Invisible and Forgotten:
Zero-Day Blooms in the IoT

Kartik Palani*, Emily Holt', and Sean Smithf

*Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

TDepartment of Computer Science
Dartmouth College

Abstract—In the IoT, massive distribution and long physi-
cal lifetimes will disrupt the ‘“penetrate and patch” security
paradigm that helps mitigate the consequences of the vulnera-
bilities endemic in individual systems. In this paper, we examine
what will happen in the IoT if we build its systems the same
way. We collect data and model the vulnerability blooms and
patching delays in historical systems. We present the models and
discuss future IoT networks where similar blooms happen but
patching does not. We discuss initial results, and our plans to
extend the models to look more deeply at these questions in our
future work.

I. INTRODUCTION

The current “Internet of computers” (IoC) is composed of
devices rife with security vulnerabilities. To help compensate
for these endemic vulnerabilities, the current IoC depends
on a “penetrate and patch” security paradigm. As holes are
discovered, software is patched and eventually retired; as
new attacks emerge, new signatures are pushed to anti-virus
software and firewall rules are updated.

We already see IoT devices being built with the same
endemic holes: for example, police body cameras too weak to
run anti-virus themselves ship with the Conficker virus already
installed [1]; analysts report that “over 750,000 phishing and
spam messages” have already been sent “from more than
100,000 household devices—televisions, wi-fi routers, and
fridges” whose internal computers have been taken over as
bots [2]. We also already see the nature of the devices and
their distribution in the IoT disrupting the penetrate and patch
paradigm—e.g., [3]. In this paper, we seek to examine the
security impact of this disruption, and also to provide a
foundation to examine the effectiveness to potential solution
strategies.

Section II considers some principal ways in which the nature
of the IoT may disrupt the old security paradigm. Section III
then presents our approach to the problem. Section IV looks
at history to develop some mathematical models of zero-
day blooms. Section V examines some ways to quantitatively
describe the security health of a large system such as the IoC
or IoT. Section VI presents the model we built to examine the
effect the changes from IoC to IoT have on security health
from zero-day blooms. Section VII presents our current results.
Section VIII discusses future work: how we plan to use this
and other models to tackle the problem.

II. IoC To IOT

Many aspects of the transition from the IoC to the IoT have
the potential to disrupt the IoC’s security paradigms. In this
section, we discuss some principal ones of concern.

a) Invisibility: As responsible users know, it can be very
hard to stay on top of keeping software updated; as system
administrators know, it can very hard to convince users to be
responsible. When computers stop looking like computers, we
hypothesize the problem will become much worse.

b) Lifetimes: Physical devices such as appliances and
light-switches will likely live much longer than laptops and
personal computers; e.g., washing machines may last more
than a decade, and power grid equipment may last many
decades. Thus, we hypothesize that unpatched software will
persist much longer. Exacerbating the problem is the fact
that devices may outlive their original ownership period—and
may even outlive the company responsible for maintaining the
software.

As an example already of the hazards of device lifetime
and invisibility, radiology machines with embedded computer
containing old and unpatched Windows operating systems led
to an infection paralyzing a hospital’s IT system [4]; as another
example, air traffic systems based on even older Windows 3.1
led to the November 2016 shutdown of the Orly airport [5].

c¢) Patchability: We hypothesize that devices in the IoT
will be harder to patch than devices in the IoC. One contribut-
ing factor is reduced network connectivity—remote devices
may be hard to reach over the network; to patch the well-
publicized security flaw in Jeep Cherokees, Chrysler needed
to physically mail USB drives to owners. Another factor
may be the fact the device software may be in unchangeable
ROM or FLASH, leading to some analysts warning about the
emergence of forever-days. A 2014 Kaspersky Labs’ study
[6] showed that the CVE-2010-2568 vulnerability that was
exploited by Stuxnet still remained un-patched on over 19
million computers worldwide.

d) Device Weakness: We hypothesize that the security
contributions of anti-virus will decrease in the 10T, as devices
will be too weak to run AV (compounded by the factors above
reducing the degree and effectiveness of patching).

e) Consequences of Compromise: We hypothesize that
the intimate connection of IoT devices to physical infras-

tructure will increase the damage from successful compro-
mise. Exploding gasoline tanks [7], radio broadcasts crippling
automobiles in transit [8], and blacking out northeast North
America [9] are all much worse than not being able to buy
things on Amazon for three days.

f) Population Scale: We hypothesize that the increased
size of the IoT (e.g., many tens of billions, instead of millions)
will also reduce the effectiveness of penetrate and patch. The
number of vulnerable systems will be larger, and the speed
with which patches can propagate may in fact be longer.

