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ABSTRACT
Recent efforts to harden hosts against malicious USB devices have

focused on the higher layers of the protocol. We present a domain-

specific language (DSL) to create a bit-level model of the USB pro-

tocol, from which we automatically generate software components

that exhaustively validate the bit-level syntax of protocol mes-

sages. We use these generated components to create a stateful,

connection-tracking firewall for USB. We integrate this firewall

with the FreeBSD kernel and demonstrate that it achieves complete

mediation of USB traffic, thus protecting the rest of the kernel, in-

cluding higher-level policy mechanisms such as USBFilter, from

low-level attacks via maliciously crafted packets.

In addition to in-kernel data structures and packet validation

routines, our system generates a user-level policy engine that allows

for flexible and expressive firewall behavior beyond mere message

syntax validation, as well as functions for pretty-printing packets

(which can be used in both the kernel and in protocol analysis

software). We use a Haskell back-end to generate C code that we

integrate with the FreeBSD kernel, thus making our entire system

amenable to formal verification.
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1 INTRODUCTION
We are pleased to see the USB attack surface receiving recent atten-

tion (e.g., USBFilter [38], Cinch [8]), but we feel a vital piece of the

puzzle is missing: namely, verifiable, bit-level parsing of protocol

messages. Frameworks to enforce policy on messages passing over

the Universal Serial Bus can protect against malicious or misbe-

having devices only when the contents of those messages can be

accurately interpreted. Otherwise, we have a situation where the

guard is checking IDs, but not making sure the holder actually

belongs to the ID card!

The aforementioned systems provide means to control access

to services provided over USB—but that control is exercised at the
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protocol level: they limit requests that are conveyed over USB via
syntactically correct packets. They model functionality at the device

and session levels, and thus fill an important gap in controlling

access and functionality: they create concise and actionable descrip-

tions of wanted and unwanted protocol sessions, and enforcement

mechanisms to turn these descriptions into policy. They do not,

however, ensure the individual messages are well-formed.

It is at the bit level that USB presents another attack surface,

explored to date primarily by industry: attacks on kernel code via

crafted, malformed USB messages [7, 12, 15]. This attack surface

also needs a firewall, and this is the firewall we provide. It is com-

plementary to a system like USBFilter and, as we discuss below,

should be combined with it for stronger security guarantees.

Our approach comes from the view that protocol data is a lan-

guage to be modeled. From the model, we develop recognizer code
to accept or reject USB packets and data structures as instances of

this language. This approach to firewall code makes it amenable

to formal verification; it is no longer a loose collection of “sanitiza-

tion” heuristics or “sanity checks” on input data, nor an informal

interpretation of the protocol standard; it is an automaton with a

precise specification that can be verified.

Our code is integrated in a production kernel, serving as evidence

that our approach is practical.

1.1 Why extant approaches aren’t enough
Systems like USBFilter may appear to have solved the problem of

protecting USB stacks from malicious payloads: the firewall would

block malicious messages. Yet this is not the case. The kernel’s USB

stack is still unprotected where it is most vulnerable: while parsing

USB’s most complex data—e.g., enumeration descriptors. Such a

parser is USB’s biggest attack surface, and it lies below the level of

USBFilter; in fact, USBFilter depends on its correctness to charac-

terize devices to which policy is applied. Once USB enumeration

code is exploited, it is too late to apply a policy.

Such vulnerabilities continue to be a risk even for userland or

emulated stacks, which may shift the locus of the vulnerability and

mitigate its effects, but do not remove its root cause: weak parsing

or, more precisely, memory-unsafe kernel code exposed to hostile

data that acts on unchecked assumptions and corrupts memory.

These vulnerabilities historically abound. Consider, for example,

a bug in which a field of the USB hub descriptor, expected to contain

an integer no larger than 127, caused a buffer overflow when set to

0xFF [4]. So did crafted values of wMaxPacketSize [3], unchecked
disagreements between bLength and wTotalLength [5] and many

similar bugs across different operating systems. Our analysis of

the CVEs shows that these memory corruption bugs in early-stage

parsing of USB messages continue to occur. Thus descriptor parsing

remains an important, unprotected part of the attack surface.
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While systems like Cinch change the execution model of USB

stacks to a safer virtualized one, they don’t obviate the need for safe

bare-metal OS code. Our approach, which produces just such code,

has additional benefits even for policy application such as USBFilter

that occurs after enumeration. Namely, modeling establishes all,

not just a few, allowed USB payloads. For example, USBFilter’s

example module for write-protecting a USB drive blocks writes that

use SCSI’s WRITE(10) command, but could be bypassed by, e.g.,

WRITE(6) or WRITE(12). Our approach would establish and enforce
a full subset of allowed commands as a USB protocol (sub)language

in the policy design stage—and thus prevent such oversights that

are inevitable when dealing with a complex protocol.

1.2 Contributions
a)We developed a data model for the USB protocol and expressed

it in a domain-specific language, implemented in Haskell.

b) From this model, we generated C code to validate USB packets.

c) We integrated this code in the FreeBSD kernel and instrumented

the kernel with a set of DTrace probes for the USB subsystem.

d)We demonstrated experimentally that our generated code per-

formant and suitable for inclusion in production kernels.

e) We surveyed all USB-related vulnerability disclosures and classi-

fied them according to whether our validation mechanism would

mitigate their effects.

In short, we present a firewall for USB packets, implemented

as a patch for the FreeBSD kernel. Our method is complementary

to USBFilter, and should be used in concert with it, to protect the

kernel from malformed USB packets that USBFilter assumes.

2 USB: PROTOCOL AND VULNERABILITIES
The USB protocol consists of packets on the wire that are parsed

(primarily) by the OS kernel. Thus, different as its wiring and con-

troller chips may be from the TCP/IP networking protocols, USB

implementations have the same low-level nemesis: parser bugs and

memory corruption triggered by crafted packets.

For TCP/IP, this threat loomed large in 1990s—see, e.g., Teardrop
and Land single-packet-crash attacks, as well as other “pings of

death” [29]—and was mitigated by hardening kernel stack parsers

and dropping packets that don’t conform to a minimal subset of the

protocol. Even so, crafted IP packets are still capable of occasional

nasty surprises (e.g., Darwin Nuke [20]).
For USB, the interaction of crafted packets with parsers is still

a primary threat, as fuzz-testing has shown. For example, Davis

discusses over 50 bugs triggered by fuzzed USB messages [7], in-

jected with a rough equivalent of “raw sockets” for USB [12, 19].

Doubtless, further modeling of the USB protocol andmore advanced

exploration tools such as Umap2 [28], will turn up more bugs.

Thus it is important to review where in the protocol these bugs

occur, before we present our antidote.

2.1 The Protocol
When a USB device is plugged in, the host must determine whether

it is, e.g., a keyboard, a mouse, a printer. This initial conversation

between host and device, called enumeration, happens for every
device. In addition to determining characteristics of the device such

as polling frequency and preferred data transfer size, the host also

Host to device (request)

80 06 00 01 00 00 12 00

Device to host (response)

12 01 00 02 00 00 00 40 1E

04 02 04 00 01 01 02 03 01

Figure 1: A USB request/response pair.

decides which kernel driver to associate with the device when

enumeration is complete. The communication channel that carries

these messages is separate from application channels and is retained

throughout the connected lifetime of the device. Once enumeration

has finished, however, the associated device driver controls its own

communication channels (endpoints) to and from the device.

This gives the device significant leverage over the kernel: it gets

to choose precisely which driver will handle its application-level

data. In essence, data sent by the device determines the code paths

and control flows that handle data sent henceforth. If an old, poorly

maintained, buggy (i.e., vulnerable) driver is still shipped with an

operating system, one could use a custom USB hardware device to

select it during the enumeration process and exploit it.

Note also that plugging a USB device into the machine immedi-

ately gives a communication channel straight to the kernel. Even

following enumeration, most application-level USB drivers still run

in kernel mode as well (though this is changing: see Microsoft’s

User Mode Driver Framework [14]). Thus—unlike TCP/IP!—USB

exposes the kernel parser attack surface not only of the USB sub-

system proper, but of many other drivers and subsystems as well.

