
Practical server
privacy with secure
coprocessors

by S. W. Smith
D. Safford

What does it take to implement a server that
provides access to records in a large database,
in a way that ensures that this access is
completely private—even to the operator of this
server? In this paper, we examine the question:
Using current commercially available technology,
is it practical to build such a server, for real
databases of realistic size, that offers reasonable
performance—scaling well, parallelizing well,
working with the current client infrastructure,
and enabling server operators of otherwise
unknown credibility to prove their service has
these privacy properties? We consider this
problem in the light of commercially available
secure coprocessors—whose internal memory
is still much, much smaller than the typical
database size—and construct an algorithm
that both provides asymptotically optimal
performance and also promises reasonable
performance in real implementations. Preliminary
prototypes support this analysis, but leave many
areas for further work.

This paper presents some of our work in using
commercial off-the-shelf (COTS) secure coproces-

sors to enhance privacy and security of servers in gen-
eral, and our consideration of private information
retrieval in particular. We start by setting the broad
context of this research effort. Is there a practical
way to systematically add privacy to real distributed
information services?

This question has many aspects. To begin with, the
World Wide Web is currently the pre-eminent me-
dium for distributed information services. If we want
to design a practical system, it had better fit within
this medium by using the existing client infrastruc-
ture; by minimizing changes to current server infra-

structure; by maintaining reasonable server per-
formance, at realistic workloads; and by being
deployable with currently existing, commonly avail-
able technology.1

However, discussions of Web security and privacy
usually focus on just a few areas: authentication of
the server, encryption of the client-server traffic, and
potential server use of cookies. These discussions
overlook a more fundamental issue: participants in
distributed Web services are forced to trust the in-
tegrity of the server. That is, participants must trust
that the server works as advertised, that it keeps pri-
vate client data private, and that it otherwise behaves
correctly. Given that the current Web public key in-
frastructure (PKI) establishes little more than server
identity, and that the Web creates a global market-
place where clients may have no additional informa-
tion about a server operator, these issues are crit-
ical. Stakeholders include the clients whose interests
directly depend on these privacy and security prop-
erties of the server. Stakeholders also include the
server operators themselves, who may gain a com-
petitive or legal advantage by being able to estab-
lish, with high assurance, that their service can be
trusted—even though they may have motivation to
subvert it.

As an extreme end point, we say that a server is root-
secure with respect to certain properties when an ad-

rCopyright 2001 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001 0018-8670/01/$5.00 © 2001 IBM SMITH AND SAFFORD 683

versary—even with the equivalent of UNIX** “root”
privileges on the host—who cannot break some level
of cryptography is not able to subvert them. We are
interested in root security for several reasons. First,
it protects—maximally, by some metrics—the pri-
vacy of the user’s actions: from the owners of the
service, from hackers who may break into the ser-
vice, from external parties who may compel the op-
erator to provide inside access, and from adversar-
ies who physically seize control of the machines.
Additionally, by its maximal nature, root security pro-
vides a level of privacy that may actually provide prac-
tical assurance, because history has shown that spec-
ifying weaker levels of security can open the door
to unexpected compromise.

In broad strokes, then, much of our current re-
search1,2 focuses on developing practical tech-
niques—that is, with minimal change to the current
paradigm—to add provable root security to servers
even when run by operators of otherwise unknown
credibility.

The enabling technology. The secret weapon we
bring to this family of problems is a high-performance
secure coprocessor: a general-purpose computer that
can be trusted to carry out its computation unmo-
lested, even if the adversary has direct physical ac-
cess to the device.

Yee’s seminal work3 demonstrated the potential of
such devices. Smith and Weingart4 showed how to
build a generic secure coprocessor platform that
third-party application developers could then trans-
form into such special-purpose devices. This research
culminated in the family of commercially available
devices, the IBM Cryptographic Coprocessor.5 These
devices feature—in a PCI (Peripheral Component In-
terconnect) form factor—a general-purpose comput-
ing environment (99 MHz 486-class CPU, megabytes
of memory), physical and logical security protection
validated at FIPS (Federal Information Processing
Standard) 140-1 Level 46, as well as hardware 3DES
(Triple Data Encryption Standard) and SHA (Secure
Hash Algorithm), and a FIFO (first-in-first-out) struc-
ture to allow fast data movement through these el-
ements.7

The coprocessor hardware architecture provides a
general-purpose computing environment for appli-
cations, with hardware support for cryptographic ap-
plications. However, the device also provides cru-
cial security features. Continuously active tamper-
detection circuitry monitors tamper detectors and,

in case of physical attack, destroys sensitive secrets
in secure memory before an adversary can access
them. Hardware locks protect crucial code and se-
crets from possibly malicious or faulty application
code, preserving the ability of each device to prop-
erly authenticate its configuration, and preventing
a device with a rogue application from impersonat-
ing other devices and applications.

