
Research Report: Parsing PEGs with Length Fields
in Software and Hardware

Zephyr S. Lucas, Joanna Y. Liu, Prashant Anantharaman, and Sean W. Smith
Dartmouth College

Hanover, NH, USA 03755
{zephyr.s.lucas.gr, joanna.y.liu.22}@dartmouth.edu

{pa, sws}@cs.dartmouth.edu

Abstract—Since parsers are the line of defense between bi-
naries and untrusted data, they are some of the most common
sources of vulnerabilities in software. Language-Theoretic Secu-
rity provides an approach to implement hardened parsers. We
specify the binary format as a formal grammar and implement
a recognizer for this formal grammar. However, most binary
formats use constructs such as the length field, repeat field, and
an offset instruction. Most grammar formats do not support these
features.

Building on PEGs and calc-regular languages, we propose
Calc-Parsing Expression Grammars (Calc-PEGs), a formalization
of parsing expression grammars that supports the length field.
We design an algorithm to parse Calc-PEGs in O(n2) time and
a parallel algorithm to parse Calc-PEGs in O(n) time. We also
present Pegmatite, a tool to generate these parsers in C, with an
option to generate VHDL code.

I. INTRODUCTION

Since parsers are the line of defense between binaries and
untrusted data, they are some of the most common sources
of vulnerabilities in software. Language-Theoretic Security
provides an approach to implement hardened parsers. Many
real-world data formats use the length construct, so for a tool
to be useful in practice it needs the capability to parse the
length construct. In 2017, Marie Grosch, Koenig, and Lucks
proposed calc-regular languages as a theoretical foundation for
such tools [1].

However, significant problems still remain. First, calc-
regular languages do not apply to recursive languages such
as ASN.1. We build on Parsing Expression Grammars (PEGs)
to define Calc-PEGs. Apart from the operations supported by
PEGs, we add an operator that takes two nonterminal argu-
ments. The first argument is the length parameter to support
fields of various lengths (1 byte, 2 bytes, etc.). Pegmatite
resolves this parameter to extract the value and apply it to
the second nonterminal. We discuss Calc-PEGs in detail in
Section III-A.

Second, grammar-based packet filtering in the CPU is time-
intensive. In prior work implementing Hammer-based parsers
for various Internet-of-Things protocols, we saw that the
latency added by these parsers were in the order of mil-
liseconds. To support packet filtering on the router, Pegmatite
generates VHDL code from parser declarations. We built a
toolkit to parse PEG primitives in VHDL. Pegmatite generates
invocations to these primitives.

Finally, as of writing this paper, no FPGA implementa-
tions are available for PEG parsing algorithms. We present
approaches to parsing PEGs and Calc-PEGs using the Scaffold
Automata method in FPGAs.

For any parser generator to be useful for data formats, we
need to satisfy at least these two requirements:
• R1: Input grammar language must be easy to use and

debug and must support recursive formats and formats
that use the length field.

• R2: The parsers we generate must run in O(n) time.
To this end, our contributions are as follows:
• We introduce Calc-PEGs, a language that adds support

for the length field in PEGs.
• We present parallel algorithms to parse PEGs and Calc-

PEGs in O(n) time.
• We built Pegmatite, a tool to generate VHDL implemen-

tations of our PEG and Calc-PEG parsers.
The rest of the paper is organized as follows. Section II

presents the necessary background on PEGs, the scaffold
automata model, and prior work such as calc-regular languages
that explore the length field. Section III presents our core
concepts such as Calc-PEGs and Pegmatite. We discuss some
limitations and lessons learned in Section IV. Section V
presents related work, and Section VI concludes the paper.

II. BACKGROUND

A. Parsing Expression Grammars (PEGs)

PEGs were first introduced by Ford as a foundational de-
terministic recognition-based formal language syntax [2]. The
fundamental difference between PEGs and a more traditional
grammar class such as Context Free Grammars (CFGs) is the
removal of the non-deterministic choice (|) and addition of
a prioritized choice operator (/). The prioritized choice will
first try to parse its first option, and only if that rejects will it
try the second argument. While this may seem like a fairly
minor change, it dramatically affects the expressive power
of this class of grammars as well as allows parsing of an
arbitrary grammar in linear time. These features—along with
elimination of non-determinism—make PEGs more attractive
than CFGs.

