
PhasorSec: Protocol Security Filters for
Wide Area Measurement Systems

Prashant Anantharaman∗†, Kartik Palani∗§, Rafael Brantley†, Galen Brown†,
Sergey Bratus†, Sean W. Smith†

∗ These authors contributed equally to this paper.
†Dartmouth College, Hanover, New Hampshire, USA

{pa, sergey, sws}@cs.dartmouth.edu
rafael.brantley@gmail.com, galen.brown.18@dartmouth.edu

§ University of Illinois at Champaign-Urbana, Champaign, Illinois, USA
palani2@illinois.edu

Abstract—The syntactic complexity of SCADA/ICS protocols
along with the emphasis on availability has led to the increase in
the prevalence of input-handling vulnerabilities in SCADA/ICS
protocols. We present PhasorSec, a methodology to produce
hardened implementations of the C37.118 protocol in Wide Area
Measurement Systems. PhasorSec reduces latency by outsourcing
input validation to a separate network filter that exhaustively
validates C37.118 packets with respect to the specification of
the protocol. We evaluate PhasorSec in terms of CPU-time and
development effort and demonstrate its resilience to the state-of-
the-art AFL fuzzer.

I. INTRODUCTION

Phasor measurement units (PMUs) are being widely de-
ployed by power grid transmission owners and generator own-
ers with the primary goal of improving situational awareness
about the reliability of the grid. These measurement devices
are part of a larger critical infrastructure: wide-area measure-
ment systems (WAMS). WAMS include PMUs, phasor data
concentrators (PDCs), central data concentrators (CDCs), GPS
receivers and communication and networking infrastructure to
facilitate better planning and operation of power systems. The
measurements collected by the PMUs are sent upstream to
PDCs over a wide area network where they are processed
and used by applications. Every application has a desired
timing bound on the freshness of data it requires. While some
applications like transient stability require access to near real
time data, others like postmortem analysis work with data that
has been archived by the PDCs. Due to the real time abilities
of PMUs, there are plans to integrate the infrastructure with
the current control system of the grid, thus making security of
the WAMS a high priority.

One of the primary tricks used by attackers to compromise
devices is to find vulnerabilities in code that handles input.
Regardless of how the code receives input, some processing
on the input has to be done to make sure that the input is
exactly as intended by the programmer. The lack of proper
input recognition has commonly led to critical vulnerabilities
like Heartbleed [1] and Shellshock [2].

In the past, our investigation of current supervisory con-
trol and data acquisition (SCADA) protocols like DNP3 [3]

revealed vulnerabilities in several implementations of the
protocol by various vendors. Recently, vulnerabilities were
found in implementations of the IEEE C37.118 [4], the
most commonly used WAMS communication protocol. These
vulnerabilities could allow attackers to send deviously crafted
malformed packets to PMUs, which might lead to either a
compromised device or to the device crashing, thus affecting
availability. With the increased use of PMU measurements in
automating real-time protection, such as identifying a collapse
of the electric system before-time, and taking corrective action,
attackers could force unexpected behavior in the power grid
if they were to take control of several PMUs.

This paper presents the initial design and implementation
of PhasorSec, an input validation filter for WAMS. PhasorSec
is an ingress-based network appliance that inspects packets
in the WAMS network for potentially malformed inputs. Pha-
sorSec is designed to filter out inputs that might compromise
any WAMS devices by making use of Language-theoretic
Security (LangSec) principles. Language-theoretic Security is
an upcoming field of security that focuses on validating and
handling input safely, using the principles of formal language
theory [5]. Several challenges exist in developing such a filter.
We describe them below.

First, the IEEE specification of the C37.118 protocol [6] in-
cludes plenty of verbose text, without a readable specification
of the protocol. This makes it extremely hard and error-prone
to implement a parser for the protocol. The protocol is also
designed in a way that the PDC first receives a synchronization
frame, and then receives a number of data frames that depend
on the values in the synchronization frame. This dependency
forces a validator to look at the state of the protocol stream,
rather than look at the packets individually.