III. APPROACHING THE PROBLEM

An absolute quantification of security, although useful in
providing guarantees to user, can not be achieved. One can
not claim that the IoT architecture is x% secure. However,
a relative quantification is possible. A relative quantification
would suggest a certain improvement or a certain decline in
the security of a system. While current strategies to quantify
the security of a system come from pen-testing teams and
security experts trying to break into a system, a new trend of
modeling security has emerged in the past decade—evaluation
approaches based on security metrics based and modeling
the attacker (script kiddie, serious hackers and nation states)
along with the cause-effect relationships between actions. In
the future we hope to build models that take into account
the ability of the attackers. In our ongoing work, we aim to
relatively quantify the changes in security patterns and metrics
from the IoC to IoT.

IV. MODELING ZERO-DAY BLOOMS

We want to be able to predict the growth rate of zero days
in unpatched software. Building on the analysis of Bilge and
Dumitras [10], we want to determine the window between first
release of an exploit and release of its patch. For generating
our model, we consulted methods from Nicol et al [11].

To build these models, we look at the past: the Common Vul-
nerabilities and Exposures (CVE) list maintained by MITRE.
We generated a list of all reports containing specific user-
provided keywords. We then parsed the list of reports to obtain
the aggregate number of vulnerabilities per year relating to this
keyword. We used the number of vulnerabilities reported per
year to create a curve of best fit (linear or polynomial). We
then used this curve of best fit to generate projections for the
years 2020 and 2025.

Figure 1 shows the curve for server-side software (keyword
‘server’); Figure 2 shows the curve for browser-side software
(keyword ‘browser’); and Figure 3 shows the curve for device
software (keyword ‘device’). We looked at these because, in
consultation with vulnerability analysts, we felt that browsers
were the new servers, and devices the new browsers. We
decided to use Figure 3 because this curve projects the
future number of vulnerabilities reported that will relate to
device software. We predict vulnerability reports for device
software—specifically for software in IoT devices—will flare-
up over the next 10-15 years.

1800 —— . .
2020: 712.80 ®
1600} |2025: 836.63
¥ 1400} Curve:

24.77 x - 4.932e+04

=

N

o

o
T

1000+

[=)]

(=)

o
T

Number of reported vulnerabilit
=]
o
o

400 |

200}

2010 2015 2020 2025

Year

2000 2005

Fig. 1. Server vulnerabilities reported in CVE through 2015—and projected
to 2025

120 T T
2020: 99.90
2025: 117.94

100} -
9 Curve: P
E 3.608 x - 7188
=
o 80 |
a
=
=l
>
e
£ 60} -
o
(=N
1
5
5 40 41
e
£
3
=]

20+ —

.
]
e ®
2000 2005 2010 2015 2020 2025

Year

Fig. 2. Browser vulnerabilities reported in CVE through 2015—and projected
to 2025

One challenge to this approach (of merely measuring re-
ported CVE vulnerabilities) is that vulnerability reports and
subsequent blooms often may result from concerted efforts
from dedicated researchers and inspired followers driving the
“Month of Bugs” phenomenon. For example, HD Moore
launched the Month of Browser Bugs (July 20006) in an
effort to raise awareness about common cybersecurity threats
[12]. A group of dedicated security researchers launched the
“Month of Kernel Bugs” in November the same year [13].
Researchers were spurred by advances in the security research
community, specifically the free availability of “fuzzing” tools,
as well as the incorporation of kernel exploits into the free
Metasploit penetration testing tool. Similarly inspired, Stefan
Esser commenced the Month of PHP Bugs in March of 2007
[14].

