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ABSTRACT
Agent-based modeling can serve as a valuable asset to secu-
rity personnel who wish to better understand the security
landscape within their organization, especially as it relates
to user behavior and circumvention. In this paper, we ar-
gue in favor of cognitive behavioral agent-based modeling
for usable security and report on our work on developing
an agent-based model for a password management scenario.
We perform a number of trials and a sensitivity analysis that
provide valuable insights into improving security (e.g., an or-
ganization that wishes to suppress one form of circumvention
may want to endorse another form of circumvention).

1. INTRODUCTION
Agent-based models incorporating user behavior, emotion,

and cognition can serve as valuable tools that assist com-
puter security personnel design, implement, and maintain
security systems, devise security policies, and employ secu-
rity practices that are congruent with security and other
organizational objectives.

Indeed, as the current state of security practice indicates,
we need these sorts of tools. Our interviews, surveys, and
observations reflect many examples where security fails to
accommodate users. Such mismatches between user needs
and security policies and mechanisms often induce circum-
vention, thereby undermining overall objectives. Even if one
could design adequate security policies and mechanisms a
priori, the dynamic nature of software systems, user needs,
and organizational and environmental changes would neces-
sitate frequent readjustments. Consequently, we need tools
that allow us to better understand computer security’s costs,
common perceptions and misperceptions, side effects, and
interactions.
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dash [1, 2], an agent-based simulation framework that
supports the dual-process model of cognition, reactive plan-
ning, modeling of human deficiencies (e.g., fatigue, frustra-
tion), and multi-agent interactions, enables us to create such
tools. In dash, users are represented as agents with weighted
goals, plans to achieve those goals, attributes, knowledge,
and abilities. These agents use mental models and have
perceptions of the world that often depart from reality. In
accordance with their mental models, they take actions, ob-
serve and interpret events, and communicate. They dynam-
ically compute and recompute goals and the plans they use
to achieve them. dash models may better enable security
personnel to (a) identify weaknesses in security policies and
mechanisms, e.g., workflow impediments that prompt user
circumvention, (b) estimate the likelihood of user engage-
ment in workarounds, (c) gauge the number of inescapable
security infractions from policy-workflow mismatches, (d)
estimate the values of security and organizational objective
functions, (e) test the accuracy of proxy security measures,
and (f) measure the impacts that shifts in the environment
have on security. A cognitive and behavioral-centric ap-
proach to modeling can provide insights into the effective-
ness of informing users of practical needs for security, imple-
menting a feedback loop, imposing more stringent policies
or harsher penalties for circumvention, and more.

Agent-based modeling is particularly enlightening in sce-
narios where security in practice radically differs from secu-
rity in the abstract, where it’s extraordinarily challenging to
anticipate how emotions, cognitive biases, and other human
deficiencies may affect user behavior. Indeed, in order to
get security right it is critical that we understand how users
interact with our systems. And we must adapt our systems
to our users (and not expect our users to adapt to our sys-
tems!) so as to induce “good” behavior [3, 4]. In previous
work [5] we discussed the potential for agent-based models
to be applied to prediction of human circumvention of se-
curity, relayed an anecdote regarding timeouts in a medical
setting, explained our preliminary work, and discussed our
future directions for building such models. In this paper, we
follow up on this work by detailing our progress on modeling
the password management scenario.

The password management scenario involves establishing
password polices for an enterprise. In theory, having a pol-
icy that requires users to use strong passwords, to never



write them down, and to never reuse them across sites would
improve security. In practice, users commonly circumvent
password policies due to perceived cognitive limitations, fa-
tigue, frustration, and work culture. Password choices and
password management practices for one service may affect
the choices and practices for another, making the services
interdependent. By applying agent-based models, security
personnel can better understand this complex environment,
estimate measures of aggregate security that incorporate cir-
cumventions, risks, and costs, and ultimately make better
decisions.

This paper is structured as follows. In Section 2, we in-
troduce the dash modeling framework. in Section 3 we in-
vestigate the password modeling scenario, detail our dash
modeling work, perform a sensitivity analysis, and discuss
results and takeaways. In Section 4 we discuss future work
including the autologout scenario. In Section 5 we conclude.