There are many equivalent definitions of a PEG, however
all of them are fundamentally based on the recursively defined

1

PEG expressions. A PEG expression is any of the nine
possibilities shown in Table I. Note that a PEG expression
depends on both an alphabet Σ, and a set of nonterminals V ,
so we notate the set of PEG expressions as E(Σ, V).

TABLE I
THE OPTIONS FOR A PEG EXPRESSION. WHERE a IS ANY CHARACTER OF
THE ALPHABET, e1 AND e2 ARE PEG EXPRESSIONS THEMSELVES, AND N

IS ANY NON-TERMINAL IN THE PEG.

Epsilon ε
Fail f
Character a
Any .
And &e1
Not !e1
Prioritized Choice e1/e2
Concatenation e1 ◦ e2
Nonterminal N

Also note that the sub-expressions given in Table I are not
minimal; Fail, Any, and And can all be easily be removed
and the expressive power of PEGs will remain unchanged.
Similarly, sometimes other operators such as an “optional” or
a “greedy Kleene star” are added to the list of sub expres-
sions. [2], [3] While these additional operators can improve
usability, they can be constructed from the above constructs
and therefore also do not affect the expressive power.

A PEG is a 4-tuple 〈V,Σ, N0, r〉, where V is a set of nonter-
minals, Σ is the alphabet over which the language is defined,
N0 ∈ V is the starting non-terminal, and r : V → E(Σ, V) is a
function which maps each non-terminal to a PEG expression.
Unlike more classical models of computation which will either
recognize or reject a string s, a PEG can either reject s or
accept and consume some prefix of s. If the consumed prefix
of s is the whole string s, then it is said the PEG recognizes
s.

To parse an input string s, a PEG tries to match the start
non-terminal N0 to s. When matching any non-terminal N to
some suffix x of s (at the start of the operation, while matching
N0, x = s, but as matching continues, some characters are
consumed leaving only a suffix to be matched), r(N) is
checked and the following case work is followed:

• r(N) = ε : Epsilon will always accept x and con-
sume 0 characters.

• r(N) = f : Fail will always reject.

• r(N) = . : If x = ε, then Any will reject, otherwise Any
will accept consuming 1 character from x.

• r(N) = a : If x = ε or the first character of x is not
a, then Character will reject, otherwise it will accept
consuming 1 character.

• r(N) = &e1 : If e1 accepts x, then N will accept x
consuming 0 characters, otherwise it will reject.

• r(N) =!e1 : If e1 accepts x, then N will reject x,
otherwise it will accept consuming 0 characters.

• r(N) = e1/e2 : If e1 accepts x, then N will accept con-
suming the same number of characters as e1, otherwise,
N ’s behavior is the same as e2’s

• r(N) = e1 ◦ e2 : If e1 rejects x, then so will N . If not,
then it will leave some suffix x′. Similarly if e2 rejects
x′, then so will N , however if e2 also accepts, then N
will accept consuming what e1 and e2 consumed.

• r(N) = N ′ : N ’s behavior is the same as N ′’s behavior.

A parser which recursively follows this definition is called the
naive PEG parser.

While the definition of a PEG allows rules to be any PEG
expression, there is an obvious problem of left recursion.
For example, in a context free language, a grammar such as
A← Aa|ε would be a perfectly valid representation of a∗,

however, within PEGs, A← Aa/ε causes an infinite loop.
For any string s, the grammar will try to match A by first
checking if Aa matches. But this requires checking if Aaa
matches, and so on. Because PEGs are deterministic, it will
always try matching the Aa subexpression before trying ε,
and therefore will never move forward. This is known as left
recursion, and to avoid PEGs which will not terminate, the
idea of a well formed PEG was introduced [2]. A PEG is
well formed if it satisfies a fairly technical structural property
that ensures no left recursion will occur (though there are still
obscure PEGs that are neither well formed nor left recursive).
Conceptually, a PEG is well formed if and only if each non-
terminal A will always consume at least one character before it
is required that A be matched on the string again. Most useful
PEGs are either well formed or can be easily rewritten as a
well formed PEG, so often left recursion does not pose a major
problem, however, this scaffold parsing technique requires the
PEG to be well formed to terminate.

