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Abstract—ICC profiles are widely used to provide faithful
digital color reproduction across a variety of devices, such as
monitors, printers, and cameras. In this paper, we document
our efforts on reviewing and identifying security issues with
the calculatorElement description from the recent iccMAX
specification (ICC.2:2019), which expands upon the ICC v4
specification (ICC.1:2010). The iccMAX calculatorElement,
which captures a calculator function through a stack-based
computational approach, was designed with security in mind.
We analyzed the iccMAX calculatorElement using a variety
of approaches that utilized: the proof assistant PVS, the
theorem-proving language ACL2, the data description language
DaeDaLus, and tools tied to the data description language
Parsley. Bringing the tools of formal data description, theorem
proving, and static analysis to a non-trivial real-world specifi-
cation has shed light on both the tools and the specification.
This exercise has led us to discover numerous bugs within the
specification, to identify specification improvements, to identify
flaws with a demo implementation, and to recognize ways that
we can improve our own tools. Additionally, this particular
case study has broader implications for those who work with
specification, data description languages, and parsers. In this
paper, we document our work on this exercise and relay our
key findings.

Keywords-LangSec; data description languages; formal meth-
ods; static analysis; parser; specification; iccMAX;

I. INTRODUCTION

The International Color Consortium (ICC) has worked on
developing and refining the ICC profile, a color management
format that provides cross-platform color consistency, since
1993 [7]. In 2019, a specification for the iccMAX profile [9],
an extension to ICC v4 [8], was released. Previous iterations
of the ICC profile are widely used, appearing in many
modern devices, such as monitors, printers, and scanners;
however, given that the iccMAX profile is still relatively
new, it has yet to see significant deployment, which provides
additional opportunity to review the specification before
widespread adoption. Thus, under the DARPA SafeDocs
project [5]—a project that aims to deliver tools that fa-
cilitate safe and verified parsing for extant and new data
formats and protocols—we were tasked with reviewing the
iccMAX calculatorElement description and identifying any
security issues associated with that description. The calcu-
latorElement was chosen because it has a computational

interpretation as a stack machine program with security
implications. Indeed, a 2020 ICC whitepaper [11] cites
security and predictability as foci during the design of the
iccMAX calculatorElement, and it provides notes on how to
properly parse, validate, and apply a calculatorElement to
achieve these aims. The purpose of the security evaluation
presented in this paper was to provide suggestions on how
the specification could be amended to better achieve these
security and predictability goals—and it entailed: identifying
potential unintended computational capabilities; ensuring the
consistency of the calculatorElement description; checking
for ambiguities and typos; suggesting improvements that
would make the specification more amenable to secure
parser implementations; and evaluating a provided demo
implementation. In addition to reading the relevant parts of
the specification, we used a variety of approaches and tools
to capture and analyze the specification. In this paper, we
document these efforts and present our findings.

Some appreciation of why this work is important can be
found in the recently discovered vulnerabilities in parsers
developed for ICC profiles. In 2021 alone, three CVEs
were found in various implementations of ICC profile
parsers. These vulnerabilities rendered several versions of
Apple’s iOS and Mac OSX operating systems vulnerable
to crafted image attacks [6], [17], [24]. Attackers could
use images containing embedded crafted ICC profiles to
run arbitrary code on a target machine. These sorts of
vulnerabilities often stem from security issues with the
specification or mismatches between the specification and
the parser implementation—the sorts of things that our work
in this paper seeks to address.

This paper presents the collective work of our three teams—
BAE, Galois, and SRI/Dartmouth—on analyzing the icc-
MAX calculatorElement. We applied an assortments of tools
and techniques with the aims of identifying ambiguities and
errors within the specification, suggesting ways in which the
specification could be improved, and showcasing our tools.
These included the proof assistant PVS [25], the theorem-
proving language ACL2 [19], the data description language
DaeDaLus [13], and tools tied to the Parsley data description
language [23] (Parsley itself, Parsley/Rust combinators, and



Table I
KEY FINDINGS OF THIS PAPER

Key Findings Type Techniques used
A Resource Contract for iccMAX Specification improvement Parsley, DaeDaLus
Conditional Operations are Insufficiently Defined Specification correction DaeDaLus, Parsley/Rust
Sub-element Type Mappings Missing Specification correction Parsley/Rust
Operators Missing in Specification Specification correction Parsley, DaeDaLus, Parsley/Rust
Incorrect Sub-element Index Implementation Specification correction Parsley/Rust
Non-numeric Values Allow Parser Differentials Specification improvement DaeDaLus
Minor Errors and Issues Specification correction Parsley, DaeDaLus, ACL2, PVS, Parsley/Rust

a static analyzer). Table I summarizes the errors we found
in the iccMAX specification and demo implementation, as
well as our proposals to improve upon the specification.

Contributions. The work presented here will be of the
greatest value to researchers and practitioners who focus
on specifications, data description languages, and parsers.
To this end, our main contributions can be summarized as
follows:

• We conduct a multi-dimensional case study that uti-
lizes formal methods and parsing tools to analyze the
iccMAX specification.

• We propose augmenting the specification to provide a
complete resource contract for the iccMAX calcula-
torElement, which specifies the required resources to
invoke the calculatorElement.

• We present mitigations for specification errors of vary-
ing severity, and we provide suggestions for improving
the iccMAX specification. Additionally, we demon-
strate the value of applying formal approaches to veri-
fying the correctness of specifications, and we argue for
similar approaches to be employed before specifications
are made public.

• Finally, this case study delivers numerous guiding
principles for the design of other specifications, data
description languages, and parsing methodologies. For
a couple of examples, we argue that parsing should
be limited via buffers and that specifications should
specify operation semantics.

Organization. The remainder of this paper is structured as
follows: Section II serves as a background section; we dis-
cuss the development of the ICC and the the iccMAX profile,
introduce the SafeDocs project, and provide an overview of
the exercise of reviewing the iccMAX calculatorElement.
Section III provides a primer on the iccMAX calculatorEle-
ment, delving into the technical details. In Section IV,
we document the analytical tools and approaches we used.
Section V documents the security issues we found with
iccMAX, as well as improvements to the Parsley language as
a byproduct of this experiment. Section VI provides general
takeaways and Section VII concludes. We hope the paper,
in full, serves as an interesting case study for those who are
interested in seeing how various tools can uncover issues
in a real-world specification that was crafted with care;

however, for those who want only to have a bird’s-eye view
of our work and to understand the takeaways, we recommend
skipping Sections III and IV.

II. BACKGROUND & CONTEXT

This section provides the necessary background context to
understand our work. We provide a brief history of the
International Color Consortium, explain the problem that
ICC profiles aim to solve, discuss the DARPA SafeDocs
project, and provide an overview of our work.

A. A Brief History of the ICC and the ICC Profile

In the early 1990s, new applications involving digital color
processing emerged on open computing environments, no-
tably the web [30]. Traditional industries (e.g., broadcast
television, still photography) that had to deal with color
reproduction were now in a predicament [30]. On the
one hand, they had to work with each other over these
open computing environments, driving a need for an open
standard for digital color reproduction [30]. On the other
hand, dominant companies within these industries stymied
early attempts at the development of an adequate standard,
which were, according to Stokes [30], driven by intellectual
property concerns.

Finally, in 1993, a fledgling organization emerged, one
that would ultimately develop an open standard for dig-
ital color reproduction by “circumvent[ing] the standards
processes” that were so heavily influenced by corporate
processes [30]. This organization was the International Color
Consortium (ICC); it comprised eight industry vendors—
Adobe, Agfa, Apple, Kodak, Microsoft, Silicon Graphics,
Sun Microsystems, and Taligent [33]—that banded together
for the purpose of “creating, promoting and encouraging the
standardization and evolution of an open, vendor-neutral,
cross-platform color management system architecture and
components” [7]. By the following year, this collaborative
effort produced the first ICC profile specification, which was
based on the Apple ColorSync profile [30], [33].

ICC profiles enable seamless and faithful transition of color
data between device operating systems and applications,
providing value to both vendors and users [7]. An ICC
profile captures the color properties of a device, such as
a monitor, printer, scanner, or camera [8]. It does this by
creating a mapping between the device’s color space and a



reference color space called the Profile Connection Space
(PCS) [8]. The PCS effectively serves as the connective
tissue joining source and target devices, alleviating the com-
plexity of having to define direct color mappings between
pairs of devices [8].

The ICC profile specification has continually evolved since
its 1994 debut; the current iteration is the ICC v4 profile [8],
which was released in 2010. More recently, in 2019, the
ICC has developed the iccMAX specification [9], a sig-
nificant extension to ICC v4. We reiterate that iccMAX
does not replace ICC v4, but rather it expands upon it.
Thus, capturing iccMAX’s calculatorElement necessitates
understanding and capturing the relevant parts of the ICC
v4 profile specification. We also note that there have been
corrections to the iccMAX specification since its creation,
which are documented in the cumulative errata list [10].

B. The Design of the iccMAX calculatorElement

In this subsection, we touch on how iccMAX diverges from
previous iterations of the ICC specification, and we present
an overview of a whitepaper outlining secure implementa-
tion notes on the iccMAX calculatorElement. This section
is heavily based on a 2020 ICC whitepaper on securely
implementing the iccMAX calculatorElement [11].

The iccMAX specification expands upon previous ICC ver-
sions by providing profile creators a mechanism to spec-
ify sequences of processing elements for encoding color
transforms. This capability is vital in complex color man-
agement scenarios where achieving reliable color reproduc-
tion requires specifying multi-channel non-linear functions.
Whereas previous ICC specifications employed a lookup-
table–based approach to achieve this task, iccMAX allows
for accurate and precise specification of color transforms
through the calculatorElement. As noted in the whitepaper,
the calculatorElement was very much designed with security
and predictability in mind.

The iccMAX calculatorElement contains a main function
that specifies a sequence of operators to carry out. In
addition to operators, the calculatorElement supports the
use of multiple input, output, and temporary channels, as
well as sub-element invocations, and the reading of CMM
(color management module) environment variables. During
application, the operations are carried out in sequence; they
may put data on the stack, extract data from the stack, or
otherwise modify the stack. Operations may also involve
reading from input channels, writing to output channels,
reading from or writing to temporary channels, reading
CMM environment variables, or invoking sub-elements. A
more thorough description of iccMAX and the iccMAX
calculatorElement can be found in Section III.

The whitepaper provides essential security notes on the
parsing, validation, and application of the calculatorElement:

• Parsing the calculatorElement requires ensuring that
the calculatorElement structure is in conformance with
the iccMAX specification—and ensuring conformity of
substructures as well. Failure to ensure conformance
may introduce memory corruption issues during the
parsing process.

• Validating the calculatorElement involves ensuring that
the application of the main function will be performed
in a safe and secure fashion. As the calculatorElement
revolves around the main function’s operators, most
validation efforts focus on validating the operations by:
ensuring the CMM that invokes the calculatorElement
supports all operations; ensuring the validity of input,
output, and temporary channel accesses; ensuring valid
stack manipulation (e.g., no stack underflow), and en-
suring valid sub-element addressing.