Most of the messages that comprise enumeration are descriptors
that contain various parameters of the device in question. Figure 1

shows a request for a descriptor sent from the host to a device and

the response containing the descriptor itself. In this example, the

fourth byte of the host’s request identifies the requested descriptor

(here, the “device” descriptor) and the seventh byte indicates the

amount of data the host would like to receive back (0x12 = 18 bytes).

In the response, the first byte indicates its length, which presents

a classic opportunity for an exploitable bug: if the host does not

verify that the received data is in fact 18 bytes long (in this case),

then the host runs the risk of either underflowing or overflowing a

kernel buffer. (The Heartbleed [6] vulnerability exemplifies buffer

underflows and overflowed buffer instances are legion [30, 34].)

In this work, we focus on the enumeration phase, as the phase

that contains the most complex parsers and has been found to

harbor a surprisingly large number of bugs.

2.2 USB as a Gateway to the Kernel
Like the TCP/IP networking protocols, USB is layered in that it

allows data from one protocol to be encapsulated inside another.

This is how USB supports a wide variety of devices: once enumera-

tion is complete, the active part of the USB protocol steps aside and

mostly just ensures the delivery of application-level data between

a collection of host and device endpoints through codepaths des-

ignated during enumeration. Since many USB devices implement

application-level protocols that have been natively implemented in

the past (e.g., SCSI, audio, keyboards), this often provides a direct

codepath to parts of the kernel outside the USB stack itself.

In 2012, we explored the reachability of kernel logic from the

USB interface with a focus on the storage subsystem, down to the
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granularity of basic blocks [12]. Our work showed that a USB de-

vice could access essentially the entire FreeBSD storage subsystem,

which is notable because so many other aspects of the system de-

pend on disks. Furthermore, the storage subsystem is just one of the

many subsystems in the kernel that are accessed by USB devices,

such as printing, networking, and human-interface devices.

Therefore, the fact that so many codepaths in the kernel are ac-

cessible via USB only increases the importance of correctly parsing

the data that arrives from untrusted devices. Parsing is a crucial

boundary to ensuring the security of running systems.

2.3 Vulnerabilities
In 2013, Andy Davis released Umap [17], a test suite to explore the

behavior of USB stacks in the face of unexpected input received

during enumeration. Umap, and its successor Umap2 [28], play a key

role in evaluating our system being, to the best of our knowledge,

the most complete suite of USB malformation patterns aimed at

triggering different classes of USB bugs.

Using special-purpose Facedancer [19] hardware, he emulated

a variety of USB devices getting plugged into a target host, and

controlled every aspect of the data sent from these devices to the

host during enumeration. His scripts caused the emulated devices

to send intentionally malformed data to the host while he observed

how the host responded—a crash indicated that the host does not

correctly handle the malformed data. He tested a large variety of

malformations, from which he deduced an ontology of bugs [7],

which we summarize in Table 1.

2.4 National Vulnerability Database
The National Vulnerability Database captures a kind of “ground

truth” of existing vulnerabilities. Vulnerability disclosures, dubbed

“CVEs” (Common Vulnerabilities and Exposures), are reported and

assigned on the basis of particular products and technologies found

to be vulnerable. The CVE system does not attempt to classify

vulnerabilities, though it is searchable.

Between January 2005 and December 2015, exactly 100 of the

vulnerabilities reported to the NVD contained the string “usb”. We

surveyed all 100 of these vulnerabilities, placed each in one of the

five categories identified by Davis, and use these in our evaluation

of our firewall’s effectiveness. Not surprisingly, the bugs mitigated

by proper parsing form a significant subset: nearly half of all USB-

related vulnerabilities!

3 PROTOCOL MODELING
To a kernel developer, a binary protocol implementation starts

with a C header file defining the protocol’s data elements as C

structs. These definitions are used to declare variables, but their

most prominent use comes from accessing individual fields of pro-

tocol messages by casting a pointer to a raw byte buffer to the struct

pointer type and then dereferencing it to extract a field value. Thus

the C struct definitions are already, in a sense, active parser code,

as well as a de-facto translation of a protocol specification. What

are they (and the programmers) missing that manifests itself as

vulnerabilities and exploitable bugs plaguing C code?

First, these structs describe the components of a protocol’s mes-

sage, but not their relationships. Left unspecified, these relationships

are left to be checked unsystematically, typically just before a piece

of data is used, or never at all. Moreover, the majority of relevant

code assumes that the relationships have been checked; as Morris

noted in 1973, the programmer “could begin each operation with a
well-formedness check, but in many cases the cost would exceed that
of the useful processing.” [21]

This lack of method as to where and how to perform the checks

is a major source of code weaknesses. For example, nested length

fields (length fields on objects that contain other objects, also with

length fields that must agree with the containing object’s), have

been a major cause of USB bugs (see Davis’ analysis [7] and ours in

Section 5.4). Together, these element definitions and their relation-

ships form the syntax of the protocol’s messages. Thus a crucial

part of this syntax fails to get specified consistently.

Second, the structs describe what amount to finite languages in
the Chomsky syntactic hierarchy, whereas it’s natural for protocol

designers to use at least regular language syntax (e.g., constructs
like “one or more objects of this type”), let alone context-sensitive

object nesting constructs. Failure to check the syntax of inputs with

the automaton appropriate to the actual input language is a major

cause of input-handling bugs [35].

In fact, it is often not clear to developers what kind of a computa-

tional task they should implement when checking inputs and what

algorithms are appropriate for the task. Lack of clarity leads to ad-

hoc and inadequate algorithms. Yet a solid formal theory of syntax

checking exists and, moreover, warns of algorithmic pitfalls, with

its signature results establishing a hierarchy of formal languages

and their recognizer automata. It should be used, and we base our

approach to input validation on it.

Thus, in order to produce a better kind of input-handling code,

we need to start with a different kind of data definitions, which

capture both the identities of protocol fields and their relationships,

allowing a systematic way of constructing the code to recognize

and validate the messages as instances of an input language.

3.1 Choice of Tools
We chose Haskell in which to embed our domain-specific language

(DSL) to model USB data, for several reasons.

Ease of DSL development. Haskell’s ability to manipulate its own

syntax gives us powerful and flexible means to define a data DSL.

Strongly typed. Haskell’s type system provides a powerful means

of modeling USB data objects, which maps well to describing USB

messages as a input language.

Potential for formal verification. Haskell code maps well to that

of proof assistants such as Isabelle/HOL and Coq.

In this paper, we model the data structures for USB enumeration;

we use the GET_DESCRIPTOR request message sent from host to

device as a running example, and show the path from its definition

to the generated C data structs that represent it, and the code that

handles it and integrates into the FreeBSD kernel.

3.2 Protocol Model
Message. We define a Protocol to be a set of Messages, each of

which consists of a name, some Fields, and a data stage of variable

length. (Figure 2 shows its definition using our domain-specific

language.) Though simple, this definition describes all messages
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Class Description

Unspecified denial of service The driver or host machine usually crashes, but not in a way that is exploitable by an attacker.

Buffer overflows Bounds are not adequately checked prior to memory operations.

Length-related bugs Arithmetic performed on values provided by the device can lead to unintentional memory allocations.

Format string bugs User-controlled input is used as the format string in calls to the printf family of functions.

Logic errors The operating system incorrectly handles a given input.

Table 1: Classification of USB-related vulnerabilities, due to Andy Davis.

data Message = Message MessageName [Field] DataLen

type MessageName = String

Figure 2: Specification of a Message within a protocol.

data Field = Field FieldName FieldSize FieldValue

type FieldName = String

data FieldSize = Uint8

| Uint16

data FieldValue = Literal Int

| Variable

Figure 3: Specification of a Field within a Message.

exchanged during enumeration, dubbed “control messages”. Fol-

lowing enumeration, most communication is application-specific,

and supporting such protocols using our framework reduces to the

task of creating Message variables corresponding to the application-

specific messages. Control messages still flow between device and

host even after enumeration is complete, however, as they negotiate

features like flow control and isochronous transfers.