2. THE DASH AGENT MODELING PLAT-
FORM

The dash agent modeling platform provides a framework
and a set of capabilities for modeling human behavior [1],
designed to capture observations from human-centered se-
curity experiments, e.g. [6]. In order to model human task-
oriented behavior, which is both goal-directed and respon-
sive to changes in the environment, dash includes a reactive
planning framework that re-assesses goal weights and plans
after receiving input after an action [7]. In order to model
deliberative behavior, dash includes an implementation of
mental models following the approach of Johnson-Laird and
others [8] and a simple framework for evaluating costs and
benefits of alternative worlds. This approach adopts the
view that users follow essentially rational behavior when
making decisions about on-line actions including security,
but typically have an incomplete or incorrect model of the
security landscape.

In order to model bounded attention that affects human
decision-making, particularly under stress or cognitive load,
dash adapts psychology’s dual-process framework [9] in which
two modules provide alternative suggestions for the agent’s
next action. The first is a deliberative system that uses the
mechanisms for planning and mental models to arrive at a
decision, and the second is a stimulus-driven system that
matches surface properties of a situation to find an answer.
Once an agent has experience in a domain, the stimulus
system provides good answers most of the time while an
inexperienced agent may need to fall back on deliberative
reasoning more often. Under stress, time pressure, or cog-
nitive load, the deliberative system may not complete, or
the stimulus system may gain increased weight, leading to
impulsive behavior that may not be correct.

Other cognitive architectures such as SOAR [10] or ACT-
R [11] provide many of the same behaviors. One distinguish-
ing factor of dash is that its stimulus system is not related
to the deliberative system by a compilation learning pro-
cess and can often produce results that differ qualitatively
rather than in terms of speed. dash also provides support
for mental models and tradeoff analysis as more fundamental
components.

3. THE PASSWORD MANAGEMENT SCE-
NARIO: SECURITY DEPENDENCIES IN-
TRODUCED BY WORKAROUNDS

3.1 Prelminaries
In terms of usability and security, many consider pass-

words a failure. Users are notorious for choosing weak pass-
words. In an effort to mitigate the security risks linked to
weak passwords, many services now require users to choose
passwords that satisfy complex password composition rules.
Unfortunately, this brings with it a slew of other security
challenges [3, 12, 13, 4]. Users who are unable to cope
with the increased cognitive demands of having to remember
dozens of passwords resort to circumventing password poli-
cies and employing poor password management strategies;
they write passwords down on Post-it notes, reuse passwords
across multiple services with little or no variation, and leave
passwords in plaintext files on their computers. However,
perceived cognitive limitations are not the only impetus for
user circumvention of password policies. In some domains,
users need to share information with others who have differ-
ent access rights than themselves, but the “proper” channel
for information sharing is slow and inefficient. So, they share
passwords instead [3].

Services are culpable too. Some services effectively dis-
courage strong passwords by setting low ceilings on password
length, disallowing special characters, using easily guessable
security questions, and assigning default passwords that are
often left unchanged. Others impose excessive password
complexity requirements and require frequent password re-
sets, which further incentivizes users to circumvent. In re-
cent years, many services have also been the target of mas-
sive password breaches; in some cases, they have even ex-
posed passwords to malicious actors in cleartext. Moreover,
due to password reuse, risks associated with poor password
practices are not confined to those services that are lax about
password security. That is, the security of even those ser-
vices that make good efforts to secure user passwords can
easily be compromised by vulnerabilities on other sites [14].

While tremendous effort has been spent on trying to re-
place passwords, it has been met with questionable success.
Bonneau et al [15] compared passwords to other authentica-
tion schemes in three domains: usability, deployability, and
security. They showed that no alternative authentication
scheme dominates passwords.