The coprocessor5 features a software architecture
that permits application developers to install and up-
date their applications onto these devices at customer
sites, in a way that protects the privacy and security
interests of the developers, the customers, and IBM.
The Model 2 family of the IBM 4758 includes full sup-
port for outbound authentication, which enables on-
board applications to authenticate, to remote enti-
ties, their identity and their status as applications
running on untampered hardware.

The software and hardware architecture that sup-
port outbound authentication take into account the
possibility that malicious code may run at root level
and that a corrupt version of the code-loading code
may be released. See our paper4 on the architecture
for more details. The architecture extends to han-
dle the trust issues introduced by maintenance of
lower-level code.

The retrieval problem. For this paper, we consider
the specific problem of private information retrieval
(PIR). What does it take to implement a server that
provides access to records in a large database, in a
way that ensures access privacy and, potentially, the
privacy of contents of the records themselves, even
to the operator of this server?

We apply the private information retrieval problem
to a real-world computer security application and ex-
amine the question: using current commercially
available technology, is it practical to build such a
server, for real databases of realistic size, that offers
reasonable performance?

In a root-secure retrieval scheme, the adversary
should neither be able to learn what record i was
requested in a particular query, nor learn indirect
statistics such as “pi is the most popular record re-
quested” or “users who request pi usually also re-
quest pj” for some permutation p, possibly un-
known. For a service with the stronger property of
content privacy as well as access privacy, the adver-
sary should also not be able to learn the plaintext
contents of any particular record. However, content

SMITH AND SAFFORD IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001684

privacy does have a limit: if the adversary works with
an authorized user, then he or she can learn what
that user is authorized to learn.

With root security we require that the query, the re-
sult, and all statistics be secure against traffic anal-
ysis and deliberate probing, and memory manipu-
lation on the host. However, we are not concerned
about denial of service, nor about hiding the fact that
a query took place, nor—in this model—hiding who
created the query.

Motivation. Access privacy alone would benefit many
real-world scenarios. In the domain of patent infor-
mation, data mining on a competitor’s patent
searches could shed useful light on the competitor’s
confidential research projects. In the domain of map-
ping data, oil companies prefer that their compet-
itors not know their latest drilling locations. In the
domain of medical records, unethical employers
might wish to know how often a job applicant’s med-
ical records have been accessed, because frequent
access might indicate a potentially expensive health
problem.

Many other scenarios would benefit from content
privacy as well as access privacy. For one example,
consider archives of human rights abuses and sup-
pose the server is seized, or the operator is served
with a subpoena, or is offered a sufficiently large
bribe, by an adversary interested in some particular
subset of records. The users who accessed those rec-
ords would benefit if this adversary could not iden-
tify them. Furthermore, activists in a particular hu-
man rights case would benefit if the adversary could
neither read any records relevant to that case, nor
learn if any such records exist in the system.

In another domain, consider “Privacy Act” data-
bases. Root-secure access privacy and content pri-
vacy would benefit applications with large amounts
of personally identifiable information, where the en-
tity administering the application has strong moti-
vation to suppress insider abuse. For example, con-
sider a tax authority where auditors with special
authorization can examine the tax records of spe-
cific individuals. Root-secure access privacy would
ensure that even the operator with root authority
cannot know who is being audited. Root-secure con-
tent privacy would ensure that even the operator with
root authority on the server could not reveal indi-
vidual records without authorization.

If a data exchange service ensures privacy of access
and contents even from the server operator with full
root privileges, then it can arguably also ensure pri-
vacy from wiretapping/analysis devices, such as the
FBI’s Carnivore tool (e.g., Reference 8), that the op-
erator may be compelled to install.

Similarly, a group wishing to set up a private file ex-
change service might prefer not to know which users
have been accessing pirated MP3 files—or even if
there are any MP3 files, pirated or not, in the service.
(In a later section, we discuss the legal and ethical
implications and some ideas for addressing them.)

