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Abstract

URL parsing confusion is a perennial source of se-
curity vulnerabilities in web services (e.g., [Mos+;
Cha; WTA]). We present a new differential fuzzing
framework, and demonstrate its effectiveness at dis-
covering parsing bugs in popular URL parsers writ-
ten in Python. Prior approaches to coverage-guided
differential fuzzing examine only program exit codes
to determine when a discrepancy has been encoun-
tered. We expand upon this technique by also exam-
ining program output for differentials. Our fuzzer,
dippy__gram, has uncovered numerous bugs in URL
parsers, including the parser in the Python stan-
dard library, and the parser in the most-downloaded
Python package on PyPI.

1 Introduction

This paper presents dippy_gram, a differential fuzzer
for parsers, targeting Python and using grammar-
based mutations. Section 2 reviews the problem and
the prior work. Section 3 presents our methodology
and Section 4 presents our current results. Section 5
discusses the next steps, and Section 6 concludes.

2 Background and Prior Work

2.1 URL Standards

URL is defined by two different standards; IETF
RFC 3986 [BFM] and its extensions [DS], and the
WHATWG URL Living Standard [WHA].! There
are many validation differences between the RFC
standards and the WHATWG standard, such as
whether port numbers outside the unsigned 16-bit
range are permissible, but the primary distinction
between the two standards is that the WHATWG
standard aims to clearly define the handling of errors
in malformed URLs, whereas the RFC leaves error
handling to the implementer. While the IETF main-
tains that RFC 3986 is the current URL standard, the
WHATWG standard states explicitly that it exists to
obsolete the RFCs.

Thus, modern URL parsers thus fall into two
camps: RFC-compliant and WHATWG-compliant,
but many parsers also target partial compatibil-
ity with both standards, or backwards-compatibility
with obsolete RFCs, leading to a diverse set of be-
haviors among “standards-compliant” parsers.

1Although RFC 3986 distinguishes between URIs and
URLs, we follow the convention of the WHATWG standard
and ignore that distinction.



scheme://user@host:port/path?query#fragment

Figure 1: The pieces of a URL in the familiar form.

2.2 URL Components

A URL is composed of at most seven string-valued
components: scheme, userinfo, host, port, path,
query, and fragment. (See Figure 1.) Their conven-
tional purposes are as follows:

e« A URL begins with a scheme, which specifies
the protocol over which its resource is accessible.
The scheme is the only mandatory component of
a URL; all others may be empty.

e« A URL’s userinfo specifies the user who is to
access the URL’s resource. Although this field
has also historically specified a password, this
is not supported in modern URL standards for
security reasons.

e« A URL’s host specifies the machine that hosts
the URL’s resource. Usually, this component is
an [P address or a domain.

e A URL’s port specifies the port over which the
resource is accessible. This component is often
omitted, since applications generally associate a
default port with each scheme.

o A URL’s path specifies where the resource resides
on the host’s filesystem.

e A URL’s query and fragment components serve
to augment the path with extra information.

The standards also specify other URL forms that
eschew the “//” after the scheme and colon. These
URL forms must also omit the userinfo, host, and port
URL components, and thus consist of at most a path,
query, and fragment. An example of a popular URL
scheme that uses one of these forms is the magnet
scheme, which specifies a resource by its hash value,
and therefore needs only to utilize the scheme and
query URL components.

Some valid URLs do not reference valid resources.
For example, file:///etc/passwd is a valid URL,
but probably does not identify a resource on a Win-
dows system. Conversely, although “example.com”

is not a valid URL because it has no scheme, it does
clearly identify a resource and is thus often accept-
able in place of a URL. Such identifiers are referred
to alternately as URL references and relative URLs.
In many cases, such as in browser address bars, it
is useful to accept both absolute and relative URLs,
but the union of their grammars is ambiguous, so
one cannot reliably be distinguished from the other.
For example, it is clear from context that tel:911
references the North American emergency telephone
number, and thus has scheme tel and path 911, but
it is similarly clear that localhost:911 references
access to port 911 on the host localhost without
specifying a scheme.

2.3 Fuzzing

A fuzzer is a program that takes as input a target
program 7', then repeatedly runs 7" on generated in-
puts until 7' demonstrates undesirable behavior, such
as crashing, accessing memory out of bounds, or ex-
ceeding a running time threshold (e.g. [Pet+17b]).
The fuzzer then reports the offending input to the
user.