In short, passwords pose numerous memorability and us-
ability challenges that frequently manifest in user circum-
vention. They pose confidentiality, risk mitigation, and pub-
lic perception challenges for services– even those services
that take great efforts to secure password content. And they
are not going away any time soon. This motivates the need
for better techniques to both assess and mitigate costs and
risks associated with password policies.

Numerous recent studies have looked into password mod-
eling. Shay et al [16] developed a simulation for under-
standing the effectiveness of password policies. Choong [17]
proposed a user-centric cognitive behavioral framework for
the password management lifecycle, from password creation
to password reset. SimPass is a highly configurable agent-
based model for measuring the efficacy of password policies
[18]. Our work is similar to SimPass in that we’ve developed
a password simulation with knobs that can be adjusted to



measure aggregate security associated with password poli-
cies under different circumstances. Whereas SimPass em-
ploys numerous parameters to better understand password
management scenarios with minimal assumptions, we adopt
the view that many of these parameters cannot be known,
nor do they need to be known, a priori to have a useful
predictive model. Our simulation instead relies on a smaller
number of parameters with more underlying models, espe-
cially those related to cognition and behavior. For example,
there are underlying models for a password belief system
and cognitive burden. While this approach provides valu-
able insights into the cognitive and behavioral factors that
affect security, it necessitates different kinds of modeling as-
sumptions.

3.2 Simulation Details
Our simulation models human users interacting with com-

puter systems that employ username and password authen-
tication. Specifically, agents construct plans to achieve high-
level subgoals for creating accounts, signing in to accounts,
and signing out of accounts. Each of these subgoals are bro-
ken down by the agent into a series of steps during action
invocation as determined by the agent’s beliefs, the agent’s
cognitive burden, and other factors. To better understand
how these processes work, we first explore the underlying
models for the agent’s belief system and the agent’s cogni-
tive burden.

Let us first briefly discuss the agent’s password belief sys-
tem. For this discussion, we limit ourselves to passwords; a
similar model exists for usernames. For service S and pass-
word P , let VS,P denote the strength of the agent’s belief
that password P is the correct password for her account
on service S. During the sign-in process, these password
strength values are used to determine whether the agent
recalls a password for a given service and, if so, which pass-
word the agent recalls. Agents slowly forget passwords dur-
ing periods of non-use as reflected by reductions in pass-
word strengths. In fact, following every user action all pass-
word strengths over all services are decremented by service-
specific password forget rates.

We now discuss the underlying model for cognitive bur-
den. As before, we limit our discussion to passwords. The
model uses a generalization of the Levenshtein distance to
sets and makes use of an openly available Prolog implemen-
tation of Levenshtein distance [19]. The Levenshtein dis-
tance between a string S1 and S2 is the minimum number
of character insertions, deletions, and substitutions required
to convert S1 into S2. For set S, define the Levenshtein
measure L(S) to be the least weight tree T that has vertex
set S ∪ {ε} and edge set E where each edge e = (v1, v2) has
weight w(v1, v2) = Lev(v1, v2). Here, ε denotes the empty
string and Lev(v1, v2) is the Levenshtein distance between
v1 and v2. The cognitive burden of a set SP of passwords
in our simulation is approximately L(SP ). There is also a
small cost associated with mapping passwords to services in
memory. We very roughly approximate this by including an
additive factor of 1 for each service that has a corresponding
password that is in the agent’s memory.

Equipped with an understanding of these two underlying
models, we can now look more deeply at the subgoals asso-
ciated with creating an account for a service and signing in
to a service.

During account creation, the agent must first construct

a username and password combination. If the agent’s cog-
nitive burden is under a specified threshold, the password
reuse threshold, she chooses the weakest password she can
think of that satisfies the password composition require-
ments. If, however, her cognitive burden exceeds this pass-
word reuse threshold, she attempts to recycle an existing
password before considering a new, unique password. The
particular password chosen for reuse is determined by the
password reuse priority parameter which specifies whether
the agent should reuse the longest or shortest viable pass-
word. Once an account has been created, the agent may opt
to either memorize her password or write it down. This pro-
cess is again determined by comparing the agent’s cognitive
burden to a specified threshold, the password write thresh-
old. If the agent’s cognitive burden is under the threshold,
she will try to memorize the password; else, she will write it
down. If the agent opts to memorize password P for service
S then the password strength VS,P will be initialized to 1,
while if she instead opts to write down the password VS,P