Second, most SCADA devices are comprised of proprietary
software that cannot be modified by any means. This pro-
prietary software is mostly optimized for the hardware, but
even then, utmost importance is given to availability. Most
SCADA protocols prescribe a maximum permitted latency in
the communication. Meeting these latency requirements and
at the same time validating the input when the synchrophasor

data is collected at 60 to 240 measurements per second at the
PDC becomes a challenging task.

Third, as we mentioned earlier, such a filter would need to
maintain state over multiple flows. There is a possibility of
state space explosion and hence a concern over how much
memory is available for the filtering process to maintain
context.

PhasorSec addresses the above mentioned challenges with
several key ideas.

First, PhasorSec filters don’t match against an attack signa-
ture nor compare to a pattern of acceptable behavior, like in
traditional intrusion detection systems, but match each packet
and its contents on a grammar, and on the context of the packet
based on the protocol state. PhasorSec filters keep track of the
actual values in the configuration frames, and use them to
make sure that the subsequent values are well-formed as well.

Second, PhasorSec does not require any modification to the
code on any of the PMUs and PDCs. Since our filters are in
the substation, but do not require any alterations to the actual
PDCs or PMUs, they require minimal effort to deploy. They
can be directly placed in the network, and configured to receive
all packets from the router, and would filter and forward only
the valid packets.

Third, PhasorSec does not add any latency to the power grid
devices, but a minimal overhead is added to the network. We
discuss our overheads in Section 6. Availability is of utmost
importance in the Smart Grid. Synchrophasor data is collected
at the PDC present in a substation and the PMUs receive
command frames that need to be validated. To achieve this,
we introduce the PhasorSec placement tool that decides on the
optimal placements of PhasorSec given the network topology.

We have implemented a prototype for PhasorSec in C. Our
experience shows that our approach is promising: we were able
to show that our parsers are resilient to the AFL fuzzer, and
our placement tool reduces the latency introduced by parsing.
We also implemented PhasorSec as a bump-in-the-wire, and
evaluated the performance in terms of overhead added due to
the input parsing operation.

Our paper is organized as follows. Section 2 puts PhasorSec
in the context of the related work. Section 3 describes the over-
all architecture, the process of building the C37.118 parsers
and our approach to deploy PhasorSec. Section 4 provides
some evaluation results. Section 5 suggests several directions
for future work and concludes.

II. RELATED WORK AND MOTIVATION

A. Language-Theoretic Security

LangSec posits that the design of any software must begin
with gathering the protocol state machine and the grammar of
the protocol. In the past, we have looked at a similar approach
to LangSec in the Internet of Things for the MQTT and XMPP
protocols [7] and the SCADA/ICS DNP3 protocol [3].

The DNP3 implementation was built as a proxy, that would
consume DNP3 packets asynchronously, and would run the
parser on it offline. This design decision was made since the
DNP3 parser induced latency. To avail the security benefits of

having a parser protect a system from input handling vulner-
abilities, the parsing has to be performed in real-time. Also,
the DNP3 implementation looked at parsing separate packets,
without regard for the protocol state. SCADA protocols are
traditionally designed such that they rely on a previous packet
for some information and context. The MQTT and XMPP
implementations perform the parsing synchronously, but add
significant overheads due to parsing.

PhasorSec overcomes these shortcomings in the DNP3 and
IoT implementations of LangSec. We build a placement tool
and outsource the parsing to a separate device on the substation
network to serve as a filter for the entire network, while at the
same time maintaining the state for each of the connections
on the network.

B. IEEE C37.118 protocol
The C37.118 protocol is used to gather synchronized phasor

measurements to make better-informed decisions about the
operation of the smart grid. If PMUs within a substation
are compromised, and spoof wrong phasor measurements, it
could lead to a destabilization of the power system, and the
system could take incorrect corrective action. Figure 1 shows
the various types of C37.118 protocol messages. The PDC
sends commands to the PMU, and the PMU in turn sends a
configuration frame specifying the format of the data frames
that would follow after that. Header frames can contain any
sort of human-readable information (i.e., plain-text).