2.4 Coverage-Guided Fuzzing

A coverage-guided fuzzer traces its target’s execution
on each input, and uses the execution information to
determine which inputs should be selected for muta-
tion. In each run of the target, a coverage-guided
fuzzer extracts its target’s execution trace, repre-
sented as a walk through the target’s control flow
graph. The execution trace of a program 7' on input
I can be thought of as a fingerprint of I;. If another
input I leads to exactly the same execution path in
T, then the reasoning goes that I5 is sufficiently simi-
lar to I; that it is not worth mutating further. On the
other hand, inputs that induce walks with interesting
features are selected for further mutation. This might
include walks that visit previously-unvisited vertices,
edges, or edge sequences.

2.5 Grammar-Based Fuzzing

A grammar-based fuzzer uses the structure of its tar-
get’s input language to generate fuzzing inputs. This



allows the fuzzer to generate inputs for formats with
features that are impractical to generate randomly,
such as checksums and magic numbers.

2.6 Differential Fuzzing

A differential fuzzer is a program that takes as in-
put a set of n similar target programs, Ti,...,T,,
then searches for inputs to the targets that cause
their outputs to differ. This search might be un-
guided [Jab+21], it might examine coverage infor-
mation [Pet+17a)], or it might be guided by a con-
straint solver [Nol+20]. One coverage metric that
can be used to guide a differential fuzzer is fine path
d-diversity [Pet+17a]. A differential fuzzer guided by
fine path §-diversity runs each input I on each of the
n targets, and produces fingerprint;, which is defined
by having ith entry equal to the set of edges traversed
in T}’s execution trace on I. If an input’s fingerprint
has not been previously encountered, that input is se-
lected for mutation. Thus, a differential fuzzer guided
by fine path J-diversity selects inputs that cause at
least one target to exhibit new coverage in the con-
text of its peer targets’ coverage.

3 Methodology

dippy_ gram is a generational fuzzer. Its seed gener-
ation is a collection of 200 URLs from WebKit’s test
suite. In each generation, each input is fed to each
of the target parsers, and each parser’s execution is
traced using afl-showmap. Then, each input’s collec-
tion of traces is hashed. If that hash has been previ-
ously encountered, the input is ignored. Otherwise, if
a differential has been detected, through either exit
statuses or differences in the targets’ outputs, it is
reported. Finally, if no differential is found, but the
hash is still new, the URL is selected for mutation
and propagates forward into the next generation.

Note that NEZHA[Pet+17a], reports all encoun-
tered differentials, whereas dippy_gram ignores dif-
ferentials that provide no new d-diversity. This choice
was made because without this filtering, duplicate
differentials clutter the fuzzer’s output.

To determine whether two parsers exhibit differ-
ential behavior, dippy_gram compares both return

Algorithm 1 Differential Fuzz

10:
11:
12:
13:
14:
15:
16:

then
17:
18:

then
19:
20:
21:
22:
23:
24:
25:
26:

1
2
3
4
5:
6.
7
8
9

: queue <— seeds
. explored + ||
: while queue is not empty do

mutation__queue < ||
for input in queue do
trace__sets + [|
statuses < []
stdouts «+ |]
for parser in parsers do
process < run(parser, input)
trace__sets.add(set(process.trace))
statuses.add(process.exit__status)
stdouts.add(process.stdout)

fingerprint < hash(trace_ sets)
if fingerprint not in explored then
if statuses is neither all zero nor all nonzero

report(input)
else if stdouts are not all identical

report(input)
else
mutation__queue.add(input)
explored.add( fingerprint)
queue < [|
while queue.length < generation_size do
for input in mutation_ queue do
queue.add(mutate(input))




codes and serialized parser output. We term the sit-
uation in which a URL is accepted by at least one
parser and and accepted by at least one other parser
to be an exit status differential. We term the situa-
tion in which a URL is accepted by all parsers, but
in which different parsers assign different values to
different URL fields to be an output differential. Be-
cause both types of differentials require comparison
to a baseline in order to recognize, they cannot be
easily detected by single-target fuzzing.

When an input is selected for mutation, it is mu-
tated by one of four mutation operations: random
byte replacement, deletion, insertion, and parse sub-
tree replacement. At each mutation step, a mutation
is chosen at random from among those that are ap-
plicable. Similarly, an input that violates the fuzzer’s
internal representation of the URL grammar can-
not be selected for parse subtree replacement. This
presents a dilemma. If the fuzzer’s ground truth URL
grammar is too permissive, then grammar-mutated
URLs do not exhibit sufficient structure. On the
other hand, if the ground truth grammar is too rigid,
then grammar-based mutations are applicable only in
the event that an input is particularly well-formed.
We implement the full RFC, and acknowledge that
a better approach might implement a permissive su-
perset of the RFC.