will be initialized to 0.5. And, in both cases, all S-specific
password strengths associated with passwords different than
the chosen password are set to 0; that is, VS,P ′ will be set
to 0 for P ′ 6= P . Additionally, during account creation the
service-specific password forget rate is initialized to a model
parameter entitled initial password forget rate. While we’ve
discussed the process of account creation, the same processes
largely apply to the password reset process, the only differ-
ence being that the agent will not create a username.

When an agent wishes to sign in to service S, she first
attempts to recall her password for the service. This is
done by choosing the password P with greatest S-specific
password strength. If VS,P exceeds a parameter called the
recall threshold, she attempts to sign in using P . If she can-
not recall a password, that is, if there is no password with
a password strength that exceeds the recall threshold, she
checks to see if she wrote down a password. If she did write
down a password she uses that password; else, she resets her
password.

As discussed earlier, after each action is performed pass-
word strengths are decremented by service-specific password
forget rates. These forget rates are initialized to an initial
password forget rate during account creation and password
resets, and they are changed during sign-in attempts. When-
ever the agent enters a password P for a service S and it is
accepted, the password forget rate for that service is halved,
the password strength VS,P is set to 1, and, for all S′ 6= S,
VS′,P is strengthened by the product of the password forget
rate for S′ and the strengthen scalar, a model parameter.
When the agent enters a password P for a service S and it
is rejected, VS,P is set to 0. While this model is not faithful
to reality (e.g., it does not incorporate the time duration
between successive recalls) we, again, believe it serves as a
good, simple first approximation.

To assess the risk of password compromise, we consider
three attack vectors. The first is a direct attack in which
the attacker either exploits a service vulnerability or brute
forces the password. This is a function of a direct attack risk
scalar and a raw password strength function that maps pass-
words to strength values. The second is an attack wherein
the attacker sees the agent’s password written down and uses
it to access the agent’s account. If the password has been
written down the risk for this attack is equal to a model pa-
rameter that specifies the stolen password attack risk; else,



it is 0. The third attack is an indirect attack in which the
attacker, using one of the previously mentioned attacks, dis-
covers the agent’s password for another site, and then reuses
that password to sign in to the agent account for the target
service. The risk of this attack is equal to one minus the
probability of being safe from indirect attacks, where the
probability of being safe from indirect attacks is the prod-
uct of probabilities of being safe from indirect attacks from
each service. The probability that a service S is safe from
an indirect attack stemming from S′ is the product of a a
model parameter, the reuse attack risk, and the probability
that S′ is not compromised by one of the two aforemen-
tioned attacks. For future discussion, we define the security
measure M to be the probability that a service is safe from
attacks, averaged over all services.

Services are loosely grouped into four classes based on the
complexity of their password composition policies: weak,
average, good, and strong. All member services of a sin-
gle class use the same process to generate their password
composition policies.

Here, we briefly explain the code and primary processes
in the simulation. The simulation involves agent-side code
that is responsible for choosing and performing agent actions
and a world hub that is responsible for carrying out all ser-
vice processes, keeping world state, and printing statistics.
A target service is also passed to the world hub. Printed
statistics include the number of accounts that have been
created, the number of usernames and passwords each agent
has written down, the number of usernames and passwords
each agent has memorized, the number of passwords resets
each agent has performed, and aggregate security measures
M associated with each agent’s set of accounts. Addition-
ally, for each agent, the hub prints similar statistics for the
target service.

3.3 Results & Sensitivity Analysis
For the purposes of better understanding our model and

gleaning valuable insights into the security implications of
different password policy settings, we performed a varia-
tion of one-factor-at-a-time sensitivity analysis, the results
of which we study in this section. Although many param-
eters are highly interactive, we believe this approach still
provides valuable insights.