Additionally, while the PEG expressions for a given non-
terminal can get fairly large, it must always (by definition) be
constructed out of the PEG expressions given in Table I. So
while a PEG for the a∗ regular expression might be written
succinctly as

A ← aA/!.

it could also expanded by flattening out the compound expres-
sions resulting in the grammar

A ← B/D
B ← C ◦A
C ← a
D ← !E
E ← .

We call a PEG in this latter case in PEG normal form. In gen-
eral, a grammar is in PEG normal form if each non-terminal
maps to a single expression from Table I. Additionally, a
PEG in PEG normal form will not have any Nonterminal
expressions, as those can always be followed until a different
PEG expression is reached. For example, a grammar with the
rule A← B can be removed with any other instances of A

2

within the other expressions replaced with a B. While, for
usability’s sake, it is important to be able express the PEG
in compounded form, the Pegmatite parser first compiles that
into a normal form before beginning the parsing process.

B. Scaffold Parsing

The packrat parser, introduced along with PEGs in Ford’s
original paper, has continued to be used as the standard PEG
parser [2]. Packrat is a memoized version of the naive PEG
parsing algorithm. While this ensures a linear runtime, it uses
high-level infrastructure such as hash tables to compact the
memoization as well as a stack to keep track of the current
parse tree. As these structures translate poorly to hardware,
instead of using the standard packrat parser for PEGs, our
code is based on the scaffold automata model introduced by
Loff, Moreira, and Reis [4]. Similar to how a PDA is a finite
state machine with access to a stack, a scaffold automata is a
finite state machine with access to a finite-out-degree directed
acyclic graph, called the scaffold. For each input character
consumed, the state machine transitions to a new state and a
new vertex is created and added to the scaffold along with
some constant number of edges. In our model, the scaffold
is a table with a constant number of rows. Each column of
the table represent a vertex in the scaffold, and each entry in
the column represents an out-edge by pointing to a ‘further
down’ column in the table. In this way, the finite-out-degree
is maintained by the finite number of rows, and the acyclic
property is maintained by the ordering of the columns in the
table. For each input character consumed, the table is updated
by filling in a new column (the new vertex), each cell in the
column is filled with a pointer to a previously filled out column
(the new edges).

For a grammar G with k non-terminals in PEG normal form
parsing an input s with n characters, we initialize a scaffold
A of dimensions k×(n+1). Each entry A[i, j] in the scaffold
represents how many characters will nonterminal i consume
while recognizing the last j characters of s.

For a grammar in normal form, each scaffold entry can filled
out according to a small set of operations. Each row of the
scaffold is associated with a particular nonterminal, and that
nonterminal determines how each entry in that row is filled out.
Based on the PEG expression for nonterminal i the following
logic is applied:

• i← ε : Because ε can match any string, this will always
accept and consume 0 characters. Therefore A[i, j] = 0

• i← f : The fail operation will always fail so A[i, j] =
f . In the Pegmatite implementation, f is the only non-
natural number that a scaffold entry can be filled in with
and −1 is used to represent it.

• i← . : Here j is checked to determine if this is off
the end of the string or if the parser is at a character
in the input string. If j = 0, this is matching with the
“base case” column of the scaffold and the parse will fail
(A[i, j] = f). If j 6= 0, then this is at a point in the input

string, and, because Any will accept any character and
consume it, A[i, j] = 1.

• i← a : Just like with the Any expression, if j = 0
then the character will fail to parse and A[i, j] = f .
However, if j 6= 0, then a further condition must be met,
namely that the character a is actually found at the jth
last position of s (more directly, if a is the first character
of the suffix of s containing j characters). So if sn−j = a
then A[i, j] = 1, otherwise A[i, j] = f .