Shahzad et al [15] found that since 2004, there has been

700 T T - T T

2020: 421.59
6001 2025: 632.97
] Curve: 2
= 0.8894 x - 3556 x + 3.553e+06
F 500
o
[
£
2 400+
o
«
£
a
@ 300F
B
g 200
2 L
=}
=
100}

2010 2015 2020 2025

Year

2000 2005

Fig. 3. Device vulnerabilities reported in CVE through 2015—and projected
to 2025

a decrease in the proportion of the vulnerabilities exploited
before their public disclosure date, and an increasing trend
in the proportion of vulnerabilities exploited on the date of
their public disclosure—illustrating that hackers are becoming
increasingly active. Shahzad et al also observed that “the
percentage of remotely exploitable vulnerabilities has grad-
ually increased to over 80% of all the vulnerabilities,” which
is important for our research on IoT devices. If attacks are
trending towards being remotely executed, and devices are
becoming increasingly prevalent in the world if IoT, this has
big implications for security risk of customers. IoT devices
are also becoming increasingly invisible. Thus customers are
at an increasingly greater risk with decreasing awareness of
their risk.

V. MEASURING SECURITY HEALTH

We want to reason about the security impact of some given
number of unpatched zero-days on the IoT.

We start by considering an individual device. At any given
time, it may be in one of three states:

« It may have no known vulnerabilities.
o It may have known vulnerabilities.
o It may be compromised.

An attack on a vulnerable device will lead to compromise, and
a compromised device may then launch attacks on the devices
to which it is connected. A patch issued to a vulnerable or
compromised device will return it to healthy; a healthy device
will become vulnerable according to a stochastic process
derived from Figure 3. (In this initial model, for simplicity, we
treat “vulnerabilities” of a device as an aggregate set instead
of separate items with separate patches.)

To consider the health of the overall IoT, we might initially
measure (in our model) the percentage of devices that are
compromised. However, this measure alone will not capture
the notion of resilience to attack: just because the devices are

O

Place

Activity with case
probabilities

Tokens Output Gate

| npﬁSate

Fig. 4. Graphical Representation of Stochastic Activity Networks

not currently compromised does not mean that a small focused
attack cannot cause disaster. So, instead, we will measure over
time:
« the percentage of devices in the system that will become
compromised
« versus the percentage of devices against which an attack
is launched.

A low, flat curve indicates resilience; one that grows quickly
indicates trouble.

(In future work, we will also consider the physical impact
of a compromise.)

VI. MODELING HEALTH IN THE IOT

We build our model on the Stochastic Activity Networks
(SANSs) [16] formalism. SANs are an extension to Petri Nets.
SANs use graphical primitives to provide high-level formalism
which allows for detailed specification of performance models.
It contains four most important components:

e Places represent the state of the modeled system. Places
contain fokens that represent the marking of the place.
Places are like variables that contain the state or “value”
of the system. Markings may either represent the number
of objects, as in the number of cars that need to be
washed; or markings may represent an object of a certain
type, as in the priority of a task. This allows for a lot of
flexibility.

e Activities, timed or instantaneous, are actions that take
place in the modeled system over a period of time. Each
timed activity has a time distribution function associated
with it. When an activity fires, it causes a transition in
the state of the system and thus changes the marking of
a place.

o Input gates control the firing of activities and define the
changes in marking that will occur after a transition takes
place. Each input gate has an enabling predicate and a
function. While the enabling predicate decides whether an
activity must fire or not, the function defines the marking
changes that must occur post activity completion.

e Output gates are also used to define complex completion
functions. They only differ from input gates in that they
can only be associated with one case if the activity has
multiple cases it can choose from after it completes.

To model the IoT itself, we’ll consider the following SAN:

_unaffected

<4

Healthy discaver

vulnerabilivy_discowver

OG_patch_reached

D0 _affected

Wea |G _patch rarmised

~tompromised

|C_attack

Fig. 5. Stochastic Activity Networks for system health

o There are three places representing the three states of the
model: healthy, weak or compromised.

e The markings in each place represent the number of
devices in that state.

o The gates govern the transitions and contain the functions
that get executed when an activity fires.

o The vulnerability_discover activity is the rate at which
vulnerabilities get discovered by researchers and the
security community. When a vulnerability gets discov-
ered, there is a chance that the system is affected by
that vulnerability—in which case, it changes state from
healthy to weak. There is also a chance that the vul-
nerability does not affect the system—in which case, it
remains healthy.

o The patching activity is the rate at which patches are sent
out after a vulnerability has been discovered. A patch
might either reach the system or not. If the system is
patched it goes from being weak to healthy; if the patch
doesn’t reach the system it remains weak. Here we define
a patchability constant p as the probability that a patch
successfully reaches a peripheral device.

o The attack activity defines an attack on a system before
it is patched. We consider that an attack on a known
vulnerability will always succeed—thus going from the
weak state to the compromised state.