• Application of the calculatorElement should be reliable
and predictable. This is achieved in part by the afore-
mentioned validation process. But runtime requirements
such as correct initialization processes (e.g., the data
stack should initially be empty) and correct operation
behavior in accordance with the specification are also
critical.

C. The DARPA SafeDocs Project

The DARPA SafeDocs project aims to tackle the security
problems that arise from manually written parser code
and from the inherent complexity of data format specifica-
tions [5]. To achieve this end, the SafeDocs project supports
work on three primary fronts: (i) defining the de facto
grammar of data formats used in the wild, (ii) identifying a
useful but simple subset of this grammar that is conducive
to the generation of secure parsers, and (iii) developing tools
for creating secure parsers from grammars [5]. The ultimate
goal of the SafeDocs project is to improve parser security by
providing tools to industry programmers and specification
creators that foster the construction of secure parsers and
specifications.

Under the umbrella of the SafeDocs project, teams have
been working on representing extant and nascent data format
via data description languages. Data description languages
(or DDLs) are high-level languages specially designed to
express data formats and protocols in a manner that elimi-
nates some of the complexity and ambiguity found in written
specifications. Additionally, many DDL toolkits support
conversion of the DDL representation to a parser expressed
in a programming language. The hope is that well-designed,
usable DDLs will enable the production of secure parsers
that users can readily adopt instead of having to craft their
own by hand. In addition, researchers have pursued work that
extends beyond direct DDL work, such as analyzing parsers
in the wild to review specifications, identifying vulnerabilties
in existing specifications and parsers, and automatically



generating parsers from sources such as document object
modules.

The process of reviewing the iccMAX calculatorElement
strongly aligns with the aims of the SafeDocs project in that
it demonstrates how an assortment of SafeDocs tools and
approaches can readily be applied to improving the security
of a recently developed specification description and demo
implementation.

D. The Exercise

While ICC profiles are ubiquitous, the iccMAX specification
is still recent, and iccMAX profiles have not yet achieved
widespread deployment. As such, analyzing the specification
can prove useful in discovering and resolving security issues
at a relatively early stage. With this intent, we carried out the
exercise of analyzing the iccMAX specification. In particu-
lar, the primary goal of the exercise was to ensure that the
specification was written in a manner such that the security
and predictability aims documented in the aforementioned
whitepaper [11] (see Section II-B) could be met.

The work presented in this paper covers the cumulative
efforts of our three teams—the BAE team, the Galois team,
and the SRI/Dartmouth team—to analyze the iccMAX calcu-
latorElement in 2021. Although there was some communica-
tion between the teams, for the most part, our teams worked
separately on reviewing and analyzing the specification. The
general approach involved each team applying their tools
with the aim of identifying as many security issues as
possible.

Our teams utilized an assortment of tools and approaches.
We used data description languages, parser combinators,
and a static analyzer to capture the relevant portions of
the specification and to evaluate how well iccMAX files
conform to the specification with the aim of comparing
the de facto grammar to the actual specification grammar.
We used proof checking systems to identify flaws in the
specification. And, of course, we reviewed the specification
directly. Collectively, our efforts have uncovered security
bugs, produced proposals for specification improvements,
and suggested ways to improve our own tools.

III. THE ICCMAX CALCULATORELEMENT

This section provides the requisite information to understand
the technical details of the iccMAX calculator element and
the higher-level parsing of the the iccMAX profile for
accessing its calculator elements.

The iccMAX profile has a sort of compositional quality. At
the top level, the iccMAX profile comprises three parts: a
profile header, a tag table that contains entries pointing to
sub-elements, and tagged element data wherein those sub-
elements live. Many sub-elements can, in similar fashion, be
recursively deconstructed to expose lower-level structures.
We will take you along the path from the top-level view of

Table II
SHORTHAND SPECIFICATION REFERENCING NOTATION

Notation Description
(iccMAX-Clause-C) clause C of iccMAX [9]
(iccMAX-Figure-F) figure F of iccMAX [9]
(iccMAX-Table-T) table T of iccMAX [9]
(ICCv4-Clause-C) clause C of ICC v4 [8]
(ICCv4-Figure-F) figure F of ICC v4 [8]
(ICCv4-Table-T) table T of ICC v4 [8]

the iccMAX profile down to the calculatorElement, and then
we will present the calculatorElement itself.

A. Preliminaries

This subsection provides preliminary notes and notation
to help the reader process the upcoming presentation of
iccMAX and the iccMAX calculatorElement.

We developed shorthand notation for referring to the specifi-
cation. This shorthand notation is explained in Table II. The
second column of the table contains the names of types used
in the specification, and the third and fourth columns briefly
describe the types and provide pointers to where further
information about the types can be found in the specification
respectively. The first column specifies the names that we
use in this paper to refer to those same types.

As noted, the iccMAX specification builds upon ICC v4 [8].
The relevant types are presented in Table III.

We also note that both the ICC v4 and iccMAX specifica-
tions exclusively use the big-endian byte order.

B. The Profile Structure

The iccMAX profile structure (iccMAX-Clause-7) exists at
the top level and comprises three parts. This structure is
captured pictorially in Figure 1. Our focus is solely on
validating the calculator element so the profile structure and
other high-level structures are only relevant insomuch as
they allow us to access calculator elements.

The first part of the profile structure, the iccMAX profile
header, is made up of multi-byte fields, each of which
is between 4 and 16 bytes. They specify the profile size,
version information, device information, and so forth. The
iccMAX profile header is out of scope for our work, which
focuses primarily on the calculator element.

The second part, the tag table, begins with a 4-byte value
called tag count that is referred to simply as n in the context
of this portion of this specification. This is followed by
a series of tag entries. These tag entries specify tag data
elements in the third part, the tagged element data. Each tag
entry contains a 4-byte tag signature, followed by a 4-byte
offset to the beginning of the tag data element (encoded as
a UInt32) relative to the beginning of the profile header,
followed by a 4-byte tag data element size (encoded as a
UInt32).



Table III
ICC TYPES

Our Notation Specification Notation Description Specification Reference

UInt8 uInt8Number an unsigned 8-bit integer (ICCv4-Clause-4.13)
UInt16 uInt16Number an unsigned 16-bit integer (ICCv4-Clause-4.10)
UInt32 uInt32Number an unsigned 32-bit integer (ICCv4-Clause-4.11)
UInt64 uInt64Number an unsigned 64-bit integer (ICCv4-Clause-4.12)
Float32 float32Number a 32-bit floating-point number (ICCv4-Clause-4.3)
positionNumber/posNum positionNumber an 8-byte field containing a UInt32 offset

followed by UInt32 size
(ICCv4-Table-2) in (ICCv4-Clause-4.4)

Figure 1. The profile structure, recreation of (iccMAX-Figure-5).

The third and final part of the profile structure is the tagged
element data. The tagged element data comprises the tag
data elements to which the tag entries correspond.

The specification also notes that:

• all profile data is encoded using the big-endian byte
order

• the first tagged element immediately follows the table
• all tagged element data shall be padded to reach a 4-

byte boundary—and this padding must not exceed three
bytes.

• all pad bytes must be the NULL character.

C. Tags & Tag Types

We restrict our focus to public tags. Each tag has a unique
tag signature, which is used to specify the tag itself. There
is also a set of permitted tag types that may be used for
a tag. The permitted tag types for each tag are specified
by (iccMAX-Clause-9). For example the tag AToB0Tag
has tag signature A2B1, and its permitted tag types are

lutAToBType and multiProcessElementsType.
Each tag data element must have a tag type that is permitted
by the tag specified by the tag signature of the element’s tag
entry. There is more to say about tags—private tags, required
tags, etc.—but these topics are out of scope.

D. The multiProcessElementsType Encoding

The only tag type that we are interested in is the MultiPro-
cessElementsType (MPET) tag type, which is described in
(iccMAX-Clause-10.2.16) as “represent[ing] a colour trans-
form, containing a sequence of processing elements.” For
convenience, we have reproduced (iccMAX-Table-63), which
captures the MPET encoding, in Table IV.

The MPET encoding begins with four bytes, representing the
‘mpet’ type signature, followed by four bytes of zeros. The
following two fields are of type UInt16 and correspond to the
number of input and output channels respectively. The field
that follows is of type UInt32, and it captures the number of
processing elements contained within the structure. This is
immediately followed by a process element positions table,
which specifies, for each processing element, the offset of
the processing element (relative to the start of the MPET tag)
and the size of the processing element via a positionNumber
type. Last, we have the data area, which is where the actual
processing elements live.

The processing elements should be processed in the exact
same order as they appear within the processing elements
position table. They are processed in series, strung to-
gether by the input and output provided via input and
output channels. Specifically, the output channels for a given
processing element should match the input channels for
the subsequent element. Additionally, the number of input
channels specified in the MPET encoding should match that
of the first processing element—and the number of output
channels specified in the MPET encoding should match that
of the last element.

There are also a number of other constraints and notes
regarding the MPET encoding:

• There must be at least one processing element (i.e., N
must be at least 1).

• Each processing element must end on a 4-byte bound-
ary or be followed by up to three 00h pad bytes to



Table IV
MULTIPROCESSELEMENTSTYPE ENCODING

REPRODUCTION OF (iccMAX-Table-63) WITH ENTRY FOR BYTE POSITIONS COLUMN FIXED ON PENULTIMATE ROW.

Byte Positions Field Length (Bytes) Content Encoded as...
0...3 4 ‘mpet’ (6D706574h) type signature
4...7 4 Reserved, shall be 0
8...9 2 Number of input channels (f) UInt16
10...11 2 Number of output channels (T) UInt16
12...15 4 Number of processing elements (N) UInt32
16...16+8N-1 8 Process element positions table Array of positionNumber
16+8N...end Data

reach a 4-byte boundary.
• The processing elements needn’t be mutually exclusive;

data may be shared between them.

The multipleProcessElementsType may contain the process-
ing elements specified in (iccMAX-Clause-11). However, the
only element of interest to us is the calculatorElement.

E. The calculatorElement

The iccMAX calculatorElement is captured pictorially in
Figure 2 and as a table in Table V. It contains a main
function, encoded in Table VI, which contains a sequence
of operations that use Reverse Polish Notation that are
processed using a stack machine.1

The calculatorElement supports input channels, output chan-
nels, and temporary channel storage. This temporary channel
storage is effectively additional storage that may be used
within the calculatorElement, though it may not be passed
between MPET elements, including MPET sub-elements.
Data may be stored within the temporary or output channels.
Temporary channel data is assumed to be initialized to
zero during every invocation of a calculatorElement or sub-
calculator element. Similarly, output channels should be set
to zero until data is stored in them by the main calculator
function. The specification also states that the maximum
total number of channels—the sum of input channels, output
channels, and temporary channels—is 65,535.