Fig. 1: Flow of messages for the C37.118 protocol.

In the initial state of the PMU, only Command frames are
valid. Receiving a Command frame requesting a Header or
Configuration packet causes the machine to temporarily accept
a single packet of the appropriate type. Due to the complexities
of simultaneous communication, this packet need not be the
next one received. Instead, the machine will continue accepting
valid packets of any type until it receives the one requested,
then stop accepting those packets until a second Command
packet requests them.

At any point, receiving a Command frame requesting data
causes Data frames to be accepted as valid, until a Command
frame ending data is received, at which point all Data frames
are rejected.

C. Security of Wide Area Measurement Systems

Intrusion detection in wide area measurement systems has
been widely studied. Yang et al. propose an intrusion detec-
tion mechanism specific to the C37.118 protocol [8]. Their
technique involved making use of a heterogeneous whitelist
of known attacks, and a behavior-based approach to detect
unknown ones. Stewart et al. provide a very comprehensive
set of guidelines to describe what approach is to be taken by
operators to ensure confidentiality, data integrity and availabil-
ity of the grid [9]. Stewart et al. also note that the specifications
of the C37.118 protocol do not include any security features,
and that it is left to the network layers to enforce the
security. The paper also provides several results demonstrating
the effectiveness of the safeguards. Although the paper goes
in depth about substation security and information security,
Stewart et al. do not discuss the issue of input handling in the
PMUs.

Coppolino et al. conducted a study of synchrophasor devices
(PMU) and phasor data concentrators (PDC) [10]. Coppolino
et al. note that telnet was being used to perform a lot of man-
agement tasks, and this is susceptible to man-in-the-middle
attacks. Also, there was no input validation or sanitization in
the PDC application that they examined, which was the open
source OpenPDC application. The content of the messages
were usually not verified, and the authors note that a host of
input validation attacks and bugs are possible including SQL
injection and buffer overflows. The authors recognize that the
issue of input validation exists in the PDCs and PMUs, but do
not talk about ways this could be addressed.

Another important source of motivation for our work is
looking at past list of Common Vulnerabilities and Expo-
sures (CVE) and understanding why these errors occurred.
In the database we find three CVEs that are specific to the
C37.118-2 communication system and PMUs [11], [12], [13].
CVE-2013-2800 and CVE-2013-2801 signify exactly the same
problem we are trying to address in this paper. These bugs
would expose the devices to a host of memory corruption
and denial-of-service attacks. The most valid action would
be to reject these messages since they are malformed, and
don’t satisfy the grammar of the protocol. Prior to the security
investigation of DNP3 implementations by Chris Sistrunk and
Adam Crain [3], the DNP3 CVE list had just one reported
vulnerability. The researchers found over 30 vulnerabilities
through their investigations in 2013-2014. We anticipate that
a similar investigation of the C37.118 protocol would reveal
several more of these vulnerabilities.

III. APPROACH

We are using a principled approach to build a high-assurance
input validator, and provide it in a way that operators of
constrained edge devices do not have to bother about the
performance and CPU time. We want to do this by placing
these parsers optimally on a level higher on the hierarchical
structure followed by wide area measurement systems, and
sometimes in the edge device itself when the PMU is known
to be sending and receiving critical data.

Fig. 2: Overall architecture of PhasorSec. A single substation
contains multiple PMUs, which are synchronized using a GPS
clock. These PMUs communicate with a single PDC at the
substation, which then aggregates data to a PDC in the control
center. This diagram shows the placement of PhasorSec in a
substation network in the control center.

Our development effort of PhasorSec was divided into
three broad parts. First, we build the LangSec parsers for
the IEEE C37.118 protocol for the revision of 2011. Second,
we introduce PhasorSec as a bump-in-the-wire on a substa-
tion network. Finally, we find the most optimal location to
place PhasorSec based on the importance of the PMUs and
the network topology. Figure 2 demonstrates the purpose of
PhasorSec in a substation network.