Figure 5 shows the graphical representation of the SAN
model that we built. We hope to use this model as a starting
point to answer questions regarding the transition form IoC to
IoT.

High level formalisms like SANs allow for ease in speci-
fication of large-scale systems. With a large model comes a
large state space which may take unreasonably long to solve
using analytical solutions. Discrete event simulation can be
used to solve for such cases where the state spaces are too
large. One drawback of discrete event simulation is the fact
that if the desired measure of solving a large model is based
on a ’rare’ event then the result may not be accurate.

In our case, we use discrete event simulation to solve the
model described in this section. The fast growth of the Internet
of Things population, the large number if vulnerabilities
discovered every year and the even larger number of attacks

on such connected environments makes it such that there are
no rare events in our model. Thus, simulation is a dependable
choice.

VII. INITIAL RESULTS

In this section we present the initial results of our analysis.
We study the system with a growth in the number of IoT
connected devices, an increase in vulnerabilities discovered
and a raise in the number of attacks on the devices.

A. Parameter Choices

In our analysis we consider two variable inputs: the rate
of growth of the number of devices in the Internet of
Things and the rate at which vulnerabilities are discovered.
The vulnerability growth profile is based on the CVE study
described in Figure 3, which shows a steady rise in the
number of vulnerabilities discovered every year. The profile
for the increase in population size of the IoT is based on the
intelligence study in Greenough [17]. This profile is shown
in Figure 6. The selection of the input parameters is based
on the intuition that as the number of devices in a highly
interconnected environment grows, discovered vulnerabilities
have a larger surface on which to spread.

Number of loT Devices

40 7
35
30
25
20
15 1
10 1

Billions of Devices

2015 2016 2017 2018 2019

Year

Fig. 6. Approximation of IoT population growth based on studies in
Greenough [17]

As mentioned earlier, we are interested in the relative
quantification of security; hence our other parameters are
conservative assumptions that help us understand the spread
of attacks in a highly connected environment. We assume that

=09 e=p=075

80

70 1

60

40

30 1

Number of nodes compromised per attacked node
v

10 1

p=0.5 === p=0.5with lesser patches issued

/

2015 2016

Year

2017 2018 2019

Fig. 7. The number of nodes that get compromised per attacked node over time for different patchability constants (p), which is the probability that a patch

successfully reaches a node.

every year an attack is launched against 10% of the devices in
the population. This is the attack_rate used in the model. We
also provide a study for two cases of vulnerability patches: the
first study assumes that there is a patch for every vulnerability
that is discovered that year, the second study assumes that
only 90% of the vulnerabilities discovered have patches. These
provide the patch_rate value to the model. We provide the
results for both these cases in this section.

B. Results

Figure 7 describes the results we obtained. The plot aims
to find out how many nodes are compromised when one node
is attacked in a highly connected environment.

The first study we performed was to see the impact of
change in the patchability constant. For this, we assume an
ideal scenario where for every vulnerability that is discovered,
a patch is issued. As we can see, even when 90% of the patches
reach the nodes, there are still multiple nodes that get affected
when a single node is attacked. As can be seen for the cases
where p = 0.75 and p = 0.5, as the patchability becomes
worse, more nodes get affected by a single failed node. This
shows the high amount of dependence in the IoT mesh network
scenario.

The second study not only retards the patchability but also
considers that only 90% of the vulnerabilities have patches is-

sued/discovered. In this case, for every device that is attacked,
potentially, more than 80 devices will be compromised.

The main goal of this study is to provide knowledge of
the fact that with the Internet of Things, the probability
that a patch successfully reaches every device is going to
reduce drastically. As the patchability gets worse, the highly
interconnected and dependent nature of the IoT would mean
that a single exploitation of a vulnerability on a single node
would lead to various other nodes becoming potentially com-
promised. While the results of this study seem intuitive, the
study motivates the problem and provides a starting point for
research in this direction, which is our goal. We also hope that
when we use our model to study other IoT communication
architectures with different levels of interdependence, we will
have a better understanding of the schemes that need to be
implemented in order to avoid such spreads of the attack.

C. Computation Times

To get the above results, we used a discrete event simu-
lation software called Mdobius. The simulator uses a Lagged
Fibonacci generator as the pseudo random number generator
to traverse the model. The analysis has been performed on
a machine equipped with a 2.9 GHz Intel Core i7 processor
and 8GB of RAM. The simulator only utilizes one core of the
processor. The computation for each patchability setting takes
about 10-15 minutes.