The main function should be validated. Every operation
specified in the main function should be valid. Channel
indexing should be valid. And the stack should never un-
derflow or overflow. The amount of reserved storage for the
stack must also be able to hold at least 65,535 values.
1) The calculatorElement Operations: The operations of the
calculator are essentially instructions for a stack machine—
i.e., they involve retrieving data from the stack and placing
data on the stack. In addition to real values, non-real
numbers—+INF, -INF, and NaN—may be placed on the
stack. Independent of the specific values on the stack and
whether or not those values are real values, the number of

1For example, 1 2 + 3 − in Reverse Polish Notation is the same as
(1 + 2) − 3 in infix notation. This expression evaluates to 0 when the
integers are expressed in decimal representation. For a primer on Reverse
Polish Notation, see [34].

stack values consumed and produced by a given operation
must be in accordance with the description of the operation
in the specification.

The iccMAX calculatorElement operations have been clearly
designed for quick validation and the prevention of arbitrary
control flow. As a result, there are no looping or recursive
control structures, but there is an invocation mechanism
similar to a function call. However, validation is made more
complicated by the choice to allow different branches of con-
ditionals to have different effects on the operand stack. This
choice differs from the choice made in WebAssembly [26],
which has a similar stack machine and a similar design goal
for quick validation.

These stack operations are encoded using eight bytes: a four-
byte signature followed by four bytes of data. The operations
are grouped into the following types: floating point constant
operations, channel vector operations, CMM environment
variable operations, sub-element invocation operations, stack
operations, matrix operations, sequence functional opera-
tions, function vector operations, and conditional operations.
Below, we cover a subset of these operation classes, as well
as a few actual operations.

Floating Point Operation (iccMAX-Clause-11.2.1.2). The
floating point constant operation (Table VII) takes a supplied
Float32 and pushes it onto the stack.

Channel Vector Operations (iccMAX-Clause-11.2.1.3).
The channel vector operations provide a communication
pathway between the different channels—input, output, and
temporary channels—and the evaluation stack. Table VIII
captures the encoding of a channel vector operation. Ta-
ble IX describes each of these channel vector operation
signatures.

The CMM Environment Variable Operation (iccMAX-
Clause-11.2.1.4). Recall that the PCS is a reference color
space. The actual conversion of color information between
the device and the PCS is done via a CMM (color manage-
ment module) (ICCv4-Clause-0.6). The CMM environment
variable operation is used to push a CMM environment
variable onto the stack.

Sub-Element Invocation Operations (iccMAX-Clause-
11.2.1.5). Sub-element invocation operations provide a



Figure 2. The calculatorElement and calculatorElement Function encodings. Corresponds to the descriptions in (iccMAX-Clause-11.2.1.1)).

Table V
CALCULATORELEMENT ENCODING

REPRODUCTION OF (iccMAX-Table-85).

Byte Positions Field Length (Bytes) Content Encoded as...
0...3 4 ‘calc’ (63616C63h) type signature
4...7 4 Reserved, shall be 0
8...9 2 Number of input channels (P) UInt16
10...11 2 Number of output channels (Q) UInt16
12...15 4 Number of sub-elements (E) UInt32
16...23 8 Main function position positionNumber
24...24+8*E-1 8*E Sub-element positions Array of positionNumber
24+8*E...end Data for calculator element

Table VI
CALCULATORELEMENT FUNCTION ENCODING

REPRODUCTION OF (iccMAX-Table-86).

Byte Positions Byte Length Content Encoding
0...3 4 ‘func’ (66756e63h)

type signature
4...7 4 Reserved, shall be 0
8...11 2 Number of opera-

tions (N)
UInt32

12...12+8N-1 8N Function operations

Table VII
FLOATING POINT CONSTANT OPERATION ENCODING

REPRODUCTION OF (iccMAX-Table-87).

Byte Positions Byte Length Content Encoding
0...3 4 ‘data’ (64617461h)
4...7 4 # to put on stack Float32

mechanism for calling other, separate processing elements
during calculatorElement operation. This is achieved by a
clever utilization of the stack as a communication medium.
The input channels for the sub-element correspond to the
state of the evaluation stack before the invocation, and the
output channels are used to reconstruct the stack after the
invocation. Table X provides the encoding for sub-element

Table VIII
CHANNEL VECTOR OPERATION ENCODING

REPRODUCTION OF (iccMAX-Table-88).

Byte Positions Byte Length Content Encoding
0...3 4 Operation signature
4...5 2 Starting index (S) UInt16
6...7 2 Additional count

from start (T)
UInt16

invocation operations and Table XI describes each sub-
element invocation operation.

Stack Operations (iccMAX-Clause-11.2.1.6).
The stack operations are limited to stack manipulation; they
do not involve reading from or writing to channels. They
involve operations like copy, which is used to duplicate
stack elements, and flip, which is used to reverse the
ordering of some of the topmost elements on the stack. The
encoding for stack operations is provided in Table XII and
descriptions of the operations are provided in Table XIII

Matrix Operations (iccMAX-Clause-11.2.1.7).
The matrix operations involve specifying a matrix (or a
matrix equation) using the topmost values on the stack,



Table IX
CHANNEL VECTOR OPERATIONS BY SIGNATURE

REPRODUCTION OF (iccMAX-Table-89).

Op. Sig. Stack Args. Op. Defn. Stack Results
‘in ’
(696e2020h)

None Load from input
pixel channel
number S through
S+T

in[S]...in[S+T]

‘out ’
(6f757420h)

A0...AT Store to output
pixel channel
number S through
S+T. Thus:
out[S]=A0, ...,
out[S+T]=AT

None

‘tget’
(74676574h)

None Get temporary
channels S
through S+T

temp[S]...temp[T]

‘tput’
(74707574h)

A0...T Put temporary
channels S+T
through S. Thus:
temp[S]=A0, ....,
temp[S+T]=AT

None

‘tsav’
(74736176h)

0...T Saves arguments
on stack as
temporary
channels S+T
through S
without affecting
arguments on
the stack. Thus:
temp[S]=0, ...,
temp[S+T]=T

0,...AT

Table X
SUB-ELEMENT INVOCATION OPERATION ENCODING

REPRODUCTION OF (iccMAX-Table-93).

Byte Positions Byte Length Content Encoding
0...3 4 Operation signature
4...7 4 Element index UInt32

performing some computation using those values, and then
saving the result back onto the stack. The two matrix
operations correspond to solving a matrix vector equation
and transposing a matrix.

Sequence Functional Operations (iccMAX-Clause-
11.2.1.8).
The sequence functional operations work by specifying a
sequence of values at the top of the stack and then applying a
function to those values, saving the result onto the stack. The
operations correspond to computing the sum, the product,
the minimum value, the maximum value, the logical and,
and the logical or of a sequence specified on the stack.

Functional Vector Operations (iccMAX-Clause-11.2.1.9).
There are a large number of functional vector operations
that use the values at the top of the stack to specify at
least one vector, potentially alongside other values, and
perform computation using those values; the result of the
computation, which is usually a vector, is saved on the
stack. In addition, there are a few operations for pushing
special values onto the stack: Π, +INF, -INF, and NaN.

Table XI
SUB-ELEMENT INVOCATION OPERATIONS BY SIGNATURE

REPRODUCTION OF (iccMAX-Table-94).

Op. Sig. Stack Args. Op. Defn. Stack Results
‘curv’
(63757276h)

X1...XInput Applies sub-
element (S) as a
curve set

Y1...YOutput

‘mtx’
(6d747820h)

X1...XInput Applies sub-
element (S) as a
matrix

Y1...YOutput

‘clut’
(636c7574h)

X1...XInput Applies sub-
element (S) as a
CLUT

Y1...YOutput

‘calc’
(636c7574h)

X1...XInput Applies sub-
element (S) as a
calculator

Y1...YOutput

‘tint’
(74696e74h)

X1...XInput Applies sub-
element (S) as a
tint

Y1...YOutput

‘elem’
(656c656dh)

X1...XInput Applies sub-
element (S)

Y1...YOutput

Table XII
STACK OPERATION ENCODING

REPRODUCTION OF (iccMAX-Table-95).

Byte Positions Byte Length Content Encoding
0...3 4 Operation signature
4...5 2 Number of extra ele-

ments selector S
UInt16

6...7 2 Number of extra
times selector T

UInt16

The functional vector operation encoding is provided in
Table XIV and descriptions of a subset of vector operations
is provided in Table XV.

Conditional Operations (iccMAX-Clause-11.2.1.10).
The conditional operations—if and else (which must be
combined with an if operation)—involve comparing the
topmost stack value to 0.5 to generate a truth value (true
if the value is greater and false otherwise) and then using
that truth value to conduct (or skip) a specified number of
operations on the associated operation stream.

Selection Operations (iccMAX-Clause-11.2.1.11).
Last, the selection operations (sel, case, and dflt) are
used in conjunction to specify a selection seqeunce that
uses the topmost value on the stack to choose specify one
of potentially several sequences of operations to carry out.
Similar to the conditional operations, these allow for the
specification of different branches of operations to perform
based on the topmost stack value.

F. A Motivating Example

We use a motivating example of a calculator element repre-
sented by the hex-coded string below. Spaces and line breaks
have been inserted for readability, but otherwise the input
shown is a string of bytes where each byte is represented
by two hexadecimal digits.

The breakdown of the format is shown in Figure 3. The



Table XIII
STACK OPERATIONS BY SIGNATURE

REPRODUCTION OF (iccMAX-Table-94).

Op. Sig. Stack Args. Op. Defn. Stack Results
‘copy’
(636f7079h)

A0...AS Duplicate top
S+1 elements
T+1 times (stack
results shown for
T=0)

A0...AS A0...AS

‘rotl’
(726f746ch)

A0...AS Rotate left top
S+1 elements
T+1 positions
on stack (stack
results shown for
T=0)

A1...AS A0

‘rotr’
(726f7472h)

A0...AS Rotate right top
S+1 elements
T+1 positions
on stack (stack
results shown for
T=0)

AS A0...AS-1

‘posd’
(706f7364h)

AS...A0 Duplicate the
element at the
Sth position from
top of stack
T+1 times (stack
results shown for
T=0)

AS...A0 AS

‘flip’
(666c6970h)

A0...AS+1 Reverse the top
S+1 elements on
the stack (T shall
be zero)

AS+1...A0

‘pop’
(706f7020h)

A0...AS Remove top S+1
elements on the
stack (T shall be
zero)

Table XIV
FUNCTIONAL VECTOR OPERATION ENCODING

REPRODUCTION OF (iccMAX-Table-101).

Byte Positions Byte Length Content Encoding
0...3 4 Operation signature
4...5 2 Vector index selector

S
UInt16

6...7 2 Reserved, shall be 0

string starts with a tag which is the ASCII representation of
‘calc’. The ‘Reserved’ bytes must be zeros. The P field is the
number of input channels, the Q field is the number of output
channels, and the E field is the number of sub-elements.
All three fields are unsigned 32-bit integers. The calculator
element takes three inputs and writes three outputs. The next

63616C63 00000000 0003 0003
00000000 00000018 0000003c
66756e63 00000000 00000006
696e2020 00000002
64617461 3f800000
64617461 3f800000
64617461 3f800000
61646420 00020000
6f757420 00000002

Table XV
A SUBSET OF FUNCTIONAL VECTOR OPERATIONS BY SIGNATURE

REPRODUCTION OF (iccMAX-Table-102).

