

Our initial work showed that DFDL is a powerful tool to
define and model the structure of various data formats. We
have shown that these formats include network parsers that can
precisely analyze data streams such as NFS. This approach al-
lows for the precise definition of NFS procedures, minimizing
the risk of errors that may jeopardize the data’s integrity or the
system’s security. DFDL’s versatility in defining data formats
makes it crucial for designing efficient network parsers that
are both effective in processing data and adaptable to changes
in network protocols or data structures.

Improving our basic DFDL parser, GUARDS introduced a
dynamic system designed to prioritize the NFS procedures
most likely to encounter errors, providing a principled way to
improve the performance of the system while still providing
protection. By optimizing procedures with the highest proba-
bility of errors, GUARDS can preemptively address issues be-
fore they result in failures or security breaches. This proactive
approach improved the overall stability and security of the
NFS environment.
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