The name is a character string used for identification purposes.

It is followed by a list of Fields (described below) that make up the

Message. Fields are assumed to be ordered and contiguous within

the Message; should the protocol specify empty space or padding,

one would specify an explicit Field reflecting those characteristics.

We express these and further relationships between message

elements in a grammar that is also the Haskell definition of the

types within the protocol DSL. Message and field names are Haskell

type constructors; the entire DSL is thus a runnable definition and

is therefore subject to the Haskell type-checking framework, which

is an effective form of static verification [26].

Field. Each Field consists of its name, size, and whether its con-

tents are literal or variable. (Its definition is shown in Figure 3.) Like

Message, a Field incorporates a character string used to identify it.

The size of the field is either 8 or 16 bits—this covers all messages

exchanged during USB enumeration and could easily be expanded

to support the needs of other protocols.

The last field indicates whether the field is literal or variable.

Many protocols specify an exact sequence of bits or bytes to appear

in certain places: for instance, IPv4 requires that the first 4 bits of

an IP packet be 0x4. Likewise, USB requires that GET_DESCRIPTOR
request messages have a RequestType field of 0x80 and a Request

value of 6. These are specified as Literal fields, along with the value

they require.

data DataLen = NoData

| Bytes Int

| Ref FieldName

Figure 4: Specification of the length of the data stage of a
Message.

Alternatively, some fields are not proscribed and must be avail-

able to higher-level code that, e.g., changes state within the kernel

upon receipt. Examples of this include the destination port number

in TCP and the index of the descriptor being requested by a USB

GET_DESCRIPTOR request message. These are specified as Variable

fields so that the appropriate code can be generated.

DataLen. Message fields may be followed a data stage, the defi-

nition of which is shown in Figure 4. Many messages in the USB

protocol communicate no data, and therefore use the “NoData” con-

structor for this field. Some messages include a fixed amount of data

following the header, in which case they use the “Bytes” construc-

tor, specifying the number of bytes as the argument. Lastly, some

messages (e.g., the GET_DESCRIPTOR request) specify the length in

one of the Fields, in which case the “Ref” constructor is used. If, for

example, the length is specified in the wLength field, the DataLen
constructor would appear as Ref "wLength".

Note that, whereas the DataLen construct fulfills the needs of

USB, it also supports protocols like IP and SCSI that have a similar

structure. The latter (and many other protocols besides) feature

headers comprised of fixed-size fields followed by a variable-sized

payload or data field. This syntactic simplicity indicates that the

data modeling approach is likely generally applicable.

3.3 Example: GET_DESCRIPTOR Request Message
We use the GET_DESCRIPTOR request message as an example; its

specification is shown in Figure 5. The first parameter specifies the

name (to be used throughout the generated code). Following that

are six fields: four 8-bit unsigned integers and two 16-bit unsigned

integers. The first two fields have literal values, whereas the final

four are marked as variable, to be interpreted above the parsing

layer. Finally, this message does not include any trailing data.

The GET_DESCRIPTOR message exercises most of the message-

specification features discussed above—fields of different sizes, of

both literal and variable contents, a null data stage—but not all.

The fixed-length data stage is used in the GET_STATUS response,

GET_CONFIGURATION response, and SYNCH_FRAME messages. The

variable-length data stage is used in a number of messages.
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getDescriptorRequest :: Message

getDescriptorRequest = Message "GET_DESC req"

[ Field "request_type" Uint8 (Literal 0x80)

, Field "request" Uint8 (Literal 6)

, Field "desc_type" Uint8 Variable

, Field "desc_index" Uint8 Variable

, Field "language_id" Uint16 Variable

, Field "desc_length" Uint16 Variable

]

NoData

Figure 5: Specification of USB’s GET_DESCRIPTOR request mes-
sage, written in the domain-specific language.

3.4 Other DSL Features
We leave other aspects of our domain-specific language for Appen-

dix A, as they are not directly germaine to the correctness of our

firewall (though they do aid ease of use).

4 KERNEL CODE GENERATION
A great deal of code—in fact, we argue much of the protocol-specific

code in the kernel—can be automatically generated from the model

described in the previous section. As a result, much of the ad-hoc

code that comprises most protocol stack implementations can be

replaced with generated code. Although generated code is not inher-

ently superior, it does provide some significant potential benefits.

WhyCode Generation? First, secure coding practices (e.g., bounds

checking or agreement between length fields of objects contained

in other objects) can be encoded in the generation logic, meaning

that every field in every message of every stack that is generated

using the framework will be bounds-checked. Bugs arising from,

e.g., accidentally neglecting to check the bounds of a particular field,

thus allowing a buffer overflow, simply cannot happen. Program-

mers need not write these checks manually, at the risk of forgetting

some—they now only need to specify that a relationship exists, and

a check will be generated for it.

Second, newly-developed programming techniques can be en-

coded in the generation logic, all stacks can be re-generated, and

every stack will immediately benefit. Maintainers of individual pro-

tocol stacks no longer have to understand the new technique, pore

over their code to discover where to apply it, and patch it manually.

Third, given that the protocol model is amenable to formal veri-

fication, any new protocol implementaions generated from it will

be ready for verification as well, such as described in 6.3. Moreover,

additional annotation can be added to the model as needed and gen-

erated along with code, avoiding the much more laborious process

of adding it to the existing code.

Generated Components. With these benefits in mind, we can

generate the following different code components from ourmessage

definitions, described in Section 3.2.

• data structure definition

• parser/verifier

• field accessor functions

• pretty-printer functions

• user-defined policy engine

struct get_descriptor_req_msg {

uint8_t request_type;

uint8_t request;

uint8_t desc_type;

uint8_t desc_index;

uint16_t language_id;

uint16_t desc_length;

};

Figure 6: C structure generated from the Get Descriptor re-
quest message specified in 5.

We proceed by describing the purpose of each, including exam-

ples derived from the GET_DESCRIPTOR request message defined

in Figure 5. Where generated code is not directly germaine to the

firewall, we defer details to the Appendices.

4.1 Generating the Data Structure
First, we need a data structure to represent each message. This

structure can (and likely should) be used both in the kernel proper

and the parsing component. Additionally, it could be used in devices

that inject protocol data such as the Facedancer and its associated

software umap, as well as programs such as tcpdump that analyze

protocol traces. Figure 6 shows the structure definition generated

from the GET_DESCRIPTOR response message shown in Figure 6.

Defining fields for fixed-size types is straightforward: the Uint8
and Uint16 of the definition from Figure 5 become uint8_t and

uint16_t, which are types supplied by standard system headers.

The only deviation from this pattern is the data member.

4.2 Generating the Parser/Verifier
The primary purpose of the parser/verifier function is to ensure

that the raw bits received over the wire (metaphorical or otherwise)

conform to the protocol specification. It must check both the con-

tents of the individual fields where applicable and aspects of the

entire frame—most significantly, its length, so as to avoid vulnera-

bilities such as Heartbleed [6]. The generated parser function for

the GET_DESCRIPTOR request message is shown in Figure 7.

Some things in this function are worthy of note. First, many of

the fields are not examined: this is reasonable because the contents

of those fields either do not affect the validity of the message, or

their validity is only verifiable given more information about the

state of the connection. In short, this function is concerned with

message syntax, not semantics.