• i← &e1 : Here, e1 is some other non-terminal and
has a position in the scaffold, so the parser must check
if e1 succeeded or failed at this position in the input
string. If A[e1, j] = f , then ei failed, so A[i, j] = f . If
A[e1, j] ≥ 0, then e1 succeeded, so &e1 should succeed
and consume no input, meaning A[i, j] = 0

• i←!e1 : The same logic as the And case applies. If
e1 succeeded (A[e1, j] 6= f , then !e1 should fail and
A[i, j] = f . If A[e1, j] = f , then !e1 should succeed
and consume no input, therefore A[i, j] = 0

• i← e1/e2 : Here if e1 succeeded, then i will consume
exactly what e1 consumed. Therefore if A[e1, j] 6= f ,
then A[i, j] = A[e1, j]. If e1 did fail, then the prioritized
choice switches over to the second peg expression and
tries to parse that. So, if A[e1, j] = f , then A[i, j] =
A[e2, j].

• i← e1 ◦ e2 : For the concatenation expression, e1 must
first succeed, and then e2 must also succeed on whatever
part of the input wasn’t consumed by e1. If neither of
these fail, then e1 ◦ e2 will succeed and consume the
sum of what e1 and e2 consumed. Following this logic,
if A[e1, j] = f , then A[i, j] = f , otherwise we examine
A[e2, j − A[e1, j]] (this is e2 at the point in the input
after e1 has been consumed)1. If A[e2, j−A[e1, j]] = f ,
then A[i, j] = f , otherwise A[i, j] = A[e1, j] +A[e2, j−
A[e1, j]].

Through this algorithm, the scaffold for any well-formed PEG
can always be filled out.

C. Is the length field necessary?

As we noted, many real-world data formats use the length
construct, so for a tool to be useful in practice it needs the
capability to parse the length construct.

Since proving a particular language or construct is not
already in PEG is notoriously difficult, it is not known whether
or not PEGs can already express the length field. No known
implementations of the length field using the base PEG con-
structs currently exist. So, if we want parse a grammar which
requires use of the length field, we need to add this construct
PEGs.

While we conjecture the length field is not in PEGs, there
is some reason to believe that it could be. For some encoding

1Note that A[i, j] ≤ j so j − A[e1, j] will never cause an out of bounds
error

3

SStart ← (&Bd)B1Z!. / xZ!.
Z ← 0Z / ε
B ← a(&Bd)B1Bn / a(!Bd)B / xBn

Bn ← 0Bn / &1
Bd ← (&Dd)D.!.
D ← a(&Bd)B1Bn / a(&Dd)D. / a(!Dd)D

/ &(x1) / xDi

Di ← &(01) / 0Di

Dd ← &(PaPf / x)
P ← &(aPf) / a&(PaPf) / aPa
Pf ← x / Bd

Fig. 1. A Grammar for the reversed length field. The variable P counts off
powers of two since the last time Pf was true. This gets matched with a digit
position called D, which counts through the string in the length field. D is
set to an initial position by Di and decrements to the next digit position each
time Dd is true (which happens each time P shows we’ve reached another
power of two). B keeps track of the current leading one of the binary length
field. Each time D reaches the end of the string, Bd becomes true, and we
move to the next binary digit Bn. This grammar is not at all intuitive, however
sheds some small light on how non-trivial behavior is possible in a PEG.

of a number function similar to the reverse of the length field
does exist. In particular, we were able to write a PEG for the
language:

LReverse Len = {anx[n]2}

Where a and x are characters, n is a natural number, and [n]2
is the binary representation of n. The PEG for this is extremely
convoluted, but can be seen in Figure 1. PEGs are not known
to be closed under reverse, so it is very possible that there is
no PEG for a generic length field where the length is placed
before the data. However, it is still an open problem with no
clear answer.