Op. Sig. Stack Args. Op. Defn. Stack Results
‘pi’
(70692020h)

None Mathematical
value Π (S shall
be zero)

Π

‘+INF’
(2b494e46h)

None Floating point
value for positive
infinity (S shall
be zero)

+INF

‘-INF’
(2d494e46h)

None Floating point
value for negative
infinity (S shall
be zero)

-INF

‘NaN’
(4e614e20h)

None Floating point
value for “Not a
Number” (S shall
be zero)

NaN

‘add’
(61646420h)

X0...XS
Y0...YS

Zi = Xi Yi (for
i=0...S)

Z0...ZS

Table 85 63616C63 (‘calc’)
Reserved 00000000
P 0003
Q 0003
E 00000000
Main position/size 000000180000003c

Table 86 66756e63 (‘func’)
Reserved 00000000
N 00000006 (6)
Table 88, 89 696e2020 (‘in ’)
S 0000
T 0002

Table 87 64617461 (‘data’)
Datum 3f800000

Table 87 64617461 (‘data’)
Datum 3f800000

Table 87 64617461 (‘data’)
Datum 3f800000

Table 101, 102 61646420 (‘add ’)
S 0002
Reserved 0000

Table 88, 89 6f757420 (‘out ’)
S 0000
T 0002

Figure 3. An Example iccMAX Calculator Element

field is an unsigned 64-bit integer representing the position
of the main code for the calculator element. Since there are
no sub-elements, the Main position is immediately followed
by the Main code which is a func element. It has six
operations: an in operation that loads three values (in[S],
in[S+1], in[S+2]) from the input channels onto the stack,
followed by three data operations that each push a single
32-bit floating point constant onto the stack, followed by
an add operaton that performs a pointwise addition of the
floating point constants to each of the inputs. The final step
is an out operation that moves the three values on the stack
resulting from the add operation to the output channels
(out[S], out[S+1], out[s+2]). The output channel values are
eventually pushed to the caller’s stack for further processing.



IV. ANALYTICAL TOOLS & APPROACHES

Our teams—BAE, Galois, SRI/Dartmouth—used a variety
of approaches and tools to analyze the iccMAX specifica-
tion, including the proof assistant PVS [25], the theorem-
proving language ACL2 [19], the data description language
DaeDaLus [13], and tools tied to the data description lan-
guage Parsley [23] (Parsley itself, Parsley/Rust combinators,
and a static analyzer). This exercise and all its parts—the
diverse expertise of our teams, the complementary nature
of these instruments, and the fact that applying these in-
struments necessitated a close read of the specification—
led to the discovery of numerous findings, which are dis-
cussed in Section V. We communicated these findings to
the International Color Consortium via Peter Wyatt as an
intermediary. In the following subsections, we introduce
these instruments and briefly explain how we used them to
analyze the iccMAX calculatorElement.

A. PVS

SRI’s Prototype Verification System (PVS) [25] is an inter-
active proof assistant for mathematical and computational
formalization. It has been used extensively for large-scale
formal verification projects spanning hardware processor
correctness, compilers, distributed systems, and air-traffic
collision detection and resolution algorithms. PVS is pri-
marily used for defining and analyzing mathematical models
in higher-order logic. In many cases, these models are
executable as functional programs, and PVS can be used to
generate efficient code directly from the models. We used
PVS to formalize a recursive descent parser/analyzer for the
iccMAX calculatorElement. The exercise revealed a number
of issues in the iccMAX specification.

The parser is written in terms of three functions:
parsecalc, parsefunc, and parseOperation. The
parsecalc operation parses a window w within string
s for a calculator element (iccMAX-Clause-85) to return
either undefined, signaling a parse failure, or a channel
signature consisting of a pair of input and output channel
sizes. The parsecalc opertion is invoked recursively on
the sub-elements. The window consists of a pair of unsigned
32-bit integers startpos and endpos. The size of the
window endpos − startpos must be at least 24 bytes to
accomodate

1) The 2-byte tag
2) The 4-byte reserved word
3) The 2-byte fields P and Q representing the number of

input and output channels, respectively
4) The 4-byte E field representing the number of sub-

elements, and
5) The 8-byte integer M representing the position and size

of the main function element.

The parsefunc operation parses the main function com-

ponent (iccMAX-Clause-86) of the calculator element within
a window w of the input string s with respect to a sub-
element signature table mapping sub-element positions to the
input/output channel signature, i.e., the number of input and
output channels. The parsefunc operation reads the tag,
the reserved unsigned 32-bit parameter S, and the unsigned
32-bit number N representing the number of operations. The
sub-element signature is a map from possible offset positions
in the calculator element to the sub-element definitions. The
parsefunc operation applies parseOperation over
the window consisting of the start position at the current start
position offset by 12 bytes, and the end position offset by
8N bytes from the start of the window. The PVS definition
of parsefunc is shown in Figure 4. The definitions
of parsecalc and parseOperation are similar, but
longer.

The parseOperation operation is invoked on the body
of a function to parse the instructions or operations in the
body. In addition to the input string, window, and the sub-
element signature, this operation takes two additional argu-
ments representing the minimum and maximum sizes of the
incoming stack. These are used to ensure that an operation
does not underflow or overflow the stack. The classes of
operations parsed include data (iccMAX-Clause-87), channel
vector operations (iccMAX-Clause-88,89), environment vari-
able operation (iccMAX-Clause-90,91), sub-element invo-
cations (iccMAX-Clause-93,94), stack operations (iccMAX-
Clause-95,96), matrix operations (iccMAX-Clause-97,98),
sequence functional operations (iccMAX-Clause-99,100),
functional vector operations (iccMAX-Clause-101,102), and
conditional operations (iccMAX-Clause-103,104). The selec-
tion operation (iccMAX-Clause-105,106) was omitted from
the specification. For each operation, parseOperation
checks for the absence of stack underflow and overflow,
and computes the outgoing minimum/maximum stack size
to be used by the succeeding operation. The primary reason
for minimum/maximum bounds on the stack size is the
asymmetry in the conditional expressions where one branch
can consume and produce a different number of stack
elements than the other branch. We did not check the validity
of channel accesses, though this could easily be added to the
specification.

The PVS specification was checked for numeric over-
flow/underflow, termination, and type correctness. Since the
parsing operations are themselves specifications, no specific
properties were verified on these specifications. Executable
parsing code was generated from the PVS specification in
both Common Lisp and C. Once the calculator element is
given an operational semantics, it will be possible to verify
that the minimum/maximum stack size bounds are in fact
valid. The formalization of the specification in PVS high-
lighted several issues with the standard, most of which were
typos and missing checks. We validated all the sub-element



positions and sizes extensively to ensure that references and
buffers were valid. This led to over 200 proof obligations,
most of which are trivially proved.

parsefunc((stackLimit: uint64 | 65535 <= stackLimit),

s: bytestring,

subelemsig: [uint32 -> signature],

w: window(s`length)
) : goodresult(stackLimit) =

(LET endpos = w`endpos,
startpos = w`startpos
IN
(IF endpos < 12
THEN error(UnexpectedEOF, startpos, 0)
ELSIF endpos - 12 <= startpos

THEN error(UnexpectedEOF, startpos, 0)
ELSE
(LET cur = startpos,

tag = readU32(s, cur),

S = readU32(s, cur + 4),
N = readU32(s, cur + 8),
B: uint32 = startpos + 12

IN IF N > u32div(endpos - B, 8)
THEN error(UnexpectedEOF, startpos, 0)
ELSE
LET E = B + (8 * N)
IN IF tag = 0x66756e63

THEN IF S = 0
THEN
IF E <= endpos

THEN
parseOperation(stackLimit,

s,

subelemsig,

0, 0,
w WITH [`endpos := E,

`startpos := B]
)

ELSE error(UnexpectedEOF, startpos, 0)
ENDIF

ELSE error(nonZero, startpos, 0)
ENDIF

ELSE error(badTag, startpos, 0)
ENDIF

ENDIF)
ENDIF))

Figure 4. The Function Element parser in PVS is defined as a function that
reads the input string s, checks the function header (tag, reserved field S,
number of operations N, and the beginning position B), and parses the indi-
vidual operations within the window [B, E] using parseOperations.
The definition is checked for the absence of underflows/overflows, and
out-of-bounds accesses by generating and proving the corresponding proof
obligations.

B. Formalization of Calculator Functions for ACL2 Analysis

After a profile is parsed, we can perform semantic analysis
of calculatorElement operators, checking that no function or
stack requirements described in Section IV-A are violated.
ACL2 (A Computational Logic for Applicative Common
Lisp) is a theorem-proving language based off a subset
of Common Lisp [19], where the user writes functions
and then proofs about those functions, which the ACL2

theorem prover checks are valid. ACL2 theorems can be
considered “contracts,” where the user provides input and
output conditions of a function that the theorem prover
verifies, where theorems about the output are guaranteed
only if the input conditions are met.

We previously analyzed semantic requirements of PDF with
ACL2 and the developed Tower metalanguage [20]. To
analyze the diverse set of PDF objects and functions, we
automatically generated ACL2 functions and theorems (to
reduce human error and save time instead of writing out
repetitive code) from a machine-readable DOM developed
by Peter Wyatt of PDF Association [35]. The Arlington
PDF DOM summarizes the rules in tabular format with
parseable expressions, which can be used as input for the
function generator. Our work on analyzing the iccMAX cal-
culatorElement effectively uses the same approach, wherein
we automatically generate ACL2 functions from a tabular,
machine-readable representation of calculatorElement oper-
ators. Our work on analyzing the iccMAX calculatorElement
effectively uses the same approach, where we automatically
generate ACL2 functions and theorems from a similar tab-
ular, machine-readable representation of calculatorElement
operators.

For iccMAX, we focused on checking a series of calcu-
latorElement operations, which we note fall into specific
patterns. Therefore, the operations can be summarized into
a machine-readable tabular format, and then generate ACL2
functions and proofs from them. The operations should sat-
isfy the stack requirements of no overflow or underflow, and
there should be enough arguments on the stack to perform
each operation. For example, as previously mentioned, the
out(S, T ) operation takes T elements from the stack and
puts them into the output channels, which should not be
allowed if there are less than T elements on the stack. There
has been discussion on whether the standard should require
that the missing elements be filled in as “0” or if the profile
should be classified invalid.

To perform this semantic analysis, we define invariants on
stack size preventing overflow or underflow, preconditions
before we can apply each function, and then apply the series
of operations to an empty stack. To generate the functions,
we summarized the iccMAX operator descriptions, which
were partially natural language, into formalized stack pre-
conditions and stack effects.

Table XVI shows an excerpt of the iccMAX calculatorEle-
ment Operation XML.2 For functions with identical stack
requirements and effect, we combined them into a single
line in the table. We use the same argument naming as
the standard where the first argument of an operation is “s”

2The iccMAX report prepared by Peter Wyatt was internal to the
SAFEDOCS program and the ICC working group and has not been made
public as of yet [36].



and second argument is “t”. Based on the convention in the
Arlington PDF DOM, variables are preceded by “@”.