We note that systems where users may update rec-
ords would require that records be stored in cipher-
text, and that all records be re-encrypted after each
update. Otherwise, the operator with root authority
can learn about user action from observing which
records change.

Previous research. Previous theoretical work in pri-
vate information retrieval (e.g., References 9, 10) has
explored coding techniques by which a user can query
a distributed database but hide details of these que-
ries from the database itself. In this paper, we are
not interested as much in the abstract problem as
in its practicality: can we actually implement this with
existing technology, and for realistic databases, and
provide reasonable performance?

This motivation provides us with goals that (for now)
take us away from the focus of the earlier work. Such
goals include: minimizing user computation, since
no one wants to change the client too much; min-
imizing user-server traffic, since, for remote users,
that is expensive; efficiently handling many queries
at once; parallelizing well, so that adding more hard-
ware speeds things up; and using algorithms that de-
pend on computation (such as streaming encryption)
that our special-purpose technology can do quickly.
We later revisit these issues.

Previous theoretical work on oblivious RAM11 (ran-
dom access memory) addresses how to prevent in-
struction fetches from leaking execution details, but
it explicitly dismissed secure coprocessors as “infea-
sible.” Previous work in secure file systems12 and
cryptopaging3 protects database privacy against theft,
but not against a malicious root. Indeed, other work13

inquired about how adversaries might learn inter-
nal operational details from observing cryptopaging
details.

IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001 SMITH AND SAFFORD 685

Previous work in anonymizers14 protects the privacy
of who is taking some action. Root security addresses
the complementary problem of protecting what the
action is. The implementation and use of mobile
agents as a model for distributed information ser-
vices is another area of complementary research15,16

that suggests several areas for future work, such as
exploring our server privacy techniques in order to
protect agent privacy, and extending our techniques
to provide privacy when the server handles requests
not via a local database query, but via the dispatch
of an agent.

This paper. We are interested in providing a root-
secure retrieval service, using current secure copro-
cessor technology. In the next section, “Problem,”
we present this version of the retrieval problem and
derive the theoretical optimal efficiency for this
model. In the section “Algorithms” that follows, we
present two algorithms: a straightforward one that
neither scales nor parallelizes well, and a more sub-
tle one that does and also achieves this theoretical
optimal efficiency. Then, in the section, “System,”
we present the current status of our efforts to use
these ideas to build a prototype of a complete pri-
vacy server system. We then conclude with avenues
for future work.

Problem

As noted, secure coprocessors provide a safe haven
in which to execute code and carry out high-speed
cryptography. Their commercial availability changes

the playing field. Previous work11 dismissed using
“physically protected special-purpose computers for
each task” as “infeasible” but “trivial.” The hardware
approach is no longer infeasible: subsequent secure
coprocessor research has advanced the state of the
art, and now permits any researcher with a few
US $10K of funds to build a private information server
by taking a host machine with ample PCI slots and
inserting these coprocessors.

However, an efficient realization of the hardware ap-
proach is elusive. Building a practical server using
these devices creates a challenge: how to provide rea-
sonable performance for databases typically much,
much bigger than the internal memory of these de-
vices. Obviously, we want to be able to handle any
one query in a reasonable time. However, we also
want performance to scale with the number of que-
ries: the processing of Q queries should not multi-
ply the query processing time by Q. Furthermore,
we want to be able to exploit the parallelism offered
by multiple devices: doubling the hardware should
reduce the total time by two. This paper addresses
these challenges.

The model. We abstract from the specific problem
of coprocessor-based information retrieval to the
model described below. We consider the most gen-
eral case: a server that hides both access and con-
tent from its operator.

Our model consists of a single server that has a num-
ber of secure coprocessors, and that provides a query
service to a database containing records. Each record
is stored as a unit on some suitable high-perfor-
mance, but not necessarily secure, storage medium
separate from the coprocessors. The stored records
are encrypted and authenticated. Figure 1 shows this
architecture.

We assume a secure coprocessor model based on the
commercially available device, where the symmet-
ric encryption engine can be configured in series with
internal/external data transit mechanisms and thus
the time complexity for encryption/decryption can
be modeled solely by the per-byte data transit rate.