A. Designing PhasorSec

The LangSec methodology involves a critical reading of
the protocol specification to be able to extract information
that is needed to build parsers. We start by understanding
what states follow in the protocol, and the messages that are
to be accepted by each of these states. The architecture of
our parsing methodology can be seen in Figure 3. A clear
and direct correlation between the packet format diagram, the
grammar and the code validating this grammar is necessary,
and is the goal of LangSec, since it helps programmers and
auditors alike.

We make use of the Hammer parser combinator toolkit to
both describe our extracted grammar for each state of the
C37.118 protocol, and at the same time implement a parser
for the prootocol. Our coding style makes the C/C++ code
more clean and concise, and more readable that the pointer
arithmetic-based parsing code usually written.

Extracting the session language: To understand how the
parser must be built, we need to understand the exact order
in which the messages are sent and received. In some cases,
messages that aren’t supposed to appear one after the other
or in a certain order may appear so, and the session language
must be able to reject such messages. Figure 1 shows the
communication between the PMU and the PDC from which
we can extract the individual state machines for both the PMU
and the PDC. Figure 2 also shows the session language or the
protocol state machine for an individual PDC.

Extracting grammar from specification: Usually all pro-
tocol specifications have clear descriptions of what are the
various packet formats. The specifications also include some

Fig. 3: Parsing methodology in PhasorSec. For protocols
involving complex session languages and states, we would first
perform a well-formedness check to make sure the message
overall conforms to the specification of the protocol, and only
then parse the message with respect to the current state of the
system.

critical information such as what the boundaries of the various
parts of the payload are, and which fields depend on other
fields. Context-sensitivity must usually be avoided, and we
advocate that we must stick to the easily recognizable regular
and context-free languages. A LangSec analysis of the specifi-
cation would reveal such issues as pitfalls in the specification
of protocols [14]. Below is the grammar we were able to
extract for the C37.118 protocol. A well-formed PMU frame
can comprise any of the four frame types. One thing to note
in the config frame description is that the Station config
field repeats NUM PMU times. This leads to a complexity in
parsing, since this value NUM PMU has to first be extracted,
following which the rest of the packet has to be extracted. The
same occurs for the fields PHUNIT, ANUNIT and DGUNIT
which all depend on the previous values PHNMR, ANNMR
and DGNMR for their lengths.

config frame → Header NUM PMU Station config∗

Header → sync framesize idcode soc

fracsec time base

Station config → name id code FORMAT

PHNMR ANNMR DGNMR

PHUNIT ANUNIT DGUNIT options

options → ε | options DATA RATE |
options CHKSUM

Well-formedness check: We build recognizers for the cho-
sen protocol, and recognize the overall syntax of the message,
without actually taking into consideration the session state the
receiver is in. This check is really important, since there are
some semantic actions involved in checking whether a receiver
is in a certain state, and making sure the correct parser is being
run on it. When a device is on the receiving end of a stream of

header = h_sequence(h_uint16(), h_uint16(), h_uint16(),
h_uint32(), h_uint32(), h_uint32(), NULL);

station_config = h_sequence(name, id, format, phnmr, annmr,
dgnmr, phunit, anunit, dgunit, options, NULL);

options = h_sequence(h_optional(h_uint16()),
h_optional(h_uint16()), NULL);

initial_parse = h_sequence(header, h_uint16(), NULL);
next_parse = h_repeat_n(station_config, num_pmu);

Fig. 4: The Hammer-based code for handling the C37.118
configuration frame as described in the grammar above.

completely malformed and invalid messages, these messages
get rejected directly at this step without being subject to any
semantic actions hence saving CPU time and memory. The
placement of the well-formedness check in the code can be
seen in Figure 3.