4 Results

We have run experiments with six URL parsers writ-
ten in Python: urllib3, rfc3986, Hyperlink, yarl, furl,
and CPython’s urllib.

e urllib3 is an HTTP library with an included URL
parser. Because it is a dependency of many
popular Python packages, including Requests
and AWS-CLI, urllib3 stands as the second-
most-downloaded package on the Python pack-
age repository PyPI [PyP].

o 1rfc3986 is a URL parsing library that is a depen-
dency of the popular HTTP library HTTPX.

o varl is a URL parsing library that is a depen-
dency of another popular HTTP library, AIO-
HTTP.

e Hyperlink is a URL parsing library that is a de-
pendency of the Twisted network programming

.://example.com

Parser Scheme Host Path
CPython example. com
yarl example.com /
Hyperlink example.com /
furl
rfc3986 .://example.com
urllib3 //example. com

Table 1: How the targeted parsers parse one example
malformed URL.

framework.

e furl is a somewhat less actively-developed URL
parser that was selected for its comparable down-
load statistics to Hyperlink.

e urllib is the URL module in the Python standard
library. It is used widely in the Python ecosys-
tem, including within the Django web framework

We have reported numerous parsing bugs found by
dippy_gram. Two have been patched in CPython,
one has been patched in rfc3986, one has been
patched in urllib3, and many others are under review.

The bugs fall into several categories, a few of which
we discuss below. The examples given were hand-
minimized to aid interpretation. Because URLs are
often embedded into other protocols, injection into
URLs of control characters for other protocols, such
as CRLF for HTTP, can amount to singificant secu-
rity vulnerabilities. Thus, even seemingly harmless
URL parsing bugs may have security-related conse-
quences in the right context.

4.1 Scheme Parsing Bugs

The URL standards define a scheme string to be an
string of composed of ASCII alphanumeric charac-
ters, plus signs, minus signs, and periods in which
the first character is alphabetical. Table 1 shows the
result of parsing “.://example.com” with six popu-
lar Python URL parsers.

All six parsers accept the malformed URL without
error. CPython, yarl, and Hyperlink make the rel-
atively simple mistake of interpreting the period as




e.vil://go.od

http://example.com: +8_0

Table 2: How the targeted parsers handle periods
within schemes.

a scheme. furl, returns a URL object in which ev-
ery field is empty. rfc3986 correctly recognizes that
a scheme cannot begin with a period, and attempts
to parse the input as a relative URL with a relative
path beginning with a colon. This behavior is also
in violation of the RFC because the first segment of
a relative path in a relative URL is not permitted to
contain a colon, presumably because of this ambigu-

ity.

urllib3 does not permit periods within schemes at
all, and thus interprets the period as the host, the
colon as the port delimiter, and the first slash as the
path delimiter. Because urllib3 does not allow for
dotted schemes, it uniquely misinterprets the URL
“e.vil://go.od,” as can be seen in Table 2. This
differential may have the potential for application to
an open-redirect attack because of its ability to cause
urllib3 to misinterpret the host.

4.2 Port Parsing Bugs

RFC 3986 defines a port to be a string of zero or
more ASCII digits. The WHATWG standard defines
a port string similarly, but stipulates that its value
must not exceed 65535. Thus, an RFC-compliant
parser is necessarily in violation of the WHATWG
standard, and vice-versa.

urllib3, which claims RFC 3986 compliance, also
prohibits ports greater than 65535. However, it does
so with a regular expression that does not account for
leading zeros. Thus, one can construct a URL that
will be erroneously rejected by urllib3 by prefixing its
port number with leading zeros such that the length
of the port string is greater than five.

Parser Scheme | Host Path Parser Scheme Host Port | Path
CPython e.vil | go.od CPython http example.com | 80
yarl e.vil | go.od / Hyperlink http example.com | 80 /
Hyperlink || e.vil | go.od / rfc3986 http example.com | 80
furl e.vil | go.od
rfc3986 e.vil | go.od .
urllib3 e.vil | //go.od Table 3: How the accepting targeted parsers handle

a strange port number.

http://example.com:1\u06FO

Parser Scheme Host Port | Path
CPython http example.com | 10
Hyperlink http example.com | 10 /
furl http example.com | 10
rfc3986 http example.com | 10

Table 4: How the accepting targeted parsers handle
Unicode digits.

Table 3 shows the result of parsing
“http://example.com: +8_0" with our selected
parsers, excluding those that reject.