Formally, we describe the problem with the follow-
ing parameters. The server has RecNum records,
51, . . . , 5RecNum. Each record is padded out to some
maximum RecSize bytes. The server has CardNum
coprocessors, #1, . . . #CardNum. We assume #1 is des-
ignated as the master coprocessor for the server. Each

Figure 1 System architecture for coprocessor-based
 retrieval

SMITH AND SAFFORD IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001686

internal coprocessor has a data memory of size Card-
Size bytes. We assume that

RecNum z RecSize..CardNum z CardSize

and it may even be the case that even RecSize . Card-
Size. We assume the server is processing QueryNum
queries.

Let % and $ be authenticated encryption and de-
cryption functions, respectively, based on a suitably
secure symmetric cipher. For example, % might con-
sist of appending a keyed message authentication
code (MAC), such as SHA-HMAC (hash-based MAC),
then encrypting the result using Triple DES (3DES)
in outer-CBC (cipher block chaining) mode. (We re-
fer the reader to a standard cryptographic reference,
such as Reference 17, for more discussion of these
topics.) $ consists of decrypting, then verifying the
hash or MAC. Using a keyed MAC instead of a hash
function frees us from potential attacks if the encryp-
tion function is not known to be nonmalleable. Al-
ternatively, % and $ might instead consist of 3DES
using recently discovered chaining modes18 that pro-
vide authentication as well. The fact that such chain-
ing can be carried out on different portions of the
data in parallel may also prove useful for our situ-
ation.

Throughout this paper, “encryption” and “decryp-
tion” will refer to operations with % and $, respec-
tively. If the service did not provide content privacy,
then we would need to separate integrity checking
from encryption, and—assuming that just doing an
integrity check is cheaper—use just the former on
the stored records.

For the actual problem, we can think of a query Q
as a pair (i, _) where i is the record index and _
is the session key. A user-generated query is sent to
the master coprocessor #1. After some processing
the server returns %_(5i) to the user, that is, the de-
sired record 5i encrypted under the specified ses-
sion key _. In the general case, the server and its
coprocessors need to be able to handle up to Que-
ryNum queries simultaneously.

Previous work in private information retrieval usu-
ally characterizes the problem in terms of a data-
base of n bytes, with k noncooperating servers. For
our model, n 5 RecNum z RecSize, but k 5 1, be-
cause we only have one server. Furthermore, we want
this to be practical; hence, in contrast to previous

research, we restrict the user’s computation to the
above two steps: establishing a session key and record
number, and then receiving and decrypting the de-
sired record.

A theoretical lower bound. We now derive an asymp-
totic lower bound for the time complexity of pro-
viding private information retrieval in our model.
That is, we present a function of the model param-
eters, such that, when all the parameters become suf-
ficiently large, the actual time complexity is bounded
below by this function multiplied by some constant.
We refer the reader to a standard complexity ref-
erence, such as Section 2.1 in Reference 19, for more
discussion of these topics.

In our initial analysis, we permit the system the lux-
ury of accepting and processing the queries as a
batch, but nevertheless follow the above storage
model in which each record is stored separately, and
no information is cached inside the coprocessors
across more than one batch.

In any root-secure algorithm for this model, each byte
in each encrypted record must be read by at least
one coprocessor when answering the set of Query-
Num queries. Otherwise, if part of some 5i was not
read, then the adversary would know that 5i was not
one of the requested records. Thus, any algorithm
meeting these conditions must process RecNum z
RecSize byte through the symmetric cipher.

Furthermore, each of the requested records must be
re-encrypted for the requestors. This is an additional
QueryNum z RecSize bytes.

Since the bytes can be processed across CardNum
coprocessors, and we are assuming that the copro-
cessor time complexity can be modeled by simple
data transit rate, we have that any algorithm satis-
fying these conditions must have asymptotic time
complexity bounded below by:

VS~RecNum 1 QueryNum! z RecSize
CardNum D

Algorithms

To simplify exposition, we start with a straightfor-
ward but inefficient algorithm for coprocessor-based
retrieval, and then we describe an asymptotically op-
timal one.

IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001 SMITH AND SAFFORD 687

Algorithm 1. We begin by considering the most
straightforward algorithm: each record 5i is stored
encrypted as a separate ciphertext %(5i), computed,
using secret keys, by the coprocessors but not by the
host, obviously. The coprocessor just streams in the
entire database, looking for the correct record.