For instance, the desc_index field of a GET_DESCRIPTOR re-

sponse message should match the desc_index field of the instigat-

ing request, but the parser cannot know this without maintaining

significant application-specific state. Such state is more the purview

of a separate component that verifies the validity of a sequence of
messages rather than each individual message in the sequence; this

work is focused solidly on the latter problem. A similar separation

exists in the NetFilter architecture, where keeping track of state is

relegated to distinct code such as the conntrack module.
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struct get_descriptor_req_msg *

validate_get_descriptor_req_msg(char *frame ,

int framelen)

{

struct get_descriptor_req_msg *m =

(struct get_descriptor_req_msg *) frame;

if(m == NULL) return NULL;

if(framelen < 1 + 1 + 1 + 1 + 2 + 2 + 0)

return NULL;

if(m->request_type != 128) return NULL;

if(m->request != 6) return NULL;

/* accept m->desc_type as-is */

/* accept m->desc_index as -is */

/* accept m->language_id as-is */

/* accept m->desc_length as-is */

return m;

}

Figure 7: Generated verification function for the
GET_DESCRIPTOR request message. (Constant-folding in
the compiler will optimize away the tacky addition.)

Reject string_descriptor where length = 42

Reject set_address where address > 127

Figure 8: Example user policies for the USB firewall.

4.3 Generating Accessor Functions
Although the data members of structures generated by the code

described in Section 4.1 can be used to access the individual fields of

a message, there are advantages to using discrete accessor functions,

and compiler tricks can make them just as efficient as direct access

methods. Elaboration, including examples, is given in Appendix A.1.

4.4 Generating the Pretty-Printer Functions
We also require the ability to present the details of a message in

a user-friendly format. While perhaps not strictly needed by the

kernel proper, this feature is vital to user-facing tools that inspect

protocol traffic. (For example, a protocol-specific tool analogous to

tcpdump.) See Appendix A.2 for further details and examples.

4.5 User-Defined Policies
A key feature in a firewall is the ability to specify a policy to aug-

ment the built-in syntax-checking rules. For instance, imagine a

case where a particular USB device driver doesn’t correctly handle

a string descriptor with the length of exactly 42. Instead of entirely

disabling support for that device or waiting for a new driver, a

system administrator might want to filter out all USB frames that

contain the offending length value.

We devised a simple language to describe policies (see Figure 8), a

parser for that language, and code that uses the previously-written

protocol definition to produce a loadable kernel module that im-

plements the policy. Currently, the policy in this kernel module

is applied after the frame is validated but before the connection-

tracking logic to be described in Section 4.7.

These policies are, admittedly, not especially eloquent. In partic-

ular, they do not take into account the context in which a message

is being sent. Notably, the USBFilter system with its models of con-

texts and transactions fills this gap. USBFilter provides a model and

a language for expressing context-aware policy, that is, a means to

specify behaviors and actions of USB devices.We anticipate that this

model can be used to translate higher-level behavior descriptions to

packet-level ones, which our firewall could enforce, in addition to

its primary function, enforcing the USB specification or its subsets.

4.6 Protocol: Assemble!
The preceding sections have described the generation of individual

chunks of code necessary for each message of the protocol in ques-

tion. What remains is to generate all these code chunks for every

message, place them in well-formed source files, and integrate them

with the target operating system.

For the USB protocol proof-of-concept, we defined instances of

the Message type for the following messages:

GET_STATUS request response

CLEAR_FEATURE and SET_FEATURE
SET_ADDRESS
GET_DESCRIPTOR request

SET_DESCRIPTOR
GET_CONFIGURATION request and response

SET_CONFIGURATION
GET_INTERFACE request and response

SET_INTERFACE
SYNCH_FRAME

We also defined instances of the Message type for the following

descriptors. These descriptors are sent in the data stage of responses

to the GET_DESCRIPTOR request message defined above:

device descriptor

configuration descriptor

interface descriptor

endpoint descriptor

string descriptor

hid descriptor

report descriptor

Taken together, these requests, responses, and descriptors en-

compass all data that flows between host and device during the

USB enumeration process.

The data structure definitions, accessor macros, and function

prototypes are generated into a file called usb_messages.h. The
validation functions and pretty-printing functions are generated

into a file called usb_messages.c. Both of these source files are in-

tended to integrate with any operating system kernel or application

(though a few idiosyncrasies remain: see Section B.2).

4.7 Operating System Integration
The basic processing path of our firewall is shown in Figure 9.When

a USB frame arrives or is sent, the FreeBSD USB stack calls the shim

function, fbsd_hook, which translates the FreeBSD-formatted USB

frame metadata to an OS-agnostic format before passing it along

to the generated parser/validator function. The resulting action

is cascaded back to the kernel. At this point, the packet can be

passed on to another system, such as USBFilter or Cinch, to perform

semantic validation. For further details, see Appendix B.
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FreeBSD USB Stack

translation shim

(usb_fw_fbsd.c)

generated validator

(usb_fw.c)

semantic validation

(e.g., USBFilter, Cinch)

Figure 9: USB frame processing process.

5 EVALUATION
We set the following evaluation goals.

Stability We must show that the firewall does not crash in the

face of both legitimate and malformed USB traffic.

Complete mediation We must show that all frames are exam-

ined for accordance with the policy.

OverheadWemust show that the firewall performs its job with-

out incurring a significant performance penalty.

EffectivenessWe must show that the firewall correctly identi-

fies and interdicts malformed USB frames.

5.1 Stability and Effectiveness.
Umap [17] was the primary tool we used to test the stability and

effectiveness of our USB code; it is a USB host security assessment

tool designed to test a broad cross-section of USB devices and, by

extension, a broad cross-section of the USB protocol itself. Umap

represented the state-of-the-art in testing the security of host-side

USB implementations at the time of our testing. (Umap’s successor,

Umap2, has been recently released, and we plan to use it shortly.)

Its test suite contains the largest set of known USB vulnerability

triggers. All told, we ran nearly all its 500 different vulnerability

triggers against our USB parser/firewall; a finer breakdown of the

tests is shown in Table 2.

In our testing setup, the Facedancer hardware, which umap uses

to physically inject its stimuli onto the USB, has two ports: “host”

and “target”. The former is connected to a USB port on the machine

controlling the test and the later is connected to a USB port on

the machine being tested. The target detects no device at all even

when these connections are made. Only when software (e.g., umap)

running on the host causes the Facedancer to emulate a particular

device does the target actually see a device connect. Once that

happens, the software on the host controls nearly all aspects of the

emulated device’s behavior (exceptions discussed below).

5.1.1 Identifying testable drivers. The umap software package

supports many testing modes. We first ran its “identification” mode

to determine which devices were supported by the FreeBSD target

so we could focus on these in the remainder of our testing. Of the

device classes testable by umap, six are supported in the FreeBSD

target: audio control, audio stream, human interface devices (mice

and keyboards), printers, mass storage (e.g., thumbdrives), and hubs.
With this identification running against our code (shown in

Appendix ??), we have also taken a first step to showing that the

firewall is stable in the face of real USB traffic: our code did not

 USB id device type tests frames sent

01:01:00 audio control 94 1873

01:02:00 audio streaming 94 1873

07:01:02 printer 131 1735

08:06:50 mass storage 101 1506

09:00:00 hub 63 898

total 483 6397

Table 2: Data sent by umap fuzz-testing.

ever crash while being probed by umap—despite umap being a tool
explicitly designed to cause such crashes!

5.1.2 Fuzz-testing individual drivers. With these six device classes

in hand, we proceeded to test each individually using umap’s fuzz-

testing feature, which causes the Facedancer to emulate a particular

device and, as part of the USB enumeration phase, send frames that

push the bounds of the specification. For instance, where the kernel

might expect to receive an 8-bit field that contains 0x02, umap

would perform one test where it sends 0x00 and another where it

sends 0xFF, to verify that the kernel safely handles extreme cases.

For each device class, umap supports a large number of such

tests: we ran them all. Our USB firewall was configured with no

user-policy rules; only the generated validation functions were

invoked. Appendix ?? shows sample output from a single run.

We saw interesting behavior when using umap to test human in-

terface devices (class 03:00:00). The firewall successfully recognizes

and rejects umap’s “Configuration_bDescriptorType_null” test, in

which it sends a configuration descriptorwith the bDescriptorType
field set to 0x00. But because this malformed descriptor is silently

rejected, FreeBSD continues to wait for a correct response, eventu-

ally timing out. When performed repeatedly, this test causes some

state within the FreeBSD kernel to become sufficiently out of whack

that no HID device will be successfully recognized, whether it con-

forms to the protocol or not. This suggests there is a bug within the

FreeBSD kernel that allows for a denial-of-service when performing

incomplete enumeration of HID devices. Further umap tests of the

HID device class exhibit this behavior as well, so we elided them

from the test suite.