This peculiar behavior occurs because each of these
parsers determines whether a port is valid by at-
tempting to parse it with Python’s built-in int con-
structor. However, int accepts much more than
numeric ASCII strings. For instance, int strips
all whitespace from either side of its input. This
makes URL port numbers a prime location for new-
line injection. The int constructor also removes
underscores from between digits, and allows a plus
or minus sign to precede the first digit of its in-
put. Further, int accepts some Unicode digits,
such as the Unicode characters with code points
0x06F0 and 0x0660, which are both visually simi-
lar to a period. Table 4 shows the result of parsing
“http://example.com:1\u06F0” with our selected
parsers, excluding those that reject.

In addition to those parsers blindly using int for
port parsing, furl is also fooled by this input. In real-
ity, furl also uses int to parse ports, but it checks
the port string for validity using Python’s built-
in str.isdigit method. This method is Unicode-
capable, so Unicode digits can still slip into URL port
numbers parsed with furl.



http://e.vil\@go.od

Parser Userinfo | Host Path
CPython e.vil\ | go.od
yarl e.vil\ | go.od /
Hyperlink || e.vil\ | go.od /
furl e.vil\ | go.od
rfc3986 e.vil | %5C@go.od
urllib3 e.vil | /%5C@go.od

Table 5: How the targeted parsers handle backslashes
in userinfo fields.

4.3 Host Parsing Bugs

The RFC defines a host to be either an IP address
or a “reg-name,” which is defined to be a string of
zero or more of a given set of characters. For exam-
ple, both the WHATWG standard and the RFC for-
bid the pipe character (|) from appearing in a host.
However, all six URL parsers that we tested accept
“http://|.com” as having host “|.com”.

4.4 Path Parsing Bugs

The primary difference between the two standards’
definitions of URL paths is that the WHATWG stan-
dard permits both backslashes and forward slashes
as path separator characters, whereas the RFC per-
mits only forward slashes. This difference causes a
notable differential (shown in Table 5), which was
well-known [Cha; Mos+] before it was rediscovered
by dippy_ gram.

This differential clearly has security implications,
and has at least one CVE assigned to it, CVE-2021-
32786. Despite both standards prohibiting the use
of backslashes in the userinfo URL component, many
URL parsers don’t enforce these rules, similar to the
lack of character set enforcement demonstrated in
Section 4.3. Also noticeable in the table is the au-
tomatic percent-encoding employed by rfc3986 and
urllib3. While the WHATWG standard clearly iden-
tifies when a character is to be percent encoded, the
RFC leaves that decision to each parser. In addition
to percent-encoding woes, normalization differences
involving capitalization, Unicode, and the resolution
of path components are also widespread.

5 Next Steps

Our current, preliminary results are promising, but
there is still significant progress to be made before
this work can be considered complete. We have in-
strumented and run preliminary experiments with
additional parsers (Boost::URL, libcurl, libwget), but
work is ongoing to analyze the fuzzing output. Be-
cause of differences in permissiveness between these
parsers and those written in Python, dippy_gram’s
signal to noise ratio is lower than is desirable. Due to
the abundance of output from dippy_ gram, it is dif-
ficult to benchmark its output against other fuzzers
and program analysis tools. Work is ongoing to deter-
mine when two inputs that each cause parser misbe-
havior are indicative of the same underlying bug(s).
Until this issue is solved to a sufficient degree of ac-
curacy, dippy_ gram’s performance cannot be easily
or accurately measured.

Because dippy__gram is written in Python, and in-
teracts with its targets through afl-showmap, it is
less susceptible to bit rot than a lower-level tool that
integrates natively with the execution tracer. No-
tably, NEZHA is unmaintained and no longer builds
with modern libraries. On the other hand, our ap-
proach comes with significant performance tradeoffs.
Next steps may include rewriting dippy_gram in
Rust to integrate with LibAFL [Fio+22].

Once these issues are sorted out, we plan to apply
the techniques describe din this paper to more com-
plex protocols. We have already applied this fuzzer
to discover inconsistencies in the code generator back-
ends of Apache Daffodil. Work is underway to apply
these ideas to search for request smuggling vulnera-
bilities in HTTP parsers.

6 Conclusion

Due to conflicting standards and a culture of per-
missiveness, differentials are widespread among URL
parsers. Our work demonstrates that grammar-
aware, coverage-guided differential fuzzing is well-
suited to finding semantic bugs in these programs.
This work was made possible by funding from
the DARPA GAPS project. URL-specific code is
available at https://github.com/kenballus/url_
differential_fuzzing, and domain-independent



fuzzing code is available at https://github.com/
kenballus/diff_fuzz .
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