In 2017, Marie Grosch, Koenig, and Lucks, facing similar
difficulty parsing practical data formats, extended regular
expressions to calc-regular to include it [1]. They showed why
the length field was not context free, and extended regular
languages to allow for easy parsing of certain file formats. We
extend this work further to by adding the length field to PEGs.
While regular expressions are well suited for many parsing
problems, PEGs strictly more powerful, and if the length field
can be added and still maintain efficient parsing, then Calc-
PEGs will offer a versatile tool capable of handling many of
the real-world data formats and protocols.

III. PEGMATITE: PARSING REAL-WORLD FORMATS IN
HARDWARE

A. Calc-Parsing Expression Grammars (Calc-PEGs)

One of the major contributions of this tool is the addition of
the length field. This construct augments the PEGs operators
by adding the following construct. The production
A← LEN(L,D, f)

is parsed according to the following algorithm:
• Read (and consume) L from the current input. If L is

not recognized then LEN construct will fail and not be
recognized.

• Decode the expression consumed by L and use f to
convert this to a non-negative integer, which we will refer
to as nL. If what was consumed by L is not in a form
that f accepts, then the LEN construct will fail and not
be recognized.

• Read and consume nL additional characters from the
input. If the remaining input does not have nL characters,
we (again) fail and do not recognize the input. We then
check to see if the nL characters that we consumed, will
be recognized (as a standalone string) by D. If so, then
we accept and if not, then we reject.

This means the length field will either reject or it will
recognize the input and consume (|L|+ nL) characters.

B. Accommodating the length field
In order to accommodate the length field, the Pegmatite

parser constructs many scaffolds, one for each character of
the input. With respect to complexity, this means it requires
O(n2) space.

The key algorithmic change involves the addition of O(n)
scaffolds. Before, a scaffold entry A[i, j] represented the
number of characters non-terminal i would consume if given
the last j characters of s as input. Now, there are n+1 scaffolds
each indexed by l with 0 ≤ l ≤ n. Each scaffold Al only
has l + 1 columns in it, so j is now bounded by 0 ≤ j ≤ l
instead of the normal 0 ≤ j ≤ n. Entry Al[i, j] now represents
how many characters non terminal i consumed when parsing
the first j characters of the last j + n − l characters of s as
it’s input. In other words, how many characters are consumed
when parsing the substring s[l − j : l].

For this new “multiple scaffold” parsing scheme each of the
other PEG expressions follow their respective rules for each
individual scaffold. The length field adds a new case to the
rules and is the only operation which can look into the other
scaffolds.
• i← LEN(e1, e2, f) : This operation is broken down into

the three steps associated with the length field’s defini-
tion: parsing the length parameter, the integer conversion,
and parsing the data parameter.

– First the “length” parameter must be read from the
current input string. If Al[e1, j] = f , then the
length expression was not matched by e1 and so
Al[i, j] = f . If Al[e1, j] ≥ 0, then the length
parameter was matched to some sub-string of s, with
length Al[e1, j]. In particular the sub-string indexed
by s[l−j : l−j+Al[e1, j]] (Including the first index
but excluding the last).

– The function f is then used to convert this into a
number, and store this number in nL, specifically
we let nL = f(s[l − j : l − j + Al[e1, j]]). If nL
is larger than the current rest of the string (after
having consumed e1, then this operation should fail.
Specifically, if nL > j−Al[e1, j], then Al[i, j] = f .

– Finally, e2 must accept the substring partitioned
out by the length parameter. This means check-
ing if Al−j+Al[e1,j]+nL

[e2, nL] succeeds or not. If

4

Al−j+Al[e1,j]+nL
[e2, nL] = f , then should fail as

the “data” parameter (e2) was not recognized so
Al[i, j] = f . Otherwise, e2 was recognized, so
the whole function should accept. The number of
characters consumed should be whatever e1 parsed,
as well as the whole substring that e2 was parsing
(not just what e2 consumed). Therefore Al[i, j] =
Al[e1, j] + nL.

With this additional scaffold logic the parser is now able to
recognize any well formed Calc-PEG.