Thus, rather than undermining our methodology, this “failure”

in fact highlights a potentially significant flaw in the underlying

operating system which relies on rejection by timeout rather than

rejection by content. While developing this behavior into a proof-

of-concept exploit was beyond the scope of our work, the root

cause is likely non-trivial. The fact remains, however: our system

discovered this bug.

Table 2 summarizes the results of the fuzzing runs: all tests over

all five remaining device classes, totalling 483 different tests and

over 6000 frames sent by umap to the FreeBSD target being tested.

Once again, during all this testing, the firewall stayed stable. This

is particularly notable because these tests are actively probing the

dark, dirty corners of device behavior. If the firewall does not crash

under these circumstances, it is highly unlikely that well-behaved

devices will cause it to crash.

This claim of stability might seem undermined by the HID be-

havior described at the beginning of this section. We contend it is
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test sent processed missed frames

Audio control 1873 1961 0

Audio streaming 1873 1961 0

Printer 1735 1860 0

Mass Storage 1506 1760 0

Hub 898 955 0

Table 3: Complete mediation test results. For each test,
shows number of USB frames sent by umap and the num-
ber of frames processed by the USB firewall.

eminently reasonable: the firewall itself did the correct thing under

those circumstances whereas the kernel code being protected failed

to do the correct thing upon rejection of the frame. Note that all

frames are rejected using the same procedure: the “error” field of

the USB transfer structure is set to 1. During USB HID device enu-

meration, the kernel seems to incorrectly handle this return value;

whereas it correctly recovers from all other rejections.

5.2 Complete Mediation
To demonstrate complete mediation, we must show that our code

examines all the data that flows over the USB bus.

5.2.1 Umap Empirical Input/Output Test. To empirically test

whether every single frame sent by umap is evaluated by the USB

firewall, we configured umap to record every frame sent and we

instrumented and configured the firewall to record every frame

evaluated. Then we ran the entire fuzz-testing suite described in

Section 5.1 and gathered the results shown in Table 3.

The first two numerical columns tell a bizarre story: how is the

firewall receiving more frames than are being sent? The answer

lies in the MAXUSB controller chip that sits on the Facedancer

board itself, which automatically responds to some USB requests

without consulting the software stack. For instance, the Facedancer

automatically responds to the SET_ADDRESS request and thus such

a request/response pair shows up in the kernel logs on the FreeBSD

target being tested, but the umap log only shows the request being

received.

Since we had logged the raw bytes being sent by umap and

received by the firewall, we were able to check the differences

in actual data being sent and received. Every single frame sent by
umap was analyzed by the firewall. Some frames were received that

the umap software did not send; those all fell into the category

of automatic responses generated by the MAXUSB chip on the

Facedancer board. But not one frame sent by umap evaded the

firewall’s oversight. No exceptions.

5.2.2 Sniffing the Bus with Protocol Analyzer. To make these

results conclusive, we used a Beagle USB 12 Protocol Analyzer [1]

to capture all USB data sent by umap to the FreeBSD target. The

Beagle sits between the Facedancer and the target, mirroring all USB

data to a third host (see Figure 10). We re-ran the umap fuzz tests

for the five device classes shown above and recorded all packets

observed by the Beagle and all packets mediated by the USB firewall

on the FreeBSD target.

As in the informal testing described above, there were some

discrepancies between the sequence of USB packets reported by the

Figure 10: To capture USB data sent by the Facedancer, we
connected the Beagle USB 12 Protocol Analyzer as a pass-
through device between the Facedancer and the FreeBSD tar-
get; then we connected the Analysis port of the Beagle back
to the testing host to capture packets.

Beagle and the set of USB packets mediated by the firewall. These

discrepancies fell into two categories:

Repeated messages When the host (i.e., the FreeBSD target)

queries the device (i.e., the Facedancer) and the latter responds with

a bare acknowledgement, this acknowledgement appears within

the kernel as a message whose contents match the original query.

Thus, the firewall will report repeated messages that mirror the

preceding message and the Beagle will report empty messages.

Multi-packet messages Some communications span multiple

USB packets. These are reported by the Beagle as separate, whereas

the USB controller on the FreeBSD host reassembles them before

they are passed to the kernel for processing. Thus, the record of

USB messages seen by the Beagle sometimes contains, e.g., three

messages whose contents, when concatenated, match the corre-

sponding single message reported by the firewall.

According to our testing, no other discrepancies exist between

USB data seen by the Beagle protocol analyzer and our USB firewall.

Thus we have empirical evidence of complete mediation.

5.3 Performance
In addition to being stable and enforcing complete mediation, the

firewall must not incur undue performance penalties. To evaluate

the additional processing time induced by the presence of the fire-

wall, we measured its impact on the common case performance, and

corner case performance,

5.3.1 Corner Case Performance. We again used the umap fuzz-

testing feature—this time around, timed—since umap’s very purpose

is to exercise corner cases. We modified umap to produce as little

output as possible and we turned off all logging in the USB firewall.

We then ran each test suite three times, rebooting between each

test. Our test target was an Intel Core 2 Duo U7300 machine (2

cores, 1.3 GHz, 3 GB memory) and our test host was an Intel Core

i7-4600U (4 cores, 2.1 GHz, 12 GB memory); the results for each set

of test suite runs are shown in Table 4.

These numbers told an interesting story. For audio control, au-

dio streaming, and mass storage devices, the penalty incurred by

activating the firewall is minimal, whereas the effect on printers is

moderate and the effect on hubs is significant. Yet it is curious that
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test disabled enabled impact

Audio control 681 s 690 s 1.3%

Audio streaming 681 s 690 s 1.3%

Printer 459 s 526 s 14.5%

Mass Storage 649 s 668 s 2.9%

Hub 338 s 477 s 41.1%

Table 4: Results of USB firewall performance tests. Columns
show duration of fuzz-testing suite for each device class, av-
eraged over three runs, with the firewall disabled and en-
abled, and the measured impact of enabling the firewall.

operations ops/sec mb/sec ms/op

disabled 32520 542 538 1.8

enabled 32725 543 542 1.8

Table 5: Results of running FileBench’s singlestreamread
workload on a USB mass storage device, with the firewall
enabled and disabled.

the disparities are so unevenly spread among device classes; the

abysmal performance of the hub class is particularly worrisome.

We investigated this behavior and found that, when the firewall

was disabled, FreeBSD noticed the erroneous value sent by umap

and immediately disconnected the device. By contrast, when we

enabled the firewall, the firewall correctly rejected the erroneous

frames, but FreeBSD continued to poll the device twice more, with

one second between each attempt, until it gave up and disconnected

the device. This mirrors the situation we discovered with human-

interface devices (described in Section 5.1.2).

It is important to note here that the firewall is doing its job! One

could argue that, when the firewall is disabled, FreeBSD is being

overzealous in disconnecting the hub immediately on detecting an

error. Alternatively, one could argue that this highlights the need

for a more nuanced interface between firewall and kernel. Further

research into the “correct” abstraction to present seems worthwhile.

5.3.2 Common-Case Performance. The previous section describes
minimal overhead incurred when the firewall is presented with

invalid traffic. One hopes, however, that most of the traffic ex-

amined by the firewall will be benign, therefore we also mea-

sured the impact of the firewall on legitimate traffic. We used

the singlestreamread workload from the FileBench benchmark

suite [36] to measure throughput of a USB mass storage device. We

ran 5 experiments each with the firewall enabled and disabled. The

results are shown in Table 5.

Oddly, FileBench reports that performance is better when the

firewall is enabled compared to when it is disabled. We hypothesize

this may be due to code structure and caching effects; the num-

bers are so close, however, that there is essentially no difference.