VIII. CONCLUSIONS AND FUTURE WORK

Vulnerabilities—f{rom zero-days to forever-days—are ram-
pant in today’s embedded systems. Patching these vulnerabil-
ities is already incredibly complicated, and as we transition
from the IoC to the IoT, patching these systems will be
progressively more difficult—not only because of the growing
number of devices affected by the discovered vulnerabilities,
but also because devices may outlive the vendors responsible
for their technology or their maintenance.

In this paper we presented this problem, and a preliminary
model to help examine this problem. In our initial results here,
we examine net security health of a large system when the
scale increases but patchability lags.

We plan to continue this work first by extending the model
to look at more sophisticated topologies and more sophisti-
cated threat models. For the former, the emerging IoT offers
many competing architectural visions, from home gateways, to
multiple home gateways, to Cloud avatars, to meshes. We want
to revise the model to reflect the security implications of these
various topological choices—and of having a superposition of
several of them. For the latter, we plan to revise the model
to consider heterogeneous vulnerability/patching patterns and
lags, topological implications on patching and attacks, emer-
gence of thingbots, and net physical impact of attacks and
thingbots.

However, our long-term goal is not to forecast doom but
rather to avoid it. To that end, a model to analyze vulnerability
impact in the IoT will also extend to evaluating the effi-
cacy and performance impact of various proposed mitigating
techniques. For example: what if instead of pushing patches
to individual devices, we inserted verifiable protocol filters
at key points in the network? What would be the impact
of building in “telomeres”—features that cause devices to
automatically die after a certain point, or variations such
as after-last-update? What about “dumb grids”: selectively
disabling various features of smart devices? Can N firewalls
do almost as well as 100N formally-verified devices? This is
where we plan to take the model next.

ACKNOWLEDGEMENTS

This work was sponsored in part by the US Department
of Energy under grant agreement DE-OE0000780. The views
expressed are those of the authors.

REFERENCES

[1] C. Cimpanu, “Police Body Cameras Shipped with Pre-Installed Con-
ficker Virus,” Softpedia, November 2015.

[2] P. Belton, “Is Your Toaster a Silent Recruit in a ’Thingbot’ Army?”
BBC, Feburary 2015.

[3] V. Zhang, “High-Profile Mobile Apps At Risk Due to Three-Year-Old
Vaulnerability,” TrendLabs Security Intelligence Blog, December 2015.

[4] Anonymous Clinician, “Personal communication.”

[5] P. Longeray, “Windows 3.1 Is Still Alive, And It Just Killed a French
Airport,” Vice News, November 2015.

[6] Kaspersky Lab, “The Echo of Stuxnet,” SecureList.com.

[71 K. Wilhoit and S. Hilt, The GasPot Experiment: Unexamined Perils in
Using Gas-Tank-Monitoring Systems. TrendLabs, 2015.

[8] C. Vallance, “Car hack uses digital-radio broadcasts to seize control,”
BBC, July 2015.

[9]
[10]

(11]

[12]
[13]
[14]
[15]

[16]

(17]

K. Poulsen, “Tracking the Blackout Bug,” Security Focus, April 2004.

L. Bilge and T. Dumitras, “Before We Knew It: An Empirical Study of
Zero-Day Attacks In The Real World,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, 2012.

D. M. Nicol, W. H. Sanders, and K. S. Trivedi, “Model-Based Evalua-
tion: From Dependability to Security,” IEEE Transactions on Depend-
able and Secure Computing, vol. 1, no. 1, 2004.

S. M. Kerner, “The Month of The Browser Bugs Begins,” Internet-
News.com, July 2006.

R. Mogull, “Learn from ‘Month of Kernel Bugs’,” Gartner, November
2006.

B. Prince, “Month of PHP Bugs Begins,” eWeek, March 2007.

M. Shahzad, M. Z. Shafiq, and A. X. Liu, “A Large Scale Exploratory
Analysis of Software Vulnerability Life Cycles,” in 34th International
Conference on Software Engineering.

W. H. Sanders and J. F. Meyer, “Stochastic Activity Networks: Formal
Definitions and Concepts,” in Lectures on Formal Methods and Perfor-
mance Analysis. Springer, 2001, pp. 315-343.

J. Greenough, “The Internet of Everything: 2015, Business Insider
Intelligence, April 2015.