Problems arise, however, when one tries either to
handle more queries, or divide the work among mul-
tiple devices. Let us first consider an easy case. Sup-
pose QueryNum 5 1, CardNum 5 1, and RecSize #
CardSize/2. To handle query Q1 5 (i1 , _1), one co-
processor can simply use the following algorithm:

● For 1 # i # RecNum, have each %(5i) streamed
in through the symmetric engine.

● If i 5 i1 , then save these bytes in internal mem-
ory.

● If i Þ i1 , then throw them away, but take the same
amount of time as it would to save them. The
CardSize/2 assumption on record size means that,
even if the architecture does not support anything
more clever, we can always just bring the uninter-
esting records into a dummy buffer.

● When all RecNum records have been processed,
then the record of interest 5i1

is in internal stor-

age. We stream it back out through the symmetric
engine, encrypting under _1.

Since our system model assumes encryption/decryption
hardware in series with the internal/external data
transit mechanism, this straightforward case requires
transferring RecNum z RecSize bytes in, then send-
ing RecSize back out. Thus, this straightforward han-
dling of this easy case takes time O(RecNum z Rec-
Size). So far, so good.

Let us now proceed to a more general case. When
CardNum . 1, then each coprocessor can scan
1/CardNum of the records. However, we then have
a problem. Only one of these coprocessors has the
right answer. But if, for some j, we do not read Rec-
Size bytes from coprocessor #j , then the adversary
will know that the queried record is not in the jth
1/CardNum of the records. Figure 2 illustrates this
approach.

Consequently, we need to break the algorithm into
two phases: the streaming phase, where each copro-
cessor reads in its share of the encrypted records,
then outputs either the encrypted answer or en-
crypted nonsense, where these are encrypted with
some intermediate set of keys; and then the com-
bination phase, where we must combine these par-
tial results by selecting one of these CardNum rec-
ords in a root-secure way. This straightforward
approach to this harder case yields complexity

OSRecNum z RecSize
CardNum

1 CardNum z RecSizeD
Let us now consider another generalization: bigger
records. During the streaming phase, a coprocessor
needs to consider two records: the current candidate
and a placeholder for the correct record.

When CardSize was big enough, the coprocessor
could store the placeholder internally and still have
room to bring in each candidate one at a time. As
a consequence, each step of “stream in a record” re-
quired one transfer of RecSize bytes, through the de-
cryption engine and into the card. However, if Rec-
Size . CardSize, then the placeholder must be stored
externally, instead of in the card. Furthermore, the
coprocessor had better read and rewrite this place-
holder at each step, otherwise, it will reveal the iden-
tity of the record of interest. Hence, in addition to
the transfer of RecSize bytes to bring in the record
of interest, we must bring in the RecSize bytes of the

Figure 2 Coprocessor-based retrieval using Algorithm 1

SMITH AND SAFFORD IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001688

current placeholder, and then send RecSize bytes
back out when we rewrite it. Thus, the constant on
RecSize goes up to three. Again, recall that in our
system model, the encryption/decryption engine can
be configured in series with the transfer mechanism.

Finally, when we consider the fully general case (with
QueryNum . 1), we run into even more complica-
tions. During the initial streaming phase, each co-
processor, in order to process its RecNum/CardNum
records for QueryNum queries, must either go
through the records QueryNum times, or go through
them once but process QueryNum cached copies at
each step (or some combination thereof). During the
streaming phase, each coprocessor thus ends up han-
dling O(QueryNum z RecNum z RecSize/CardNum)
bytes somehow. During the combination phase, we
then need to select QueryNum of QueryNum z Card-
Num records. This appears to take at least Query-
Num z CardNum z RecSize bytes.

Thus, the straightforward approach to the fully gen-
eral case yields suboptimal complexity of

OSQueryNum RecNum RecSize
CardNum

1 QueryNum z CardNum z RecSizeD
Algorithm 2. We now present a more efficient algo-
rithm and start immediately with the general case:

QueryNum $ 1

Upon analysis, the above straightforward approach
to the fully general case is slow for two reasons. First,
in the streaming phase, because RecSize . CardSize,
each coprocessor must handle QueryNum z RecSize
bytes three times for each record. Second, in the com-
bination phase, because any one coprocessor could
potentially have all QueryNum records, we need to
look at all QueryNum z RecSize bytes from each co-
processor. Not looking at all the output from a given
coprocessor would let the adversary conclude that
at least some of the records of interest did not come
from that coprocessor’s share.