In any case, our generated USB firewall code does not incur an

unreasonable performance penalty in the face of legitimate traffic.

5.4 Effectiveness against CVEs
To assess the promise of our approach to mitigate vulnerabilities in

the wild, we turn to Common Vulnerability and Exposure (CVE)

Class Quantity

Unrelated 45

Unclear 12

Mitigated by Policy 27

Mitigated by Design Pattern 3

Inherently Averted 14

Table 6: Classification of USB mentions in CVE incident re-
ports by how theymight be affected by our USB firewall. See
Appendix D for enumeration of specific CVEs.

records as a proxy for ground truth. We surveyed all reports from

January 2005 through December 2015 that contained the text “usb”

and classified them according to their likely relation to errors in

parsing.

We reviewed each of these 100 vulnerabilities and categorized

them based on whether and how the USB protection framework

we created could protect against it. This is, admittedly, an impre-

cise exercise: many of the vulnerability disclosures do not provide

sufficient detail to conclusively deduce their cause, which makes it

difficult to make substantive claims about them. However, even the

disclosures relatively devoid of details provide some hints.

Table 6 summarizes the five vulnerability categories we settled

on and the vulnerabilities we assigned to each, as explained be-

low. All told, the three categories addressed by our system in one

way or another, make up nearly half of all the USB-related CVE
vulnerabilities—even considering that many of the “unrelated” vul-

nerabilities only coincidentally mention USB! (The complete list of

CVEs classified is given in Appendix D.)

Unrelated Almost half of the vulnerabilities turned up by the

search only incidentally touched on USB. For example, CVE-2015-

5960 describes an attack whereby a user can bypass Firefox OS

permissions and access attached USB mass storage devices. This

is not a failure to correctly handle data on the bus, but rather a

permissions issue elsewhere in the kernel.

Unclear We were unable to categorize about 10% of the USB-

related vulnerabilities in our search. CVE-2013-0981, for instance,

allows kernel pointers to be modified from userspace, but the disclo-

sure doesn’t say whether the userspace application can be affected

by traffic from the USB device. Moreover, Oracle’s “disclosures”

decline to specify any details, as exemplified by CVE-2011-2295.

Mitigated by Policy We concluded that nearly one-third of

the vulnerabilities could be mitigated by policy. That is, one could

write a policy rule that would prevent the USB traffic that exploits

the bug. For instance, CVE-2015-7833 is tickled “via a nonzero

bInterfaceNumber value in a USB device descriptor”; to prevent

such a descriptor from reaching the vulnerable code, one couldwrite

a rule that matches device descriptors with a bInterfaceNumber
field of zero and, upon a match, rejects the device.

Mitigated by Design Pattern Three vulnerabilities resulted

from deviations from sound coding practices; when sound practices

are encoded once in the autogeneration code, such bugs disappear

everywhere. Instances include failure to properly initialize struc-

ture members (CVE-2010-3298, CVE-2010-4074) and failure to clear

transfer buffers before returning to userspace (CVE-2010-1083).
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Inherently Averted Finally, almost 15% of the vulnerabilities

were due to mistakes in interpreting the structure of the USB mes-

sages themselves. Most of these were either buffer overflows that

resulted in arbitrary code execution or memory corruption. In both

cases, we assumed that some field of the USB descriptor indicating

a length did not match the actual length of data provided in the

packet. In the generated enforcement code, as long as the original

specification of the message is correct, this cannot happen: if one

field specifies the length of another, this is verified.

6 RELATEDWORK
6.1 Attacks and protections for USB stacks
Increased attacker interest towards weaknesses in USB code can be

traced to at least 2010–2011 (e.g., [13, 16]), such as the PSGroove jail-
break of the Play Station 3. These used reprogrammed USB devices

such as AVR Teensy [2] to deliver the exploit payload; subsequent

self-hosting platforms like USB Armory [9] significantly expanded

delivery capabilities. Meanwhile, tools such as Facedancer [19] re-

moved the need to reflash and reconnect a delivery device, allowing

faster iteration through attack scenarios and payloads, and further

methods to scale up their use have been proposed [39]. Attacks on

devices were also considered (e.g., [23]).

Recently, GoodUSB [37], USBFilter [38], and Cinch [8] proposed

different approaches to protect devices from attacks. GoodUSB

uses a user-in-the-loop approach that constrained enumerable func-

tions based on how the device was identified. USBFilter, inspired

by NetFiler, introduced a kernel architecture aimed at controlling

unwanted access to services by USB peripherals. Cinch, by contrast,

leverages virtualization. As we discussed in the introduction, our

approach is complementary to USBFilter’s; USBFilter represents a

significant step in USB policy in production kernel code, but should

be used in conjunction with a packet-level recognizer protecting it

and the rest of the kernel from attacks by crafted packets.

6.2 DSLs and auto-generated message parsers
Domain specific languages (DSL) have been used for describing the
contents of network messages since the 1990s, including in BSD

Packet Filter (BPF) [25] (used by, e.g., tcpdump), the Bro IDS [32],
and others. These languages, however, were intended for generating

auxiliary packet analyzer code that extracted certain features from

packets, not for generation of comprehensive packet parsers for

kernel stacks. Indeed, even with these DSLs around, packet analyzer

tools such as tcpdump contained ad-hoc parsers with DoS and

remote code execution vulnerabilities such as CVE-1999-1024, CVE-

2000-1026, and subsequent ones of varying severity.

The need for systematic strengthening of TCP/IP packet parsers

could only be addressed by fully specifying packet formats, suitable

for generation of complete and comprehensive parsers. Such was

the PacketTypes [24] proposal, which drew explicit inspiration from

functional programming languages; it is the closest to our work in

this respect, and also in that it suggested (but did not implement)

generating the kernel’s main parser for a protocol in this fashion.

In (userland) packet analyzers, GAPA [10] stressed the impor-

tance of a quick, intuitive description language for developing

generic application level parsers. PADS [18], from the program-

ming languages community, focused on resiliently parsing data

expected to deviate from a “normal” protocol specification. Prior

contributions include Shield [40] and binpac [31], both of which

use DSLs to generate parsers for wire protocols.

Still, none of these efforts reached kernel code; ad-hoc protocol

parsing remains prevalent in the kernel. The above systems, too, are

intended for userland applications, independent of running kernels,

such as NIDS; our goal, rather, is to protect the target’s own kernel.

The other distinction between these systems and ours is that,

although they all feature extensive testing, none of them aims to

make the system amenable to verification. In this respect, of partic-

ular interest to us is the Protege system [41, 42],which uses Haskell

as the basis of an embedded domain-specific language (eDSL) for de-

scribing networking protocols and generating parser code. Coming

from a functional language eDSL, such code may be most amenable

to verification. Unfortunately, this work and its proof-of-concept im-

plementation of the MODBUS protocol primarily target firmware of

embedded systems; as such, it doesn’t support user-written policies

or inclusion in mainline OS kernels.

6.3 Formal Verification & Complete Mediation
Although DSLs have long been used to produce auxiliary protocol

parsers, this work has been historically separate from software

verification, which generally did not tackle low-level systems code.

Verifying operating system kernels (which must contain parsers so

long as they contain device drivers and the lower layers of protocol

stacks) remained out of reach.

The NICTA group, however, recently demonstrated the feasibil-

ity of producing a fully functional, fully verified, fully performant

operating system kernel, l4.verified [22]. This project used a combi-

nation of hand-written Haskell, hand-written C, and hand-written

proofs for the Isabelle proof-checking environment to verify se-

curity properties of the resultant kernel. Other researchers in the

verification community have also turned their attention to low-

level code (e.g., RockSalt [27] and Idris [11]). Recently, [33] brought

together formal verification and the use of sub-Turing eDSLs in

embedded firmware.

We believe that the time has come for verifiable kernel parsers

for stacks that can work with other verified low-level kernel code.

The worlds of DSL-based parser generation and of proving correct-

ness of systems code should merge, and we hope that our effort

contributes to this process.