Table XVI
CALCULATORELEMENT OPERATIONS FORMALIZED IN TABULAR FORM

Func
group

#
of
Args

Stack Effect Precondition Funcs

data 1 @stacksize+1 data
in 2 @stacksize+@t in
out 2 @stacksize - @t @stacksize ≥ t out
copy 2 @stacksize +

@t*@s
@stacksize ≥ s copy

rearrange 2 @stacksize ≥ s rotl,
rotr,
flip

We then defined a stack type in ACL2 with a stack size
parameter, constrained to be between 0 and 65,535. Next,
we defined ACL2 functions which operate on the stack and
return the new stack with a potentially updated size.

One ACL2 function is defined per aggregate function, with
an example shown in Figure 5.

(defun stack-<NAME> (function stack)

(if (and
(stack-obj-p stack)

(function-obj-p <function type>)

<Precondition>
)

(stack-obj (<Operation> (stack-obj

->size stack) <stack size change>))

NIL
)

)

Figure 5. ACL2 Template Function Definition for Stack Operations

The stack operation function takes an instance of the func-
tion with arguments entered, as well as a stack, and checks
that the input arguments are of the correct type; it then
checks a precondition, if present, on the number of stack
arguments. If the requirements are satisfied, the function
returns a new stack object with the updated stack size.
Otherwise, the function returns NIL.

Using the table, we filled in the template. For example, the
copy function in ACL2 is shown in Figure 6.

Based on the XML formalization, we generated ACL2
functions with stack effects based on the ICC table by
filling in a template. We then checked supplied calculator
profiles [12] along with fuzzed profiles with known flaws.
We set the stack size to be between 0 and 65,535, so when
the stack size requirement is violated, ACL2 throws an error.
If one of the stack preconditions is violated, the function call
returns NIL instead of a stack.

For example, we passed the following operations into the
ACL2 simulation:

(defun stack-copy(copy-function stack)

(if (and
(stack-obj-p stack)

(function-obj-p copy-function)
(>=

(stack-obj->size stack)

(function-obj->argument1 copy-function)
)

)

(stack-obj

(stack-obj->size stack)

(*
(function-obj->argument1 copy-function)
(function-obj->argument2 copy-function)

)

)

)

NIL
)

)

Figure 6. ACL2 Copy Function Code Snippet

in [0,3]
0 0 0
mul[3]
out [0,4]

As there are only 3 elements on the stack when we attempt to
pop 4 elements off of it, we can expect an error. As expected,
we see the text below, confirming that ACL2 can be used
for semantic analysis of the calculator element operations.

ACL2 !>VALUE (apply-icc-functions

*empty-stack* *func-list2*)

ACL2 Error in TOP-LEVEL:
The guard for the function call
(STACK-OBJ SIZE)
...
is violated by the arguments
in the call (STACK-OBJ -1).

If additional functions are added to the iccMAX calculator
element operators, they can be quickly added or even auto-
matically generated without knowledge of ACL2, which is
the main advantage of the Tower metalanguage and machine-
readable DOM.

C. The DaeDaLus Data Description Language

DaeDaLus [13] is an experimental data description language,
designed to enable format experts to define practical data
formats clearly, completely, and precisely, and to generate
safe and efficient parsers of formats from their definitions.
Over the course of its early development, it has been used
to define representative subsets of a variety of practical data
formats, including both formats related to enterprise docu-
ments (e.g., PDF and JPEG, in addition to iccMAX color
profiles), as well as messages for embedded systems (e.g.,



MAVLink and NITF). It is supported by a range of parsing
algorithms that are implemented as direct interpreters and
code generators that target the C++ or Haskell programming
languages.

To define practical formats, including iccMAX profiles,
DaeDaLus supports a set of features not found in conven-
tional data description languages, such as:

• grammars parameterized on values and other grammars,
used, e.g., to define a reusable parser for parsing n
function operators;

• data-dependent grammars, used, e.g., to define a num-
ber of curve segments given in the profile;

• constructs for capturing the current input and parsing
with respect to a captured input, used, e.g., to parse
grammars at an offset value included in the profile; and

• distinct classes of computation for parsing from an
input and performing computation on a semantic value,
used, e.g., to perform an execution time analysis of a
calculator profile represented as a semantic value (Sec-
tion V-A3) and ensure that semantics of all operations
are well-defined in an interpreter (Section V-B5).

In order to formalize iccMAX in DaeDaLus, we composed
a DaeDaLus specification that formalizes the core structure
of color profiles and a small but representative set of tags,
including tags used to identify calculator elements. We
implemented a parser for calculator elements themselves
by following the working standardization effort given in
prose, interacting with format experts and the reference
specification to define components that seemed to be either
inconsistent or surprising. We defined a validator for cal-
culator elements that attempts to validate the properties of
valid calculator elements described in the working standard;
as a notable variation of the standard, we validated that
alternative control branches in a calculator have the same
effect on their stack because it simplified the definition of the
validator and because we suspected that practical calculator
elements would be designed with the intent of satisfying this
property. The entire validator is implemented as a DaeDaLus
semantic action, returning a result in the parser monad in
order to succinctly fail with an error message upon detecting
unexpected content.

D. Parsley-Based Approaches

We also analyzed the iccMAX calculatorElement by:

• Directly capturing the iccMAX specification in the
Parsley language, which necessitated a deeper under-
standing of specification than reading it alone,

• Using Parsley/Rust combinators to create a parser for
the iccMAX calculatorElement, and

• Developing a static analyzer based on the syntax tree
generated by the parser.

Below, we explain how we utilized each approach.

1) The Parsley Data Definition Language: We used the
Parsley language to capture the iccMAX calculatorElement
with the intent of uncovering issues with the specification.
Additionally, the exercise provided us an opportunity to test
the language and identify ways to improve it.

Parsley [23] is an attribute grammar system extended with a
functional sublanguage to specify any computation that may
be required during parsing. The attribute system includes
inherited attributes to communicate contextual information
to a parse and synthesized attributes to return structured
output information from a parse. The parsing combinators
are based on those in PEG grammars, and specifically em-
ploy an ordered choice combinator to enforce deterministic
parsing. The functional language can be used to compute
and check constraints, and to compute return values. Parsley
treats parsing buffers as first class objects called views, and it
includes combinators to restrict parsing to within the bounds
of given views.

The development of the views feature is motivated by a need
to support frequent adjustment of the cursor—the current
input position being parsed—which is required for parsing
many file formats. For one example use case, there is often
a need to skip over bytes until a magic string is reached,
e.g., the file contents of a PDF file lie between the %PDF-
(or %PDF-x.y) and %%EOF tags. For another, many file
formats specify element addresses via offsets; parsing often
entails temporarily suspending parsing at the current address
to move the cursor to the byte offset of the element so
that it may be parsed—and then returning to the initial
address once that element has been parsed. Cursor control
is especially important for the iccMAX specification as the
iccMAX format specifies many things via offsets and sizes.
Like the PDF format, the iccMAX format contains a tag
table with a list of tag entries, each of which contains a tag,
an offset, and a size. Similarly, the calculatorElement uses
positionNumbers—effectively offsets and sizes—to specify
the location of the main function and all sub-elements of a
given calculator element. For each of these offset-and-size
structures, we define a view—a fragment of the complete
parsing buffer. Parsing is done with respect to a view—
and the cursor must lie within the bounds specified by that
view. The current view can be changed on the fly, but in
many applications, it is useful to invoke a function that
parses a non-terminal or regular expression using a supplied
view. We believe support for views, alongside synthesized
and inherited attributes, make the Parsley toolkit suitable
for creating parsers and generating abstract syntax trees for
iccMAX profiles, among many other real-world formats.

The exercise of capturing the iccMAX calculatorElement
in Parsley not only provided us a deeper understanding of
the relevant portion of the specification; it also allowed us
to test and improve the Parsley language itself. Parsley is,
by design, restrained in its computational capabilities. We



have taken the approach of only implementing features when
a strong need arises. As a consequence of this exercise,
we implemented two new Parsley features, as described in
Section V-C.

2) Parsley/Rust Combinators: We built the Parsley/Rust
parsing library to capture features in the PDF specification.
Subsequently, we have successfully captured the syntax
of the DNS, Mavlink, and RTPS protocols. The library
provides several parsing primitives to capture magic strings,
characters, and integer ranges. In addition, we provide
several combinators to perform complex parsing operations
such as prioritized choice, sequences, alternate sequences,
and star and plus operations.

Parsley/Rust combinators implements the views feature
presented earlier in Section IV-D1. Creating a view
using the Parsley/Rust combinators involves two steps.
First, we create the TransformView structure to specify
a transformation of a view. It follows the syntax
TransformView::new(position, size). We
then call the transform function with an existing view as an
argument.

Internally, views do not create new copies of the entire
buffer. Instead, our Parsley library implements an API to
set the bounds for a view and ensure that the cursor cannot
go beyond these bounds. For every parsing operation, these
checks are enforced on the parsing buffer and the view.

We used this Parsley/Rust toolkit to implement the iccMAX
specification. Closely following Figure 1, we implemented
checks for fields in the iccMAX header and then imple-
mented a parser for the tag table. Next, for each tag entry
in this tag table, we created a view for the tagged element
data using the offset and size provided in the table.

We built a parser for a generic tagged element and the MPET
element. The MPET element parser can be used to extract
the embedded calculator element. The calculatorElement
parser, in turn, uses views to extract the main function
and the specific subelements into separate buffers. Finally,
the calculatorElement parser extracts the operations and
operands in the main function and the subelements. We use
this data from the calculator element to statically analyze an
iccMAX profile.

3) Parsley-Based Static Analyzer: To further analyze the
iccMAX calculatorElement, we implemented and used a
static analyzer in conjunction with the Parsley/Rust parser.
The static analyzer uses the syntax tree produced by the
parser to check the syntax and stack effects of operations.

The iccMAX specification defines a minimum stack size
of 65,535, which must be supported by every iccMAX
implementation. calculatorElement operations may push to
or pop from the stack, yielding concomitant stack constraints
that must be met for the operation to be considered valid.

Additionally, stack overflows and underflows along multiple
paths of calculatorElement functions must be validated.
Underflows occur when we try to pop values from the stack
when the stack does not have sufficient elements. Similarly,
overflows occur when the stack size crosses the stack size
used. Since the prescribed minimum size is 65,535, any
implementation crossing this value can cause overflows on
implementations. The static analyzer performs the requisite
checks to ensure that these specification-imposed stack con-
straints are met.

Each calculator element contains a main function with a
set of operations and sub-elements. Each operation is a 4-
byte operation signature followed by a 4-byte argument.
Depending on the operation, the argument may be split into
2-byte arguments or may be completely ignored.

Sub-elements invocations fall under six predefined operation
signatures. A given calculator element (and the main func-
tion) holds a four-byte index value to help identify the sub-
element. Sub-element operations take this four-byte index
value as an argument. The type defined in the sub-element
definition and the operation signature must match in four of
the six sub-element types.

A given calculator element and each of its sub-elements
define how many input and output channels they use. When
a sub-element is invoked from the main function, we check
the number of input channels used by the sub-element and
pop those many elements from the stack. Similarly, we add
the output channels back to the stack when the sub-element
completes execution.