This subsection is structured as follows. In Section 3.3.1
we review the parameters and state the fixed values used in
the analysis. In Section 3.3.2 we discuss the methodology.
In Section 3.3.3 we briefly discuss sources of error. In each
section thereafter we study a single parameter.

3.3.1 The Parameters
Below, we specify the fixed value we use for each param-

eter considered in our sensitivity analysis. We also provide
a short description of the parameters.

Initial Password Forget Rate: 0.0025
This parameter specifies the initial password forget
rate that is set for a service during account creation
and password reset.

Recall Strengthen Scalar: 4
This parameter affects the amount that a password be-
lief is strengthened for one service when the password
under consideration is used successfully for another
service. Specifically, when an agent successfully signs

in to service S with password P , for each S′ 6= S, the
password strength value VS′,P is incremented by the
product of the recall strengthen scalar and the pass-
word forget rate for S′.

Password Recall Threshold: 0.5
This parameter specifies the threshold over which the
agent can recall passwords. When the agent is trying
to sign in to a service S, she will consider the password
P with highest strength value, VS,P for that service.
If VS,P exceeds the recall threshold, she will attempt
to sign in with password P . Else, she will be unable
to recall a password and will instead resort to another
action.

Password Reuse Priority: long
This parameter can take on one of two values: short
or long. When an agent attempts to reuse an exist-
ing password during account creation or password re-
set for a service, this parameter specifies whether she
reuses the shortest or the longest password that sat-
isfies the password composition requirements for the
service should there exist a recallable password satis-
fying the password composition requirements.

Password Reuse Threshold: 40
If an agent creates a new account for a service or resets
her password for a service and her cognitive burden
exceeds the value of this parameter, she will opt to
reuse an existing password.

Password Write Threshold: 60
If an agent’s cognitive burden exceeds the value of this
parameter after creating an account for a given service
or resetting her password for a service she will opt
to write down the password instead of attempting to
memorize it.

Direct Attack Risk: 0.25
This parameter affects the probability that an account
may be compromised directly via a service vulnerabil-
ity or brute force attack, not a stolen password or reuse
attack. It effectively acts as a scalar for the password
strength associated with a given service to determine
the direct attack risk.

Stolen Password Risk: 0.25
This parameter specifies the probability that the at-
tacker may find the agent’s password written down and
successfully use it in an attack.

Reuse Attack Risk: 0.25
This parameter specifies the probability that an at-
tacker successfully launches a reuse attack on a service
S by exploiting a given direct attack or stolen password
attack on another service S′.

Distribution of Services: (6,6,6,6)
This parameter is a vector of four integers correspond-
ing to the distribution of services according to the
strengths of their password composition policies. The
shorthand (W, A, G, S) means that W, A, G, and S
services employ weak, average, good, and strong pass-
word composition policies respectively.



3.3.2 Methodology
We performed a one-factor-at-a-time sensitivity analysis

wherein we decided a priori on fixed values for each of the
ten parameters specified in Section 3.3.1. We varied each
parameter within a constrained, feasible parameter space
and we recorded the aggregate security M (refer to Section
3.2 for more details on M) for six independent trials for
each parameter configuration we considered. Our sensitiv-
ity analysis is actually a slight variation of the traditional
one-factor-at-a-time approach in that, for the distribution
of password composition policies parameter, we performed a
series of trials for three different configurations of the cogni-
tive thresholds (i.e., password write threshold and password
reuse threshold) to better understand the interplay between
the three parameters.

For all but one parameter, we stopped simulations when
the agent’s minimum per-service password forget rate dropped
below 0.0005. The exception occurred during testing of the
initial password forget rate parameter, which was performed
first. While testing the password forget rate parameter, we
stopped simulations when the minimum per-service pass-
word forget rate dropped below 0.00025.

After gathering data as described above, we generated
plots with error bars corresponding to the standard error of
the mean.