7 FUTUREWORK
We anticipate producing a version of our system for Linux, and

merging it with USBFilter. We also intend to work towards a for-

mal verification of our parser, for its eventual incorporation into a

verified OS kernel.

8 CONCLUSION
With our low-level USB firewall, we demonstrated that language

modeling-based approach for correct kernel parsers is feasible and

has strong security advantages.While other approaches leave subtle

gaps or assumptions that are hard to fit into a verification lifecycle,

ours is specifically designed for it. If it can be done for USB, it can

be done for any complex protocol.
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A GENERATED CODE
As described in Section 4, our framework generates many differ-

ent aspects of parser functionality from the protocol specifica-

tion. Below are examples of all generated code, using the same

GET_DESCRIPTOR message specified in Figure 5.

A.1 Generated Accessor Functions
The usability of the generatored accessor macros could be improved

by implementing them as functions instead, which would allow the

compiler to provide more meaningful error messages. The type of

the parameter m would then be specified (whereas in a macro it is

not), thus nominally ensuring that only the correct type of message

has its accessed in this way. (One could imagine a case where a

different kind of message also has a field named desc_length, but
located in a different place within the message. The macros do

not protect against using an instance of the latter in place of the

former, whereas a function would.) Such functions should probably

be marked as inline so that the compiler can produce code as

efficient as if they were macros.

Another advantage of using accessor functions (macros) like

these is that any endianness modifications can be incorporated into

the functions themselves. Whereas this isn’t an issue in USB, it

most certainly is an issue in traditional networking protocols such

as the TCP/IP stack. Using only accessor functions (macros) that

have the endianness conversion incorporated could be a benefit.

Admittedly, these names might be unwieldy. The good news is

that, being automatically generated, they can be easily changed. For

instance, one could write a function to shorten names and apply it

to all identifiers simultaneously.

Generated C accessors for the GET_DESCRIPTOR request message

are shown in Figure 11. (The duplicate “get” substring is not a typo:

the first is a verb, the second is part of the noun.)
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#define get_get_desc_req_msg_desc_type(m) (m->desc_type)

#define get_get_desc_req_msg_desc_index(m) (m->desc_index)

#define get_get_desc_req_msg_language_id(m) (m->language_id)

#define get_get_desc_req_msg_desc_length(m) (m->desc_length)

#define get_get_desc_req_msg_GET_DESCRIPTOR_data(m) (&m->data)

Figure 11: Generated code for accessing protocol message
fields.

void

print_get_descriptor_req_msg(struct get_descriptor_req_msg *m)

{

log(LOG_INFO ,

"usb_fw: GET_DESCRIPTOR req , desc_type =%d, desc_index =%d,"

"language_id =%d, desc_length =%d\n", m->desc_type ,

m->desc_index , m->language_id , m->desc_length );

log(LOG_INFO , "usb_fw: data stage=%s\n",

bytes_as_hex (&m->data , m->desc_length ));

}

Figure 12: Generated code for printing protocolmessage con-
tents.

getDescriptorResponse :: Message

getDescriptorResponse = withData getDescriptorRequest

"GET_DESCRIPTOR response"

(Ref "desc_length ")

Figure 13: UsingHaskell composition to streamline develop-
ment.

A.2 Generated Pretty-Printers
Note that each field is correctly formatted according to its type, the

literal fields are elided from the output, and the data stage is out-

putted as hex, using the previously-verified length. (NB: the gener-

ated function uses the FreeBSD-specific log function and LOG_INFO
log-level. The reasons for this are explained in Section B.2.) Gen-

erated C function for legibly printing a GET_DESCRIPTOR request
message is shown in Figure 12.

A.3 Using withData to Streamline Protocol
Specification

Many protocols include related pairs of messages; think ICMP echo

request and reply, DNS request and reply, and so on. The USB pro-

tocol does, as well; the GET_DESCRIPTOR request message shown

above is the request half of such a pair. For our protocol syntax

specification to be complete, we need to specify the format of the re-

sponse, but it seems wasteful and potentially error-prone to specify

the message entirely from scratch.

For USB, many of these request/response pairs differ only in

that the response includes a data stage, and the request does not.

Therefore, we created a Haskell function, withData, that takes
a Message instance, gives it a new name and a new data stage

specification, and produces a new Message. The code in Figure 13

shows how we used this function to specify the GET_DESCRIPTOR
response message.

Whereas the withData function is no doubt useful, it is most

certainly specific to USB. The general lesson here is not, however,

that the framework we’ve created is inextricably tied to USB; rather,

this demonstrates the power of an embedded domain-specific lan-

guage. Because the protocol-specification language is really just

Haskell, we have at our fingertips all the tools that Haskell pro-

vides, which let us quickly, easily, and—most importantly—reliably

produce specifications of derived messages. Were we left to specify

these messages by hand in entirety, we run the risk of introducing

typos and inconsistencies, both of which are a breeding ground for

vulnerabilities.

Code to derive the GET_DESCRIPTOR response from the associ-

ated request message, using the domain-specific language.

B OPERATING SYSTEM INTEGRATION
We chose to integrate with FreeBSD because of its well-deserved

reputation as a widely-deployed, high-performance kernel with a

clean and well-documented design. We do so by means of a thin

translation shim, described below.

Running the Haskell code on the USB protocol specification

results in two files, usb_messages.h and usb_messages.c, that
implement the various constructs described in this section. They are

intended to be as operating-system-agnostic as possible (exceptions

are discussed in Section B.2).

We separately implemented a FreeBSD kernel module that, when

loaded, provides a function that the mainline USB stack can call

to verify a set of frames. This function is primarily responsible

for extracting the relevant fields of the structure FreeBSD uses

to describe a USB transfer and calling an OS-agnostic function

with the frame and the extracted fields as parameters. The idea is

that integrating with a new operating system will require one to

re-implement only this translation shim and leave the rest of the

validation code intact.

This OS-agnostic code is contained in usb_fw.h and usb_fw.c,
and currently implements a simple policy in which a response is

verified to match the request that instigated it. It is intended not to

demonstrate a complicated, stateful firewall for USB but rather to

show how the primitives provided by the automatically-generated

code can be used to create one.

Table 7 summarizes the files involved. The primary takeaway

from this table is the significant discrepancy between manually-

written lines of code and automatically-generated lines of code,

the latter of which are far more likely to be correct—because all

of the code is produced in a uniform fashion. Bugs need only be

fixed once in the generation code, and all the constructs that are

generated are positively affected. In contrast, fixing a single bug

in a manually-written parser does not guarantee that the same

bug doesn’t exist in another component that performs a similar

operation.

Once the kernel module is loaded, a frame is processed thusly:

(1) When execution reaches one of three points in the USB stack,

call fbsd_hook, giving it the FreeBSD-specific structure that
describes the transfer (which may contain multiple, raw USB

frames). In Section B.1, we describe themethodwe developed

for placing these hooks.
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Filename LOC Description

usb_messages.h 403 structure definitions, accessor macros definitions, and function prototypes (auto-generated)

usb_messages.c 367 parser functions and pretty-printing functions (auto-generated)

usb_fw_fbsd.c 105 FreeBSD-specific code, contains fbsd_hook function that invokes OS-agnostic code

usb_fw.h 14 definitions for OS-agnostic functions

usb_fw.c 71 rudimentary firewall for USB using the auto-generated parser primitives

Table 7: The files, both automatically and manually generated, that comprise the USB validation proof-of-concept, along with
their sizes, measured in lines of code, and a brief description of their purpose.

(2) Within fbsd_hook, extract transfer metadata—such as bus

number, device address, and endpoint number—from the

FreeBSD-specific structure and pass each frame in turn to

hook_frame along with the OS-agnosticized metadata.

(3) The hook_frame function validates the frame, which results

in an action (such as accept, drop, or reject) being passed

back to fbsd_hook.
(4) Finally, fbsd_hook returns the action back to the USB stack.

Figure 9 shows the path by which a frame is processed by the

generated verification framework.