The iccMAX specification defines several other operations
that manipulate the stack. These operations vary from stack
operations to matrix operations and various mathematical
operations to conditionals. However, most of these oper-
ations are deterministic in the effect they leave on the
stack, and we can compute the size of the stack after each
operation.

Conditionals complicate this process by producing branches.
if conditions can take two paths, whereas sel statements
can take any number of paths. We cannot know which branch
the program must take without inspecting the inputs given
to the calculator element. Tracking every possible branch,
however, is resource-intensive and inefficient.

We treat if, if-else, and sel operations differently.
Instead of tracking all the possible stack sizes after each
branch, we only store the minimum and maximum stack
sizes to check for underflows and overflows. If an if
operation does not have a corresponding else operation,
we store the previous stack size along with the stack size
after the execution of the operations under if.

Similarly, suppose a sel statement does not hold a default
condition. In that case, we compare the stack size before the



sel statement to all the possible stack sizes after various
cases. Eventually, we only track this list’s minimum and
maximum stack sizes.

We used our static analyzer to find several stack over-
flow and underflows in iccMAX files produced using the
DemoIccMAX toolkit. These files were produced by the ICC
working group with malformations to help future iccMAX
implementors test the correctness of their parsers. We were
able to detect the malformations in the given files success-
fully.

V. FINDINGS & PROPOSALS

In the previous section, we discussed different approaches
and tools we used to analyze the iccMAX calculatorElement.
In this section, we present our findings from said analysis,
as summarized in Table I. In particular, we present our
proposal for an iccMAX resource contract, we note some
errors and implementation challenges we discovered in the
iccMAX profile specification, and we document ways that
this exercise has led to improvements in our tools.

A. A Resource Contract for iccMAX

The current multiProcessElementTypes, and the
calculatorElement and its sub-elements, all declare
their expected number of input and output channels directly
in their entry tables or element encodings. Our impression
is that these I/O channel requirements seem to be treated in
the specification as primarily a processing signature, with
a view to ensuring that it is possible to statically check
that there is no stack underflow or overflow and that these
elements can be appropriately sequenced together such that
the output channels of one element can be plugged into the
input channels of the next.

We take the view that the I/O channel signature can also be
viewed as a part of a resource contract of the element: the
element declares the specified number of input and output
channel resources required to perform its computation. Our
core argument in this report is that this resource contract,
although valuable in its current form, is only partial and
incomplete for a given calculator element. We recommend
adjusting the format to have a declaration of a complete
resource contract within the calculatorElement encoding.

Our recommendation may be taken to be in the same vein
as the LangSec approach to data processing, which suggests
using a grammar with the minimum computability power
or expressivity to completely capture the data format under
consideration. We recommend the minimal resource contract
that completely captures all the resources that are used by a
calculator element.

Completing the Resource Contract
The element signature when viewed through a resource
contract lens is incomplete with respect to the following
resources:

1) temporary channels,
2) data stack size, and
3) computation effort, or alternatively, execution cost.

We argue that completing the resource contract imposes min-
imal additional processing requirements, given the validation
step already required by the specification. Indeed, it provides
some valuable benefits.
1) Temporary Channels: Although temporary channels are
subject to the same maximum size limits (65,535) as input
and output channels (iccMAX-Clause-11.2.1.1 - pg. 100),
they do not appear in the declared resource contract. The
temporary channel resources that are actually used by a
calculatorElement can be determined only by examining
the streams of operations invoked by its main function.
Although this examination is easily done as part of the
stack usage validation required by the specification for a
calculatorElement, it would be more uniform to include this
resource amount in the processing signature along with the
input/output channels.

Since it is possible that the operations actually included
in a calculator’s function exceed the element’s declared
input/output channel bounds, the specification requires I/O
channel index bounds checking to be performed as part of
the calculatorElement validation. It would be more uniform
to treat temporary channels as just another declared channel
resource to validate. This argues in favor of including a
temporary channel usage declaration as part of the calcu-
latorElement encoding specified in (iccMAX-Table-85).
2) Data Stack Size: The specified bound for the data stack
size of a calculatorElement is a minimum:

The reserved storage for the data stack shall be for
at least 65 535 values. (iccMAX-Clause-11.2.1.1)

Although requiring a specified minimum bound has some
advantages when emitting calculator operations that perform
small computations, it has also some disadvantages:

• A calculator element performing complex computations
cannot directly declare its requirement for a data stack
larger than the specified minimum. Instead, an imple-
mentation needs to traverse the operation stream of the
calculator function to estimate this stack size.

• Similarly, a calculator element performing very simple
small calculations cannot directly declare that it needs
a data stack smaller than the required minimum. This
may lead to wasted stack resources, especially given
that data stacks are required to be separate for each
calculator element, with no sharing allowed.

Indeed, there is an unusual asymmetry in the power of the
various calculatorElement operations with respect to channel
and stack resources. Any given calculator element cannot
access more than 2*0xFFFF (S+T from (iccMAX-Clause-
89)) channels, regardless of the number of operations in



the element, due to encoding restrictions of the channel
vector operations. Even so, the resource bound for channels
is specified as a maximum. When it comes to their power
with respect to the stack resource, however, the operations
are quite powerful. For example, the copy operation could
increase the stack by large multiples of 0xFFFF in a single
operation, giving even small programs the power to rapidly
grow the stack. This seems incompatible with the specifi-
cation of the stack size as a required minimum, leaving the
maximum bound entirely implementation-defined.
3) Computational Effort or Execution Cost: Programs in
more expressive and general-purpose programming lan-
guages compute intermediate values and inspect them to
determine which sequence of instructions to execute. In
typical programming languages; they also perform iterative
or recursive computations by using looping control flow and
recursively defined functions. Aside from enabling recursive
computations, functions also enable a program to include a
single, abstract definition of a sub-computation that can be
reused in multiple contexts.

iccMAX calculator elements provide a nuanced selection of
such control structures: they include branching constructs
and functions, but they do not include looping constructs—
and functions cannot be defined recursively. The major
consequence of this design feature is that each execution
of a calculator element must eventually complete (which is
typically not true of programs in general-purpose languages).

Assumed Security Goal In many contexts, data (the col-
lection of values used to carry out a computation) is not a
system’s only sensitive resource. The computing time (the
requisite time to carry out the computation) and the available
storage (the space provided for doing the computation) are
sensitive as well. Security attacks which do not necessarily
leak or corrupt the system’s data but do attempt to consume
its available computing time and space (i.e., denial-of-
service (DoS) attacks) are a well-known class of attacks, and
there are many practical and damaging instances of them [4],
[14]–[16], [28], [29]. We assume that the calculatorElement
control operators were designed as described above in order
to ensure that a system that executes a calculator element
is not susceptible to a DoS attack in which the calculator
element exhausts an infinite amount of computing time on
its host system.

Threat to Achievable Security Our read of the specification
is that it achieves the intended security goal, narrowly
defined. However, while it is impossible for a calculator
element to use an infinite amount of time, the specification
still allows for calculator elements that would take a finite
but impractically long amount of time to execute. This goal
seems inconsistent both with the great care that seems to
have been taken to prohibit infinite executions and with
the concrete bound imposed on the amount of space that
a correct implementation must allocate (as discussed in

(iccMAX-Clause-11.2.1.1)). Moreover, there are valid cal-
culator elements whose code is much smaller than the time
required to execute them, as elaborated below.

Potential Revisions to the Specification Two broad types of
adjustments to the specification seem possible:

1) Include an explicit warning that, while all calculator
elements terminate on all executions, users should
beware that they could use an enormous amount of
time to execute.

2) Extend the specification to include a bound on exe-
cution time, along with the provided bound on stack
space.

Under the second option, the open issue is to determine
the units of time in which the bound is to be expressed, in
addition to the bound’s magnitude. A natural option might
seem to be to measure execution time in terms of the size of
the program. However, such bounds would be able to impose
little in practice, due to the fact that calculator elements can
execute in time exponential in the size of the calculator
element itself. Consider the function template below. A
function following this template will execute in a number of
calling contexts that are exponential in the program’s size,
i.e., its execution will yield an exponential number of call
stacks.

f[n]:
call f[n-1];
call f[n-1];
f[n-1]:
...
f[1]:

call f[0];
call f[0];
f[0]:
x:=sqrt(5);
output(x);

...

For any given value of n, the above program executes 2n

sqrt instructions.

A more effective option is to define the time bound in terms
of the number of operations executed during computation.
One variant of this option may involve using the number
of calculatorElement operations executed; this variant is
straightforward to define, although the costs of individual
operations may vary considerably due to the inclusion of
vectorized operations, in which the amount of computation
to be performed is partly determined by the operations’
arguments. Another variant is to define the bound in terms
of individual floating-point operations. In both cases, it is
important to note that even though the time taken to exe-
cute the program is potentially exponential, measuring the
program’s execution time can always be done in linear time



by implementing standard techniques from interprocedural
program analysis [27].

Using our resource contract lens, it would make sense to
include such a computational resource limit as part of the
declared resource contract for the calculatorElement. Indeed,
including this limit as a declared resource would provide
a complete resource contract as part of the processing
signature encoded in the format for every element. The
design of the calculatorElement does make it feasible to
statically compute such a resource bound by associating a
cost metric to each computation step. The static validation
step would then ensure that the declared bounds for every
resource are not exceeded.
4) Benefits of Declaring a Complete Resource Contract:
We have argued that a few minor changes3 to the icc-
MAX format enable the declaration of a complete resource
contract for the calculatorElement. The operations
in a given calculator element can be validated to obey
this declared resource contract in linear time, as part of
the validation step that the iccMAX specification already
requires an implementation to perform.

The benefits of incorporating such a complete resource
contract are:

• Resource-constrained implementations can benefit from
faster and more precise decisions on whether they have
the resources to invoke a given calculator element,
without needing to resort to a validation step to ascer-
tain these bounds. That is, such implementations can
pay the cost of validation for only those elements that
declare resource limits within the resource capacity of
the implementation. This is a big improvement from the
current situation, where such an implementation always
has to perform the validation step merely to ascertain
the stack bound for every calculator element.

• Compartmentalized software [3], [31] and hard-
ware [21], [32] architectures are increasingly common
to address security concerns. A precise and complete
resource contract enables an application to set up pre-
cisely bounded compartments4 for untrusted computa-
tional units.
In particular, platforms equipped with hardware support
for resource compartmentalization could entirely skip
the resource validation step (implemented by possibly
buggy application software) in favor of relying on
(likely less buggy) hardware resource bound enforce-
ment.

3This is assuming a well-defined performance cost-model and a corre-
sponding unit for computation or execution time.

4Execution timers can be used by a runtime executive in the application
to enforce execution time bounds for such compartments.