C. Parallel PEGs Parsing

The important extra expressive power gained by the addition
of multiple scaffolds, does incur a complexity cost to the space
and run time of Pegmatite. For “length field free” grammars,
only one scaffold needs be filled in, requiring O(n) time and
space. However, with the additional n scaffolds, the Calc-PEG
parser now requires O(n2) time and space. This is where
another innovation of Pegmatite, the VHDL code generator,
helps. By allowing specifications to be built for hardware, the
parsing process can remain efficient.

An important observation of this algorithm is each scaffold
entry Al[i, j] is completely independent of another scaffold
entry Al′ [i

′, j] (for l 6= l′); meaning that neither entry must
be filled in before another. So, these entries can be filled in
simultaneously due to the parallel nature of hardware. While
the generated VHDL still requires O(n2) space, we still only
require O(n) time to populate all the scaffolds and parse the
input.

IV. DISCUSSION

We are currently in the process of implementing several
data formats such as MQTT and various ASN.1-based formats
in Pegmatite. We will generate VHDL for these formats and
evaluate the generated code on real-world network traffic. Our
library is currently 1703 lines of code. To evaluate Pegmatite,
we plan to perform the following evaluations.

1) What is the programmer effort required to implement
various real-world formats in Pegmatite?

2) How do our Pegmatite-generated VHDL parsers com-
pare with parsers generated from Hammer-based C
parsers using HLS tools?

Apart from answering these questions to evaluate Pegmatite,
we also believe we need to address some limitations in our
current system. Currently, our parser starts with the last byte
received and moves from right to left. The first byte of the
packet is processed last. This feature of the scaffold-automata
model of parsing creates an optimization problem. We do not
start parsing a packet until we receive the entire packet.

a) Reversing the grammar: Hence, one optimization con-
sidered, however, has yet to be incorporated into Pegmatite, is
to reverse the grammar. This approach’s upside is that the input
string can be parsed from front to back, allowing processing

to begin before the full input string has been received. This
could allow the parsing to occur at line speed.2

b) Pipelining: Another optimization we are working on
is to parse multiple packets at the same time. We are using a
pipelining approach to fill the scaffold step by step. When a
particular packet moves to the writing state (when we transmit
the packet again after ascertaining that it is well-formed), we
begin parsing another packet.

c) TCP Reassembly: Our VHDL implementation is a
standalone parser that only parses the application layer pack-
ets. Packets often use IP fragmentation or TCP disassembly to
split a packet across multiple packets. Since our parser needs
the entire packet to parse and make sure it is well-formed,
TCP reassembly presents a challenge. Several approaches have
been employed to tackle TCP reassembly in network intrusion
detection. We plan to use such an approach to ensure that our
parsers receive entire packets [5] [6].

d) Seek and Repeat: On a more theoretical note, other
constructs such as a “seek” field (reading an address, and
checking that the bytes that far into the file / stream match
some nonterminal) or a “repeat” field (reading in a number and
checking that there are that many of some object afterward)
are also useful tools to handle real-world data formats. These
constructs are not currently present in many of the theoretical
parsing models, like PEGs or CFGs, so it would be useful to
extend PEGs even further to handle these. While the “seek”
field can be added to the scaffold model under a certain
(practical) set of assumptions, the repeat field has proven more
difficult. We would like to implement both in the future.

V. RELATED WORK

A. Parsing in FPGAs

Researchers have explored parsing context-free grammars
(CFGs) in FPGAs. Ciresson et al. [7] presented an algorithm
to parse unrestricted CFGs in FPGAs and demonstrated a 240x
speedup to use it in natural language processing applications.
Bordim et al. [8] implemented the Cocke-Kasami-Younger
algorithm to parse CFGs in an FPGA and showed a 750x
speedup over a software implementation. Taylor proposed
generating FPGA code from C using High-Level Synthesis
(HLS) tools [9]. Instead of providing our C code to an HLS
engine, we generate the corresponding VHDL from our C
code.

In this paper, we build on prior work implementing dy-
namic programming-based parsing algorithms in VHDL. We
presented algorithms to parse PEGs and Calc-PEGs on FPGAs.