3.3.3 Sources of Error
The distribution of output security measurements not con-

forming to a Gaussian serves as one source of error. Since
the true distribution does not resemble a Gaussian, it cannot
be accurately fitted to a Gaussian and, for that very reason,
the standard deviation of the mean, which we used for er-
ror bars, is not a particularly reliable measure of error of
the mean. Computer-based arithmetic accounts for another
source of error. While not a true source of error, we also
see some peculiarities in our graphs due to the use of a fi-
nite set of approximately thirty passwords and the password
strength valuation function we use. Though the password
list and password strength valuation function are in some
sense parameters, specifying a feasible solution parameter
space for them and varying them accordingly is beyond the
scope of this initial paper. Last, we recognize that perform-
ing only six trials for each configuration of parameters is
a limitation. We shall perform more rigorous analyses in
future work.

3.3.4 Initial Password Forget Rate
In Figure 1 we see that increasing the initial password for-

get rate reduces security. Our belief is that as we increase
the initial password forget rate users are more inclined to
reset their passwords and write down the newly reset pass-
words during the process.

3.3.5 Recall Strengthen Scalar
In Figure 2 there seems to be a slight increase in security

as we increase the recall strengthen scalar. While this may
just be error, this may also be in part due to a reduction in
passwords being written down as the value of this parameter
increases.

3.3.6 Password Recall Threshold
As expected, in Figure 3 we see that increasing the recall

threshold decreases security. Indeed, increasing the thresh-
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old reduces likelihood of password recall, which in turn in-
duces user circumvention.

3.3.7 Password Reuse Priority
We found that having agents reuse the shortest acceptable

password leads to a higher security measure than reusing the
longest password. With a short password reuse priority we
saw a mean security measure of M = 0.5222 with a standard
error of the mean of 0.0252. With a long password reuse pri-
ority we saw a mean security measure of M = 0.4528 with
a standard error of mean of 0.3142. One possible explana-
tion for this discrepancy is that a tendency toward reusing
shorter passwords reduces the likelihood that a single pass-
word is reused across most accounts since password com-
position policies vary across services. This may lessen the
efficacy of reuse attacks.

3.3.8 Password Reuse Threshold
As expected, in Figure 4, increasing the password reuse

threshold improves security.

3.3.9 Password Write Threshold
At first glance, Figure 5 may seem a bit surprising. When

the password write threshold is very low, M is reasonably
high. As we increase the password write threshold, we see
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a dip in M . And, as we further increase it we see M rise
to a value slightly above its value when the password write
threshold was very low.

Our rationale for this behavior is as follows. When the
password write threshold is low, under 40, users are inclined
to write down passwords, but writing these passwords down
means that the passwords contribute less to the cognitive
load of password remembrance; this leads to a larger set of
unique passwords at the cost of more passwords being writ-
ten down, which is a net win as determined by the parameter
settings of direct attack risk, reuse attack risk, and stolen
password risk that determine M . We see a dip when setting
the threshold between 40 and 80 because, while users are less
inclined to write passwords down during this range, they will
be more inclined to reuse passwords as passwords that are
not written down contribute a larger cognitive burden. For
thresholds over 80, users may still reuse more passwords, but
the gains from not writing down passwords finally begins to
outweigh gains from not reusing passwords.

3.3.10 Direct Attack Risk
In Figure 6 we see that increasing the direct attack risk

value reduces security as expected.

3.3.11 Stolen Password Risk
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In Figure 7 we see that increasing the stolen password risk
value reduces security roughly as expected. We do see an
unusual local maximum for a stolen password risk value of
0.5. We attribute this solely to error because we performed
too few trials.

3.3.12 Reuse Attack Risk
In Figure 8 we see that increasing the reuse attack risk

value reduces security as expected. We see a peak at 0.625,
but we again attribute this to error due to an insufficient
number of trials.

3.3.13 Service Distribution
In Figure 9 we look at how changing the number of ser-

vices while maintaining a fixed distribution of weak, average,
good, and strong password composition rules for three pairs
of cognitive threshold settings affects security. Each curve
appears to reflect a sigmoid function flipped along the y-axis
and shifted accordingly. This is what one might expect. For
a small number of services users are able to simply remem-
ber their passwords without resorting to circumvention. As
the number of services grow users circumvent.