Parsing based on the session state: Once the message is
checked for overall syntactic validity in the well-formedness
check, we check which state our system is in, and deploy that
particular parser to be run on the given input to make sure
that the message we received is not just structurally correct,
but also valid with respect to the current state our system is
in. In most protocols that are based on sessions, including
the C37.118 protocol we study in depth in this paper, parsing
based on the current state is important since these parsers need
to be changed based on a set of variables that were set by
previous messages. In the C37.118 protocol specifically, the
data frame parsers need to be built based on the configuration
frame that was received previously. Figure 3 describes how
each state of the system has a parser of its own, that gets
called if a message was received in that particular state. Figure
4 shows a snippet of how the grammar in the previous section
translates directly to a parser in our code snippet written in C.
As described, due to the dependency of the fields within the
packet, partial parses are necessary.

PhasorSec as a bump-in-the-wire. One of the bigger goals
of PhasorSec is to make sure that all the C37.118 packets in
our scope goes through our parsers, and no device receives
a packet that has not been parsed by one of our parsers. To
introduce PhasorSec as a bump in the wire, we perform the
following:

• The PhasorSec device performs an arpspoof on the PMUs
telling them that it is the PDC, and the vice versa to the
PDC.

• We use scapy1 to recover the packets the PDC is sending
or receiving.

• The state of each of the connection is maintained in the
form of a finite state machine, and the correct parser is
called.

In case of failure to parse a message, PhasorSec logs the
message after dropping the packet. If the parsing is successful,
PhasorSec forwards it on to the recipient.

B. Deployment

Applications that depend on synchrophasor data often have
real time requirements in the order of seconds. Meeting these

1Scapy helps us manipulate packets on the wire - https://scapy.net/

demands can be hard and hence security considerations are
often ignored in the pursuit of performance requirements.
In deploying PhasorSec, we hope to guarantee end to end
delay requirements while providing input validation. Another
constraint is the strict security budget that utilities have which
makes it expensive to deploy and manage a filter per network
link. In Section IV we show that PhasorSec adds a network
overhead in the order of a few microseconds and hence even
if we were to deploy a filter on every network link, the end
to end delay requirements for even the most time critical
of applications will not be exceeded. Hence, we define the
problem of deploying PhasorSec as maximizing the number
of links that are monitored by a filter while guaranteeing that
the budget is met [15].

We represent the WAMS network as an undirected graph
G = (W ∪N,L), where W is the set of WAMS devices and
N is the set of network infrastructure nodes. L is the set of
links at which PhasorSec can be deployed.

Objective function: Not all network links are created
equal i.e. some links carry data from PMUs that provide
more valuable measurements than other PMUs. Thus, we can
assign an importance to each network link. Let w(li) be the
importance of link i. The objective of PhasorSec deployment
is then to maximizie coverage of the most important links.

Deployment Cost: The cost of deploying the network
appliance is affected not just by the cost of the appliance itself
but also the cost of installation which can vary significantly
due to geographical location or accessibility of the substation.
Let c(Sj) be the cost of placing a filter on a set of links
Sj ⊆ L.

Hence, the formal definition of deployment is given by the
following equation where xi = 1 if link li is selected and
yj = 1 if a set Sj of links is chosen.

maximize
∑

w(li)xi

subject to
∑

C(Sj)yj ≤ B;

xi ∈ {0, 1};
yj ∈ {0, 1};

Note that this is reformulation of the budgeted maximum
coverage problem which is NP-hard [16]. There exists a 1− 1

e
approximation algorithm to solve the problem [16]. It turns
out that the greedy algorithm achieves the best approximation
ratio.

IV. EVALUATION

We evaluate our parsers using three broad validation tech-
niques. We performed a static analysis on our system, we fuzz-
tested our system, wrote unit tests, and performed CPU-time
analysis.

A. Unit Testing, Static Analysis and Coverage

We make use of the Infer tool to perform a static analysis
of our system [17]. Our implementation was found to not
have any of the categories of errors found by infer, namely,

Type Lines Percentage
Line Coverage 364/485 75.1%
Function Coverage 31/34 91.2%

TABLE I: Code coverage of the C37.118 parser using gcov
and lcov. This shows the number of lines and functions that
could be reached by our unit testing suite.