But where are these magical, “appropriate places” whence we

call fbsd_hook?

B.1 Hooks
Themethod for locating hooks is described below. Although applied

to USB in this section, it can be easily generalized to other protocols.

In particular, given the fbsd_hook function described in the pre-

vious section, where in the USB stack proper does it get invoked?

Our instrumentation, described elseqhere, revealed that all frames

entering the kernel over USB did so in the usbd_callback_wrapper
function, and that all frames exiting the kernel over USB did so in

either the usbd_transfer_start_cb or usbd_pipe_start func-

tions. Therefore, it was in those functions that we placed the hooks

to call into the firewall. We evaluate the effectiveness of these

placements in the next section, where we also discuss whether our

system fulfills the requirement of complete mediation.

B.2 Obstacles to Operating System
Independence

This is not to say that the idiosyncrasies introduced by particular

operating systems are trivial: much depends on the coding style of

the operating system in question. These idiosyncrasies for FreeBSD

are described in the following.

The vast majority of the generated code described in the preced-

ing sections is operating-system agnostic; header files are the pri-

mary exception. For instance, the uint8_t type is used frequently,

but the file in which it is defined varies. The FreeBSD kernel uses

<sys/types.h>, the Linux kernel uses <linux/types.h>, and both
userlands use <stdint.h>. The generated code currently supports

only FreeBSD with hard-coded header-file inclusions, but this could

easily be expanded to other operating systems either by generating

#ifdef/#endif clauses for each or by adding an abstraction layer

that allows the author to specify differences between platforms.

The other operating-system specific code, as foreshadowed in

Section 4.4, comprises the functions generated to pretty-print the

content of messages. As shown in Section A.2, these functions

currently use the logging interface exposed by the FreeBSD kernel.

There are a few different ways this could be ported to another

operating system. One is by using anOS-specific abstraction layer as

suggested to solve the header-file problem described in the previous

paragraph.

Our current preference, however, is to re-implement these func-

tions to instead behave like snprintf: returning a pointer to a

string instead of perforning the actual logging itself. One benefit

of this approach is that such code could be used outside the kernel

(e.g., in a program like tcpdump that monitors traffic on a bus and

presents it in a user-friendly format). The difficulty is that allocating

memory for such strings inside the kernel can be a delicate affair,

handled differently by different kernels.

C USB_BB MODIFICATIONS FOR FREEBSD
KERNEL

Table 8 shows the extent of modifications to FreeBSD kernel files

introduced by our usb_bb DTrace probeset.

D CVE CLASSIFICATIONS
This appendix summarizes our USB-related CVE classification. For

space reasons, we omit the CVEs that fall in unclear and unrelated

categories and, to give examples of our reasoning, we provide only

a sampling of those mitigated by policy, mitigated by design pattern,

and inherently averted.

Refer to Table 6 for a quantitative summary of all vulnerabilities

examined and evaluated.

D.1 Mitigated By Policy
CVE-2006-4459. Integer overflow in AnywhereUSB/5 1.80.00 al-

lows local users to cause a denial of service (crash) via a 1 byte

header size specified in the USB string descriptor.

Mitigated by user policy: “reject message where length > x”.

CVE-2012-3723. Apple Mac OS X before 10.7.5 does not prop-

erly handle the bNbrPorts field of a USB hub descriptor, which

allows physically proximate attackers to execute arbitrary code or

cause a denial of service (memory corruption and system crash) by

attaching a USB device.

Mitigated by user policy: “reject message where bNbrPorts ==

bad value”.
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filename LOC filename LOC filename LOC filename LOC

usb_busdma.c 269 usb_msctest.c 55 usb_compat_linux.c 9 usb_parse.c 56

usb_dev.c 18 usb_pf.c 28 usb_device.c 509 usb_process.c 30

usb_dynamic.c 6 usb_request.c 304 usb_hub.c 121 usb_transfer.c 614

usb_lookup.c 22 usb_util.c 43 Total 2083
Table 8: Enumeration of instrumented within FreeBSD’s USB stack.

CVE-2012-6053. epan/dissectors/packet-usb.c in the USB dissec-

tor in Wireshark 1.6.x before 1.6.12 and 1.8.x before 1.8.4 relies

on a length field to calculate an offset value, which allows remote

attackers to cause a denial of service (infinite loop) via a zero value

for this field.

Mitigated by user policy: “reject message where length == 0”.

CVE-2005-4789. resmgr in SUSE Linux 9.2 and 9.3, and possibly

other distributions, does not properly enforce class-specific exclude

rules in some situations, which allows local users to bypass intended

access restrictions for USB devices that set their class ID at the

interface level.

Mitigated by user policy: “Reject interface_descriptor where

class_id = xyz’.

D.2 Mitigated By Design Pattern
CVE-2010-1083. The processcompl_compat function in driver-

s/usb/core/devio.c in Linux kernel 2.6.x through 2.6.32, and possibly

other versions, does not clear the transfer buffer before returning to

userspace when a USB command fails, which might make it easier

for physically proximate attackers to obtain sensitive information

(kernel memory).

Mitigated by principled buffer use encoded into autogeneration.

CVE-2010-4074. The USB subsystem in the Linux kernel before

2.6.36-rc5 does not properly initialize certain structure members,

which allows local users to obtain potentially sensitive information

from kernel stack memory via vectors related to TIOCGICOUNT

ioctl calls, and the (1) mos7720_ioctl function in drivers/usb/seri-

al/mos7720.c and (2) mos7840_ioctl function in drivers/usb/serial/-

mos7840.c.

Mitigated by principled buffer use encoded into autogeneration.

CVE-2010-3298. The hso_get_count function in drivers/net/us-

b/hso.c in the Linux kernel before 2.6.36-rc5 does not properly

initialize a certain structure member, which allows local users to

obtain potentially sensitive information from kernel stack memory

via a TIOCGICOUNT ioctl call.

Mitigated by principled buffer use would be encoded into auto-

generation.

CVE-2014-5263. vmstate_xhci_event in hw/usb/hcd-xhci.c in QEMU

1.6.0 does not terminate the list with the VMSTATE_END_OF_LIST

macro, which allows attackers to cause a denial of service (out-of-

bounds access, infinite loop, and memory corruption) and possibly

gain privileges via unspecified vectors.

Mitigated by principled data structure use encoded into autogen-

eration.

D.3 Inherently Averted
CVE-2006-2935. The dvd_read_bca function in the DVD handling

code in drivers/cdrom/cdrom.c in Linux kernel 2.2.16, and later

versions, assigns the wrong value to a length variable, which allows

local users to execute arbitrary code via a crafted USB Storage

device that triggers a buffer overflow.

Mitigated due to length variables encoded as strictly dependent

on other values.

CVE-2006-5972. Stack-based buffer overflow in WG111v2.SYS in

NetGear WG111v2 wireless adapter (USB) allows remote attackers

to execute arbitrary code via a long 802.11 beacon request.

Mitigated due to frame lengths automatically enforced given

frame specification.

CVE-2008-4680. packet-usb.c in the USB dissector in Wireshark

0.99.7 through 1.0.3 allows remote attackers to cause a denial of

service (application crash or abort) via a malformed USB Request

Block (URB).

Mitigated because malformed data is automatically rejected.

CVE-2010-0038. Recovery Mode in Apple iPhone OS 1.0 through

3.1.2, and iPhone OS for iPod touch 1.1 through 3.1.2, allows phys-

ically proximate attackers to bypass device locking, and read or

modify arbitrary data, via a USB control message that triggers

memory corruption.

Likely length-related and therefore likely mitigated by checking

packet length, which is built in.

CVE-2010-0297. Buffer overflow in the usb_host_handle_control

function in the USB passthrough handling implementation in usb-

linux.c in QEMU before 0.11.1 allows guest OS users to cause a

denial of service (guest OS crash or hang) or possibly execute arbi-

trary code on the host OS via a crafted USB packet.

Likely length-related and therefore likely prevented by checking

packet length, which is built in.
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