In Figure 10 we use a fixed number, 24, of services and
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vary the distribution of password composition policies for
the same three pairs of cognitive threshold settings. These
cognitive threshold pairs correspond to the password reuse
and password write thresholds respectively. For the low cog-
nitive threshold pairs, (20/30) and (40/60), circumvention is
rampant most distributions; hence, simply having the most
stringent password composition policies tends to make sense
because the primary factor in our security measure becomes
the raw password strength. For the highest cognitive thresh-
old pair considered, (60/90), there’s less circumvention and
therefore users may be able to choose a larger set of unique
passwords for less stringent distributions, thereby reducing
the likelihood of reuse attacks.

We believe further experimentation would demonstrate
that even for low cognitive threshold pairs we achieve better
security by using weaker distributions under different, but
still viable, parameter settings (e.g, changing the password
reuse attack risk from 0.25 to 0.5). We leave this for future
work.

3.4 Takeaways
While we cannot make specific password policy recom-

mendations based on our model, which requires further val-
idation, we do believe our results provide some valuable in-

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

0.0

0.2

0.4

0.6

0.8

1.0

4 8 12 16 20 24 28 32 36 40 44 48

Number of Services

S
ec

ur
ity

 M
ea

su
re

 (
M

)

Cognitive Thresholds
●

●

●

20/30

40/60

60/90

Security vs  Number of Services 

Figure 9

sights that serve as indicators of how to improve password
policies:

• Always choosing the most stringent password compo-
sition policy may be disastrous, endangering both us-
ability and security with no gains.

• All circumvention is not the same. To improve security
at a given organization, one must pinpoint the threat
model and design policies accordingly.

• Endorsing relatively benign circumventions at an or-
ganization may reduce the prevalence of particularly
malignant circumventions. As an example, It may
very well make sense for an organization to give their
employees a small card to write their passwords on if
they’re more worried about a password reuse attack
than someone stealing their password from that card.

4. FUTURE WORK
While we feel there’s a lot to be done in this space, pri-

mary foci for future work include adding to the password
management model and building an agent-based model for
an autologout scenario.

4.1 Password Management Scenario
We are interested in incorporating more faithful and/or

better reasoned models and processes (e.g., [12])) for pass-
word recall, cognitive burden, and forgetfulness into our
simulation. Once we’ve done this, we’d also like to revisit
the work mentioned in this paper and explore other pass-
word management challenges. For a few examples, we’d like
to (a) develop a more elaborate password simulation that
incorporates communication and password sharing between
users, exploring how group dynamics affect circumvention,
(b) model how users cope with enterprise requirements re-
quiring them to frequently reset their passwords, or (c) test
alternative password policies (e.g., what would happen if we
allowed users to write passwords on Post-It notes for a lim-
ited duration of time, but told them to rip up the Post-It
notes afterward?). The idea of recognizing and even incor-
porating existing circumvention into the security model also
seems like an interesting pursuit for modeling work. Last,
while we have tried to validate our work with previous stud-
ies, this is an ongoing challenge and we would like to pursue
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new avenues and perhaps devise new experiments to aid on
this front.

4.2 The Effect of Security Policies on Group
Behavior and The Auto-logout Scenario

Tackling even an ostensibly simple problem, such as set-
ting a “good” timeout threshold, can be a nightmare in prac-
tice. On paper, the general shape of a timeout vs security
curve seems obvious: surely, it’s a monotonically decreasing
curve! In practice, where humans act according to flawed
belief systems, interact with other humans and other sys-
tems, work toward achieving many competing goals, and
are plagued by human deficiencies, we find the resulting
curve can often be counter-intuitive. Indeed, in a recently
compiled corpus of circumvention scenarios we’ve collected,
we’ve observed many examples of such uncanny descents
[20].