B. iccMAX Errors & Implementation Challenges

We have uncovered several errors in the specification and
the DemoIccMAX implementation. Additionally, we have
reported several minor typos to the ICC working group. This
section discusses more complex errors and implementation
challenges pertaining to the iccMAX specification and the
DemoIccMAX implementation, as well as a representative
sample of the smaller errors we found.
1) Conditional Operations are Insufficiently Defined: Con-
ditional operations such as if and sel conditions were not
sufficiently described in the specification. These operations
could have nested structures, where a sel operation could
have an if condition or a sel operation embedded in
it. For example, let us consider the following sequence of
operations.

if 5
if 4
pi 0
pi 0
NaN 0
+INF 0

The above operations are syntactically valid. The operations
pi, NaN, and +INF do not take arguments, and these values
are set to 0. The if operation specifies how many operations
are a part of the if block. It was not evident in the
specification that the outer if accounts for every condition
inside, even if it includes nested conditional operations.

We considered an entire if-else block to be just one instruc-
tion in an earlier implementation. However, upon further
discussions with iccMAX experts, we were informed that the
correct interpretation was to consider each operation within
a block to be an instruction. If the inner condition fails, we
eventually only execute one operation, not five. We proposed
better language to the ICC working group to alleviate this
confusion.
2) Sub-element Type Mappings Missing: The iccMAX spec-
ification (iccMAX-Clause-11.2.1.5) uses the following lan-
guage: “The curv, mtx, and clut operators require that the
indexed sub-element has the appropriate type.”. The sub-
element types for each of these operators are not specified in
this text. We proposed adding a mapping for these operators
to sub-element types. Additionally, the calc operator was
missing from the list, even though it should have been
included. The ICC working group has acknowledged these
changes.
3) Operators Missing in Specification: Since the iccMAX
specification and DemoIccMAX implementations are rel-
atively new (released in 2019), we do not have many
open-source implementations and sample data available. The
iccMAX profiles we used to test our implementations were
available as part of the DemoIccMAX implementation.

However, when we ran our parser on these iccMAX profiles,



we found that several of these files used operations that were
not defined in the specification. So we reached out to the
working group to gather descriptions for all these operations
and alert them to the missing specifications.

These operations were the following: fJab, tJab, fLab,
and not. Our Parsley-based static analyzer now models the
stack effects for all of these operations.
4) Incorrect Sub-element Index Implementation: In sec-
tion IV-D3, we described that sub-element indices are a four-
byte value. We can invoke any sub-element by referencing
the index number and the correct operator type.

When we inspected various iccMAX profiles as part of
the DemoIccMAX implementation, we found that several
of these files were malformed. Instead of using a four-
byte index as an argument to the sub-element operations,
the DemoIccMAX implementation converted this argument
to two two-byte arguments where the second argument is
always zero. Any reasonably crafted calculator must not
need more than 65,535 (216 − 1) sub-elements. However,
this DemoIccMAX implementation—an implementation that
treats a four-byte value as two separate two-byte values, one
of which is zero—clearly violates the specification.

Given that extant data has already been produced and
several vendors are building on top of the DemoIccMAX
implementation, the ICC working group has two options:

• First, alter the specification in multiple places. For
example, make sure that the sub-element indices are
always two-byte. The extant files use a four-byte value
in one location and a two-byte value in another, causing
confusion. This change would mean the data files al-
ready produced would violate this specification version.

• Alternatively, second, support both interpretations. We
could try both interpretations of the specification as
disjunctions. If we cannot find the right sub-element
using the correct interpretation, we can try the incorrect
but already shipped interpretation to validate the file. To
the best of our knowledge, the ICC working group is
yet to finalize an approach to address this issue.

5) Non-numeric Values Allow Parser Differentials: Indi-
vidual operations in iccMAX calculator programs compute
over floating-point values, whose definition uses the IEEE
754 [18] standard. While floating-point values are largely
machine representations of the real numbers, they also
include exceptional values, such as positive and negative
infinity (+INF and -INF) and “Not a Number” (NaN), which
arise from exceptional conditions in computation that cannot
be defined over only the reals (e.g., dividing a number by
zero, or attempting to compute the square root of a negative
number). The IEEE 754 standard [18] precisely defines
which exceptional values may arise from computation and
which ones result from computation over non-reals. While
the calculatorElement definition uses the set of exceptional

values from IEEE 754, it leaves the result of computation
on exceptional values to be defined by implementations.

Regarding exceptional values, we believe the intent was to
strike a balance between expressivity and simplicity. By
including exceptional values, it gives an implementation the
freedom to potentially include sensible implementations of
exceptional computations over reals; by leaving the exact
definitions to the implementation, it avoids complicating the
specification itself.

We believe another intended security goal was to allow
implementations to produce different exceptional values as
results on output channels, while ensuring that differences
in final results due to implementation choices are limited
strictly to exceptional values. For example, for a given cal-
culator element and input, one implementation may produce
an output channel [1.0, 2.0, +INF], while another produces
[1.0, 2.0, -INF]. However, it should not be possible for
one implementation to produce [1.0, 2.0, 3.0] while another
produces [4.0, 5.0, 6.0].

Threat to Achievable Security Regarding computation over
exceptional values, we believe the current specification
introduces two possible threats to security. Both threats
could result in the deployment of calculator processors that
produce different results when given the same calculator,
by virtue of either implementation mistakes invited by the
standard or by unintended permissiveness in the standard
itself.

First, by borrowing most but not all of the exceptional
values from IEEE 754 and not necessarily adopting the
standard’s specifications of operations over such values,
the current specification invites errors by calculatorElement
programmers who may note a casual remark regarding IEEE
754 in the specification and incorrectly assume that they can
rely on a faithful adoption of IEEE 754 throughout.

Second, it is possible for execution of a calculator element
to result in output channels that differ in both exceptional
and numeric values when the calculator element is exe-
cuted on different implementations. This can arise in part
when branching on a non-numeric value produced by an
exceptional computation. E.g., when executing the following
pseudo-calculator,

x:=-1.0/0.0;
if x then output(1.0)
else output(2.0)

an implementation that evaluates -1.0/0.0 to NaN would
output 1.0, but an implementation that evaluates -1.0/0.0
to -INF (as specified by IEEE 754) would output 2.0.

Potential Revisions to the Specification. One apparent
possible revision that would both remove surprising behavior
for experienced floating-point programmers and seemingly



remove divergences due to implementation details would be
to specify that floating-point arithmetic shall fully imple-
ment IEEE 754. By referencing IEEE 754 as an external
document, the specification of the calculatorElement itself
would not be further burdened and complicated.

If this revision is not acceptable, perhaps because it is so
strict that it prohibits some desired fast implementation,
we would recommend revising the standard to still prohibit
divergent final results due to implementation choices. This
would also be feasible, though seemingly more complicated
than adopting IEEE 754 directly.
6) Minor Errors and Issues: Our analysis uncovered a
numerous minor but noteworthy errors and issues in the
iccMAX specification. Here, we present a representative
sample of them.

Flip Function
In developing the iccMAX calculator operation XML IV-B,
we identified a typo/inconsistency in the iccMAX standard.
The flip operator, as summarized in the standard (iccMAX-
Table-96) and reproduced in Table XIII is described to
act on S + 1 elements, but the stack arguments and stack
results show that flip is operating on S + 2 elements.
The formalizations of the calculatorElement rules in ACL2
and PVS could not tolerate ambiguity, as the stack effect
expression had to be written as a mathematical formula, and
therefore we were able to catch an inconsistency that was
allowed to be present in the natural language standard.

calculatorElement Function Encoding
The fourth field in the calculatorElement function encoding
corresponds to a sequence of function operations. The spec-
ified field length of 8 is inaccurate; it should be 8N where
N is the number of operations specified in the preceding
field.

Correct but Inconsistent Presentation
While not technically an error, there are places where it
would be reasonable for a reader to expect a norm in presen-
tation, but that expectation is not met. For one example, in
the table comprising a list of the stack operations (iccMAX-
Table-96) (reproduced in Table XIII), the symbols used to
express the stack arguments change for no apparent reason.
While this is not in an error in itself, it very well could
be the source of a specification error or an implementation
error due to a specification designer or parser implementer
having a flawed mental model due to such a description.

C. Parsley Improvements

This exercise has led to the improvement of the Parsley
language.

One goal in developing the Parsley language has been—and
continues to be—to constrain its computational capability
while still being useful. Thus, after developing a small core

set of features, we have been evaluating the necessity of new
features on a case-by-case basis. This exercise has led to the
development of two features.

Our first feature involves the augmentation of the map-views
combinator, which allows for the application of regular
expressions and non-terminals to a list of views. To parse
the iccMAX profile structure, we created a view for every
tag entry in the tag table to process the tagged data elements.
However, we quickly ran into a problem. While we had
a map-views combinator to apply a regular expression or
non-terminal to a list of views, it did not allow us to
specify individual inherited attributes for each view. Thus,
we developed a more flexible variant of the combinator to
address this need.

The second feature of adding support for mutual recursive
functions arose from the approach we were using to validate
some of the calculatorElement operations, e.g., ensuring
stack constraints are met. The general approach involved
tracking how each operation invocation affected existing re-
sources, e.g., elements added to the stack. By doing this, we
could validate the operation constraints in one sweep after
the initial parsing. However, given the existing conditional
operations, we realized that we needed to support mutually
recursive functions to achieve this aim.

VI. TAKEAWAYS

Our case study on the iccMAX calculatorElement, alongside
our experiences with other specifications, have provided
numerous takeaways that are more broadly applicable to in-
dividuals who design specifications, individuals who design
and implement data description languages, and individuals
who develop parsers. This section presents those takeaways.

Format Design Should Incorporate Formal Methods &
Parsing Tools.
The final stages of specification design should incorporate
formal methods and parsing tools to uncover inconsistencies,
bugs, and other issues with the specification prior to release.
The process of applying formal methods (such as PVS [25],
Coq [1], and ACL2 [19]) requires the crystallization of
assumptions made regarding corner cases, bounds checking,
and invariants that are needed to argue about the validity
of data. Data description languages and parser combinator
toolkits provide a machine-readable version of a specifica-
tion with all the necessary validity constraints. As these tools
require a human in the loop, users of these tools must be
well-versed with both the specification and the tool(s) they
are applying.

Specifications Should Explicitly Define Resource Con-
tracts.
Format specifications should provide a mechanism to spec-
ify resource contracts deemed useful by the application
domain, and, moreover, specifications should require that



specification-compliant files clearly specify these contracts.
For example, specifying memory requirements or compu-
tational requirements may be useful in embedded systems.
Such specifications can also reduce parsing overhead and
help in determining, a priori, whether it even makes sense
to attempt the parse, although it may add overhead during
the production the initial file.

Intents Should Be Clear.
Although specifications are definitive, they often contain
mechanisms whose definition is so precise and subtle that
its underlying intent is not obvious. Stating such intents,
instead of requiring them to be taken as assumptions, aids
the specification’s readability and allows them to be checked
for internal consistency.

Parsing Should Be Limited Via Buffers.
Many file format specifications specify how to disaggregate
a complete file into smaller chunks, such as sections or
elements. These chunks lie within well-defined boundaries
specified by offsets from the beginning of the file and
sizes. A critical security property that should be enforced in
implementations when parsing these chunks is to constrain
the parsing to these well-defined boundaries via the use of
appropriately delimited parsing buffers.