B. Parsing Approaches

In this paper, we build on several prior works on parsing.
Grosch et al. [1] in their paper showed that the length field is
not context-free. They then proposed “calc-regular languages”:
where they extended regular languages to support length fields.

2In particular, if we are allowed some constant (based on the grammar (less
than the number of non-terminals)) number clock cycles between receiving
each byte of input, we can process the string as it arrives.

5

We build on this prior work by adding support for the length
field to PEGs.

In 2020, Blaudeau et al. [10] built a verified PEG parser in
PVS. They defined what a well-formed PEG is, and proved
that their implementation terminates for all well-formed PEGs.
TRX also formalized the notion of termination for PEGs [11].
Van Geest et al. [12] described binary languages using the data
types in a general purpose dependently typed language. They
demonstrated their parser and pretty printer on IPv4 protocol.

Ramanandro et al. [13] also built a parser generator for tag-
length-value languages. They generated parsers using a simple
message format description and verified a parser-combinator
toolkit using F* and Low*. Although they proved that their
C implementations did not have any memory corruption bugs,
they did not focus on any specific formal class of languages.
Instead, we focus on a new class of languages, Calc-PEGs,
and show a parsing algorithm for this class of languages.

Bangert et al. [14] implemented a parser generator, Nail.
Pegmatite differs from Nail in that it generates recognizers for
Calc-PEGs, whereas Nail generates invocations to a parser-
combinator with additional predicate functions. Kaitai [15],
Parsley [16], and DFDL [17] are other parser generator toolkits
that support wide ranges of protocols. Pegmatite, however,
supports languages that use the tag-length-value construct, as
well as recursive languages.

VI. CONCLUSIONS

In this paper, we designed and implemented Pegmatite, a
tool to generate parsers from a Calc-PEG grammar description
(R1). Pegmatite-generated parsers run in linear time (R2).

Much of the future work to support a broader set of data
formats remain. Our efforts are focused on three areas:

a) Parsing in FPGAs: We are currently implementing
a parser for Calc-PEGs in VHDL. We implemented a set of
PEG primitives in VHDL. Pegmatite will generate invocations
to these VHDL primitives.

b) The seek and repeat field: Formats such as DNS
include a repeat field, where we parse an integer field n and
ensure a term repeats n times.

c) Supporting Data Description Languages in Pegmatite:
Currently, Pegmatite uses a Backus Normal Form (BNF) nota-
tion as grammar input. In the future, we would like to support
several Data Description Languages such as Parsley [16],
Kaitai [15], and DFDL [17] that support parser generation
from grammar input.

ACKNOWLEDGMENTS

We would like to thank Garret Andriene and Sameed Ali
for their inputs during the early stages of this project.

This material is based in part upon work supported by
the Defense Advanced Research Projects Agency (DARPA)
under Contract No. HR001119C0075 and Contract No.
HR001119C0121. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
Defense Advanced Research Projects Agency (DARPA).

REFERENCES

[1] S. Lucks, N. M. Grosch, and J. König, “Taming the Length Field in
Binary Data: Calc-Regular Languages,” in 2017 IEEE Security and
Privacy Workshops (SPW). IEEE, 2017, pp. 66–79.

[2] B. Ford, “Parsing expression grammars: A recognition-based syntactic
foundation,” in Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2004,
Venice, Italy, January 14-16, 2004, 2004, pp. 111–122. [Online].
Available: https://doi.org/10.1145/964001.964011

[3] C. Blaudeau and N. Shankar, “A verified packrat parser interpreter
for parsing expression grammars,” in Proceedings of the 9th
ACM SIGPLAN International Conference on Certified Programs
and Proofs, ser. CPP 2020. New York, NY, USA: Association
for Computing Machinery, 2020, p. 3–17. [Online]. Available:
https://doi.org/10.1145/3372885.3373836

[4] B. Loff, N. Moreira, and R. Reis, “The computational power of parsing
expression grammars,” Journal of Computer and System Sciences, 2020.