Regarding the challenges of the timeout problem, con-
sider the following anecdote. In a large hospital, clinicians
frequently left shared computers logged-in but unattended
[5]. Security officers, concerned about inappropriate access
and inadvertent modification of patient data, opted to at-
tach proximity sensors to the machines in an effort to miti-
gate these risks. These sensors detected when users had left
terminals logged-in but unattended for some fixed timeout
threshold. When such an event was detected, the logged-in
user was automatically logged out of the machine. Clinician
reception of these proximity sensors startled security offi-
cers. Clinicians, annoyed with the system, which was an im-
pediment to doing actual work, placed styrofoam cups over
the proximity sensors, which effectively tricked the proxim-
ity sensors into believing clinicians were nearby when they
were not. The proximity sensors were an absolute failure.
Resources had been spent with the goal of improving se-
curity, but doing so yielded no security gains; instead, it
was utterly defeated and it probably created a greater rift
between clinicians and security personnel, making future se-
curity challenges even more difficult to address.

This anecdote highlights that it is essential to find solu-
tions that make sense in the context of enterprise workflow–
solutions that can be successfully adopted by users whilst
realizing security objectives without sabotaging other ob-
jectives.

So, how do we arrive at these solutions? It is usually im-
practical for security personnel to test out different security
approaches within existing enterprises. Even if it is feasible,
doing so often involves, at the minimum, substantial time,
implementation costs, maintenance costs, and depletion of a
finite user compliance budget [21]. We contend that multi-
agent simulations may help distinguish good solutions from
bad ones by predicting stress points of candidate implemen-
tations, thereby suggesting foci to improve upon. However,
we are not suggesting that agent-based modeling is some
magical panacea that can be used to address all security
problems. It has its limits; it is nigh impossible to predict
the unprecedented. Instead of trying to predict inventive
workarounds such as the placement of styrofoam cups over
proximity sensors, we aim to gauge user inclination to cir-
cumvent.

We can estimate the risk from user circumvention in terms
of motive, opportunity and potential harm. First, motive
stems from the frequency of workers leaving and returning to
shared workstations, where the time taken to log in becomes
a significant drain when summed over many instances. Sec-
ond, opportunity also arises from the shared environment,
where workers might remain logged in to avoid these costs,
or use another’s credentials, inadvertently or not. Third,
the potential harm comes from the nature of the task, since
medication prescriptions or notes of delivery may then be
ascribed to the wrong patient.

Using simulation, we can explore the relevant factors that
affect security risks associated with a clinician using a ter-
minal to which another clinician is logged in. The likelihood
of risk is affected by the number of agents, the number of
workstations, group attitudes towards security and circum-
vention, and the dynamic nature of tasks; the actual risk
is affected by the kinds of tasks performed. Simulations
allow us to compare how burdensome different kinds of so-
lutions are on users. For example, we might compare an
auto-logout solution to a solution involving authentication
challenges after a period of inactivity, which may slightly
reduce the burden of having to log back in to a service; or,
we could detect tasks that are disparate from the current
task and warn the user that they may be using a terminal
to which someone else is logged in. For some tasks, it may
be possible to predict whether the worker must return to



complete her session, and to apply different policies based
on this prediction.

Last, while we mentioned the timeout problem in the
medical setting, there are numerous other scenarios where
auto-logouts may be relevant. And, we believe modeling
approaches could be developed for them as well.

5. CONCLUSION
We have discussed our work toward building an agent-

based model for a password management scenario. While
validation is a challenge, we have made first steps toward
building a useful cognitive behavioral agent-based model
for password circumventions; we’ve also performed trials
that have generated what we believe to be interesting and
perhaps even counter-intuitive results. For example, under
certain assumptions, making password composition require-
ments more stringent may actually lead to a decrease in
aggregate security. As another example, allowing users to
write down passwords may actually improve security by re-
ducing the likelihood of password reuse and reuse attacks.
Password management is just one of many areas where we
believe cognitive behavioral agent-based models can serve as
a useful tool. In Smith et al [20], we observed a pattern of
policy choices at one site counter-intuitively affecting secu-
rity at other sites. Applying agent-based modeling to these
sorts of scenarios and others, such as those mentioned in 4
may provide useful insights that are otherwise difficult to
attain.
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