Operational Semantics Should Be Specified.
The operational semantics associated with constructs such
as the iccMAX calculatorElement should be specified in the
specification or accompanying standards documents. Doing
so ensures that the program is well-typed and reduces the
likelihood of performing unintended computation. Specifi-
cations with nonexistent or inadequately defined operational
semantics can result in parser differentials. In addition, doing
so might help simplify the chosen semantics. For example,
the formal semantics of WebAssembly uses stack signatures
for its branching operations that are simpler to validate and
give more precise bounds on stack usage than those chosen
in iccMAX.

Data Should be Orderly Sequenced.
Data should be orderly sequenced in a manner that min-
imizes parsing complexity and reduces the potential for
misassumptions on the parts of specification designers and
parser implementers. For example, many file formats con-
tain tables with entries that specify positions and sizes
of elements. But if the elements are not ordered in the
same sequence as they are ordered in the table, if the
elements overlap, or if there are gaps between elements,
this not only makes the parsing process more complex but
it makes it harder for people to understand and reason
about the specification. This can result in errors within the
specification, specification-parser differentials, potential for
polyglots and data exfiltration, and ultimately real-world
vulnerabilities [2], [22].

Size Restrictions and Operations Should be Carefully
Designed to Minimize Unnecessary Overhead.
Unnecessary storage and computation overhead should be
avoided as a design principle. For example, in the iccMAX
specification, the stack operator encoding specifies selector
values S and T as UInt16’s. However, the stack operations
themselves involve the manipulation on S+1 and T+1 ele-
ments, for no apparent purpose. This adds unnecessary com-
plexity in the code to parse and implement these operations,
since they now need to guard against integer overflows.

VII. CONCLUSION

In this paper, we documented our work on analyzing the
iccMAX specification [9], specifically the calculatorEle-
ment, as part of the DARPA SafeDocs project. Our efforts,
which involved using a variety of tools and techniques—
theorem-proving tools, data description languages, parser
combinators, etc.—led to the the proposal of a resource
contract for iccMAX, as well as the discovery of both im-
portant errors and smaller bugs with the specification and the
demo implementation. Additionally, our work has revealed
a number of valuable insights and suggested best practices
that we believe would serve useful in a broader context
pertaining to creating specifications, designing DDLs, and
implementing parsers. For one example, it is imperative for
specifications to specify resource contracts that meet the
practical demands of the application domain. For another
example, ensuring that intended computation is carried out
requires the specification of operational semantics by a
trusted standards-producing body.

Our research using the specification and the demo imple-
mentation showed that the demo implementation and some
commercial applications have already deviated from the
relatively new specification. One way new specifications
can reduce these specification-parser differentials can be
to provide a machine-readable specification of the data
format. Data description languages provide an avenue for
future specification writers to represent specifications in a
less ambiguous machine-readable format. DDLs supporting
complex operations such as offsets, constraints, and resource
constraints can capture and describe extensions such as the
calculator element.

We believe practical security problems are best addressed at
the early stages:

• The specification should be thoughtfully designed,
avoid security pitfalls, and lend itself to secure parsing.

• The specification should be vetted using a varied as-
sortment of approaches and tools.

• Usable tools should be provided to practitioners to fa-
cilitate the development of secure and verified parsing.

It is our hope that this paper will provide some guidance on
achieving these aims.



ACKNOWLEDGMENTS

We would like to thank Peter Wyatt at the PDF Association
for facilitating this work and acting as a friendly liaison
between the ICC folks and ourselves. We would also like to
thank the reviewers and Erik Poll for their valuable feedback,
which significantly improved this paper.

This material is based upon work supported by the De-
fense Advanced Research Projects Agency (DARPA) under
Contract No. HR001119C0075. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the United States Government or DARPA.

REFERENCES

[1] The Coq proof assistant. http://coq.inria.fr.

[2] Adam Barth, Juan Caballero, and Dawn Song. Secure content
sniffing for web browsers, or how to stop papers from
reviewing themselves. In 30th IEEE Symposium on Security
and Privacy, pages 360–371, 2009. DOI 10.1109/SP.2009.3.

[3] Adam Barth and Charles Reis. The Security Architecture
of the Chromium Browser. In Technical report. Stanford
University, 2008.

[4] Mitko Bogdanoski, Tomislav Suminoski, and Aleksandar Ris-
teski. Analysis of the SYN flood DoS attack. International
Journal of Computer Network and Information Security (IJC-
NIS), 5(8) pages 1–11, 2013. DOI 10.5815/ijcnis.2013.08.01.

[5] Sergey Bratus. Safe Documents (SafeDocs) — DARPA. https:
//www.darpa.mil/program/safe-documents.

[6] Jeremy Brown. Processing a maliciously crafted image may
lead to arbitrary code execution. http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2021-30926, 2021. [Online; ac-
cessed 23-December-2021].

[7] International Color Consortium. About ICC. International
Color Consortium. https://color.org/abouticc.xalter.

[8] International Color Consortium. Specification ICC.1:2010
(Profile version 4.3.0.0) Image technology colour manage-
ment — Architecture, profile format, and data structure. 2019.
https://color.org/specification/ICC1v43 2010-12.pdf.

[9] International Color Consortium. Specification ICC.2:2019
(Profile version 5.0.0 - iccMAX) Image technology colour
management — Extensions to architecture, profile format and
data structure. 2019. https://www.color.org/specification/ICC.
2-2019.pdf.

[10] International Color Consortium. Specification ICC.2:2019
(Profile version 5.0.0.0) Image technology colour manage-
ment — Architecture, profile format, and data structure -
Cumulative Errata List. 2019. https://color.org/iccmax/ICC.
2-2019 Cumulative Errata List 2021-09-09.pdf.

[11] International Color Consortium. White Paper #52:
iccMAX calculatorElement Security Implementation
Notes: A guide for implementing secure calculator
element processing. ICC White Papers, June 2020.
https://www.color.org/whitepapers/ICC White Paper 52
calculatorElement security implementation notes.pdf.

[12] International Color Consortium. DemoIccMAX. https:
//github.com/InternationalColorConsortium/DemoIccMAX,
2021.

[13] Galois Inc. GaloisInc/daedalus. https://github.com/GaloisInc/
daedalus/, 2022. [Online; accessed 2022 Jan 10].

[14] Red Hat Inc. OpenTTD Infinite Loop and CPU consump-
tion vulnerability triggered by a crafted packet. http://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2534, 2010.
[Online; accessed 2022 Jan 10].

[15] Red Hat Inc. Avahi Daemon Denial-of-service Vulnerabil-
ity triggered by empty UDP packet. http://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2011-1002, 2011. [Online;
accessed 2022 Jan 10].

[16] Red Hat Inc. CGit Denial of Service Attack triggered by
a crafted packet. http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2011-1027, 2011. [Online; accessed 2022 Jan
10].

[17] Mateusz Jurczyk. Processing a maliciously crafted image may
lead to arbitrary code execution. http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2021-30942, 2021. [Online; ac-
cessed 23-December-2021].

[18] William Kahan. IEEE standard 754 for binary floating-point
arithmetic. Lecture Notes on the Status of IEEE, 754(94720-
1776) page 11, 1996.

[19] Matt Kaufmann and J Strother Moore. ACL2: An industrial
strength version of Nqthm. In Proceedings of 11th Annual
Conference on Computer Assurance. COMPASS’96, pages
23–34. IEEE, 1996. DOI 10.1109/CMPASS.1996.507872.

[20] Letitia W. Li, Greg Eakman, Elias J. M. Garcia, and Sam At-
man. Accessible Formal Methods for Verified Parser Develop-
ment. In 2021 IEEE Security and Privacy Workshops (SPW),
pages 142–151, 2021. DOI 10.1109/SPW53761.2021.00028.

[21] Arm Limited. Arm Architecture Reference Manual Sup-
plement: Morello for A-profile Architecture. Arm Limited,
2020. Online at https://documentation-service.arm.com/static/
5f8da6fef86e16515cdb861e.

[22] Jonas Magazinius, Billy K Rios, and Andrei Sabelfeld. Poly-
glots: crossing origins by crossing formats. In Proceed-
ings of the 2013 ACM SIGSAC conference on Computer
& communications security, pages 753–764, 2013. DOI
10.1145/2508859.2516685.

http://coq.inria.fr
http://dx.doi.org/10.1109/SP.2009.3
http://dx.doi.org/10.5815/ijcnis.2013.08.01
https://www.darpa.mil/program/safe-documents
https://www.darpa.mil/program/safe-documents
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-30926
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-30926
https://color.org/abouticc.xalter
https://color.org/specification/ICC1v43_2010-12.pdf
https://www.color.org/specification/ICC.2-2019.pdf
https://www.color.org/specification/ICC.2-2019.pdf
https://color.org/iccmax/ICC.2-2019_Cumulative_Errata_List_2021-09-09.pdf
https://color.org/iccmax/ICC.2-2019_Cumulative_Errata_List_2021-09-09.pdf
https://www.color.org/whitepapers/ICC_White_Paper_52_calculatorElement_security_implementation_notes.pdf
https://www.color.org/whitepapers/ICC_White_Paper_52_calculatorElement_security_implementation_notes.pdf
https://github.com/InternationalColorConsortium/DemoIccMAX
https://github.com/InternationalColorConsortium/DemoIccMAX
https://github.com/GaloisInc/daedalus/
https://github.com/GaloisInc/daedalus/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2534
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2534
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1002
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1002
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1027
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1027
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-30942
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-30942
http://dx.doi.org/10.1109/CMPASS.1996.507872
http://dx.doi.org/10.1109/SPW53761.2021.00028
https://documentation-service.arm.com/static/5f8da6fef86e16515cdb861e
https://documentation-service.arm.com/static/5f8da6fef86e16515cdb861e
http://dx.doi.org/10.1145/2508859.2516685


[23] Prashanth Mundkur, Linda Briesemeister, Natarajan Shankar,
Prashant Anantharaman, Sameed Ali, Zephyr Lucas, and Sean
Smith. The Parsley Data Format Definition Language. In
2020 IEEE Security and Privacy Workshops (SPW), pages
300–307. IEEE, 2020. DOI 10.1109/SPW50608.2020.00064.

[24] Alexandru-Vlad Niculae and Mateusz Jurczyk. A mem-
ory corruption issue existed in the processing of ICC
profiles. http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-30917, 2021. [Online; accessed 23-December-
2021].

[25] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal
verification for fault-tolerant architectures: prolegomena to
the design of PVS. IEEE Transactions on Software Engineer-
ing, 21(2) pages 107–125, 1995. DOI 10.1109/32.345827.

[26] Andreas Rossberg. WebAssembly Core Spec-
ification. 2019. https://webassembly.github.io/
spec/core/ download/WebAssembly.pdf, Online at
https://www.w3.org/TR/wasm-core-1/.

[27] Micha Sharir and Amir Pnueli. Two approaches to interpro-
cedural data flow analysis. New York University. Courant
Institute of Mathematical Sciences, 1978.

[28] Huzaifa Sidhpurwala. Wireshark Denial of Service vulnera-
bility triggered by crafted ASN.1 data. http://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2011-1142, 2011. [Online;
accessed 2022 Jan 10].
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