Parser Total Run-time Crashes Hangs Cycles
Configuration Frame 25 hours 0 37 9452
Data Frame 25 hours 0 42 10300

TABLE II: A summary of our AFL fuzz-testing results.

null de-references, memory leaks, premature nil termination
arguments and resource leaks.

We used a set of unit tests to test our implementation of the
C37.118 protocol. To validate our unit testing technique, we
used gcov to assess the code coverage of our implementation.
The results of our coverage are in Table I.

B. Fuzzing

We make use of coverage-guided fuzz-testing using the
American Fuzzy Lop fuzzer (AFL). Figure 5 shows that we
ran AFL on the configuration frame parser. Our results show
that after 25 hours of fuzzing, there were no crashes. Although
there were several hangs, these were mostly due to the fact
that our parser was stateful.

C. Timing Analysis

The experiments were run on an Firefly Development Board
with a Quad-core ARM Cortex-A17 processor and 2GB of
RAM.

Frame CPU Time Lines of code
Command Frame 20 µs 29
Configuration Frame 13 µs 71
Data Frame 27 µs 56
Header Frame 80 µs 30

TABLE III: We compare the time taken to parse each of the
frames and the number of lines of code in each of these
parsers.

Fig. 5: AFL Fuzzer screenshot showing results of fuzz-testing
of our configuration parser written in hammer.

Fig. 6: AFL did not detect any crashes and had only two
unique hangs after over 24 hours of testing for both the
configuration frame and command frame parsers..

We perform CPU-time analysis on the individual parsers,
to understand the overhead which would be introduced. The
command frame and the header frame would have to be
parsed at the PMU, and the configuration and data frames
would be parsed at the PDC which aggregates the data from
multiple PMUs. In Table III, we see that the overhead due
to the addition of these parsers is very minimal (in the order
of micro-seconds) considering that it prevents input-handling
vulnerabilities and bugs. We also note that the complex parser
we have written was for the configuration frame, which
contains the context needed for the data frames to parse the
data correctly. Despite performing stateful parsing, we note
that we can construct these parsers in under 75 lines of code
each.

V. CONCLUSION

We showed that a context-aware parser can be built for the
C37.118 parser, that is not only resilient to state-of-the-art
fuzzing techniques such as AFL, but also does not add much
overhead to the devices.

We started with a critical reading of the specification of
the IEEE C37.118 protocol, understanding what devices are
included in the protocol, and at the same time understanding
the syntax and semantics of the messages. We implemented
individual parsers for the different messages, that first look at
the overall syntax of the message, and then look at the context
of the device based on the previous messages.

Although our current design is inspired from our discus-
sions with domain experts, we anticipate that the substation
networks are moving slowly towards software-defined net-
working. In our future work, instead of using an ingress-
based network appliance, we would instead like to move to
software switches based on P4 [18]. To improve usability of
hammer, we will also explore using domain specific languages
to improve the usability of the parser building methodology.

CODE AVAILABILITY

The source code of our system is available at
https://github.com/Dartmouth-Trustlab/C37.118PMU.

ACKNOWLEDGMENT

This material is based upon work supported by the De-
partment of Energy under Award Number DE-OE0000780.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of United States Government
or any agency thereof.

The authors would like to thank Dr. David Nicol for his
insightful ideas during the initial phases of the project. The
authors would also like to thank Dr. Carl Hauser and Tim
Yardley for their help and guidance in obtaining datasets for
our research.

REFERENCES

[1] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer,
N. Weaver, D. Adrian, V. Paxson, M. Bailey, and J. A.
Halderman, “The matter of heartbleed,” in Proceedings of the
2014 Conference on Internet Measurement Conference, ser. IMC ’14.
New York, NY, USA: ACM, 2014, pp. 475–488. [Online]. Available:
http://doi.acm.org/10.1145/2663716.2663755

[2] C. Mary, “Shellshock attack on linux systems–bash,” International
Research Journal of Engineering and Technology, vol. 2, no. 8, pp.
1322–1325, 2015.