[5] R. Yuan, Y. Weibing, C. Mingyu, Z. Xiaofang, and F. Jianping, “Robust
tcp reassembly with a hardware-based solution for backbone traffic,”
in Fifth International Conference on Networking, Architecture, and
Storage, 2010, pp. 439–447.

[6] D. Sidler, G. Alonso, M. Blott, K. Karras, K. Vissers, and R. Carley,
“Scalable 10Gbps TCP/IP Stack Architecture for Reconfigurable Hard-
ware,” in 2015 IEEE 23rd Annual International Symposium on Field-
Programmable Custom Computing Machines, 2015, pp. 36–43.

[7] C. Ciressan, E. Sanchez, M. Rajman, and J.-C. Chappelier, “An fpga-
based syntactic parser for real-life almost unrestricted context-free
grammars,” in Field-Programmable Logic and Applications, G. Brebner
and R. Woods, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2001, pp. 590–594.

[8] J. L. Bordim, Y. Ito, and K. Nakano, “Accelerating the cky parsing using
fpgas,” IEICE Transactions on Information and Systems, vol. 86, no. 5,
pp. 803–810, 2003.

[9] S. Taylor, “Protecting embedded systems from zero-day attacks,” in
NAECON 2018 - IEEE National Aerospace and Electronics Conference,
2018, pp. 165–168.

[10] C. Blaudeau and N. Shankar, “A verified packrat parser interpreter for
parsing expression grammars,” in Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, 2020, pp.
3–17.

[11] A. Koprowski and H. Binsztok, “Trx: A formally verified parser inter-
preter,” in European Symposium on Programming. Springer, 2010, pp.
345–365.

[12] M. van Geest and W. Swierstra, “Generic packet descriptions: Verified
parsing and pretty printing of low-level data,” in Proceedings of
the 2nd ACM SIGPLAN International Workshop on Type-Driven
Development, ser. TyDe 2017. New York, NY, USA: Association
for Computing Machinery, 2017, p. 30–40. [Online]. Available:
https://doi.org/10.1145/3122975.3122979

[13] T. Ramananandro, A. Delignat-Lavaud, C. Fournet, N. Swamy, T. Cha-
jed, N. Kobeissi, and J. Protzenko, “Everparse: Verified secure zero-copy
parsers for authenticated message formats,” in 28th USENIX Security
Symposium (USENIX Security 19), 2019, pp. 1465–1482.

[14] J. Bangert and N. Zeldovich, “Nail: A practical tool for parsing
and generating data formats,” in 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14). Broomfield,
CO: USENIX Association, Oct. 2014, pp. 615–628. [Online].
Available: https://www.usenix.org/conference/osdi14/technical-sessions/
presentation/bangert

[15] A. Herrera, A. Bulski, C. Leimbrock, D. Reba, P. Pučil, M. Yakshin,
T. Koczka, and S. Mandalas, “Kaitai Struct,” http://kaitai.io.

[16] P. Mundkur, L. Briesemeister, N. Shankar, P. Anantharaman, S. Ali,
Z. Lucas, and S. Smith, “The Parsley Data Format Definition Language,”
in 6th Language-Theoretic Security Workshop at IEEE Security and
Privacy Symposium. IEEE, 2020.

[17] R. E. McGrath, “Data Format Description Language: Lessons Learned,
Concepts and Experience,” University of Illinois, Tech. Rep., 2011.

6

https://doi.org/10.1145/964001.964011
https://doi.org/10.1145/3372885.3373836
https://doi.org/10.1145/3122975.3122979
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/bangert
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/bangert

	Introduction
	Background
	Parsing Expression Grammars (PEGs)
	Scaffold Parsing
	Is the length field necessary?

	Pegmatite: Parsing Real-World Formats in Hardware
	Calc-Parsing Expression Grammars (Calc-PEGs)
	Accommodating the length field
	Parallel PEGs Parsing

	Discussion
	Related Work
	Parsing in FPGAs
	Parsing Approaches

	Conclusions
	References