[3] S. Bratus, A. J. Crain, S. M. Hallberg, D. P. Hirsch, M. L. Patterson,
M. Koo, and S. W. Smith, “Implementing a Vertically Hardened DNP3
Control Stack for Power Applications,” in Proceedings of the 2nd
Annual Industrial Control System Security Workshop, ser. ICSS ’16.
New York, NY, USA: ACM, 2016, pp. 45–53. [Online]. Available:
http://doi.acm.org/10.1145/3018981.3018985

[4] Industrial Control Systems Cyber Emergency Response Team, “OSIsoft
Multiple Vulnerabilities,” https://ics-cert.us-cert.gov/advisories/ICSA-
13-225-02, 2015.

[5] M. Sipser, Introduction to the Theory of Computation. Thomson Course
Technology Boston, 2006, vol. 2.

[6] “IEEE Standard for Synchrophasor Data Transfer for Power Systems,”
IEEE Std C37.118.2-2011 (Revision of IEEE Std C37.118-2005), pp.
1–53, Dec 2011.

[7] P. Anantharaman, M. Locasto, G. F. Ciocarlie, and U. Lindqvist,
“Building Hardened Internet-of-Things Clients with Language-theoretic
Security,” in 4th Language-theoretic Security Workshop at IEEE Sym-
posium on Security and Privacy. San Francisco, CA, USA: IEEE, May
2017, pp. 120–126.

[8] Y. Yang, K. McLaughlin, S. Sezer, T. Littler, B. Pranggono,
P. Brogan, and H. Wang, “Intrusion detection system for network
security in synchrophasor systems,” IET Conference Proceedings,
pp. 246–252(6), January 2013. [Online]. Available: http://digital-
library.theiet.org/content/conferences/10.1049/cp.2013.0059

[9] J. Stewart, T. Maufer, R. Smith, C. Anderson, and E. Ersonmez,
“Synchrophasor security practices,” Tennessee Valley Authority Report,
2011.

[10] L. Coppolino, S. D’Antonio, I. A. Elia, and L. Romano, Security
Analysis of Smart Grid Data Collection Technologies. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 143–156. [Online].
Available: https://doi.org/10.1007/978-3-642-24270-0 11

[11] Mitre, “Arbiter Power Sentinel Denial of Service Attack,”
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3012, 2012.

[12] ——, “OSIsoft PI Interface for IEEE C37.118 Memory Corruption
and Consumption through crafted packets,” http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2013-2800, 2012.

[13] ——, “OSIsoft PI Interface for IEEE C37.118 shutdown and data
collection outages through crafted packets,” http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2013-2801, 2012.

[14] F. Momot, S. Bratus, S. M. Hallberg, and M. L. Patterson, “The seven
turrets of babel: A taxonomy of langsec errors and how to expunge
them,” in Cybersecurity Development (SecDev), IEEE. IEEE, 2016,
pp. 45–52.

[15] P. Kansal and A. Bose, “Bandwidth and latency requirements for smart
transmission grid applications,” IEEE Transactions on Smart Grid,
vol. 3, no. 3, pp. 1344–1352, 2012.

[16] S. Khuller, A. Mossy, and J. S. Naorz, “The budgeted maximum
coverage problem.”

[17] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca,
P. W. O’Hearn, I. Papakonstantinou, J. Purbrick, and D. Rodriguez,
“Moving Fast with Software Verification.” in 7th NASA Formal Methods
International Symposium (NFM). Pasadena, CA, USA: Springer, 2015,
pp. 3–6.

[18] N. Lopes, N. Bjørner, N. McKeown, A. Rybalchenko, D. Talayco, and
G. Varghese, “Automatically verifying reachability and well-formedness
in P4 Networks,” Technical Report, Tech. Rep., 2016.