To overcome these problems, we develop an alter-
nate way to subdivide the records. Suppose that, dur-
ing the streaming phase, each record is small enough
so that essentially QueryNum z RecSize # CardSize,
and thus each coprocessor need only handle (Que-

ryNum 1 RecNum) z RecSize bytes. Then during the
combination phase, no correlation needs to be bro-
ken—so at worst, this only requires re-encryption of
the QueryNum z RecSize bytes to be returned to the
users.

The key to obtaining this efficiency is to abandon the
idea of storing and processing a record’s data as an
atomic unit. Instead, we divide each record into stripes
of size StripeSize bytes, as illustrated in Figure 3.
Let StripeSize # CardSize/QueryNum, so QueryNum
stripes fit inside one coprocessor. We organize the
data processed by a coprocessor as a sequence of
buckets of stripes, where the ith bucket consists of
the ith stripe of each record and the number of buck-
ets is

B 5 RecSize/StripeSize

In the streaming phase of this algorithm, as with the
straightforward algorithm presented earlier, each
coprocessor handles a bucket by streaming it in one
stripe at a time. If the stripe belongs to a record that
is being queried, then the coprocessor saves it in in-
ternal memory; otherwise, the coprocessor discards
it. However, this operation must be coded so that
both options take the same time; otherwise, an ad-
versary could observe the difference. When the
bucket is done, the coprocessor has QueryNum
stripes in its memory; it re-encrypts each with an ap-
propriate key and outputs it. Thus, the time per
bucket is (RecNum 1 QueryNum) z StripeSize. Since
the total number of buckets is RecSize/StripeSize and
each coprocessor handles 1/CardNum of the buck-
ets, this gives a net cost for the streaming phase of

RecSize
StripeSize

z
1

CardNum

z ~RecNum 1 QueryNum! z StripeSize

5
~RecNum 1 QueryNum! z RecSize

CardNum

Notice that not only is this the asymptotic optimum
for this model, but we also have a constant of one.
If we model coprocessor performance by data trans-
fer rate through the engine, then we need only mul-
tiply the above by the engine’s time-per-byte to get
a time estimate for this streaming phase.

However, a significant advantage of striping is that
the combination phase becomes very simple, because

IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001 SMITH AND SAFFORD 689

we have no information to suppress. In Algorithm
1, if the adversary can observe whether or not a query
result came from the output of a particular copro-
cessor after the streaming phase, then the adversary
can learn whether or not that requested record was
in that coprocessor’s 1/CardNum of the records. But
in Algorithm 2, the adversary already knows that,
after a given coprocessor processes a given bucket
@ i , this coprocessor will output the ith stripe of each
requested record—and this does not help, since the
bucket the coprocessor examined contained the ith
stripe of every record.

Thus, in the striping algorithm, at the end of the
streaming phase, coprocessor # j outputs the jth
1/CardNum of each record, as a sequence of sepa-
rately encrypted stripes. For the combination phase
we consider two cases. If the users are satisfied with
receiving ciphertext with a new initialization vector
for each stripe, then combination consists of merely
concatenating the stripes at no additional cost. Al-
ternatively, combination consists of rereading and
re-encrypting the responses, at a cost of another
O(QueryNum z RecSize/CardNum) bytes. Note that
in the first case, if consecutive stripes are concur-
rently encrypted by different coprocessors, then the

last block of a stripe will not be ready in time to use
as the initialization vector for the next. In general,
the user would need to deal with CardNum indepen-
dent chains. Either approach leaves the asymptotic
cost of the striping algorithm at the theoretical op-
timum:

OS~RecNum 1 QueryNum! z RecSize
CardNum D

System

Our motivation in exploring the server privacy issues
is to come up with a practical solution to these pri-
vacy problems, using current COTS technology. Our
ultimate goal is a complete working system, with rea-
sonable performance, and a complete blueprint to
enable anyone to repeat this work. In this section
we present the current status of our prototype.

Basic service prototype. We have built a basic pro-
totype that implements the striping approach. As is
typical of coprocessor applications, we partition the
code into the card size running inside the coproces-
sor, and the host side running on the host. In our pro-

Figure 3 Coprocessor-based retrieval using Algorithm 2

SMITH AND SAFFORD IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001690

totype, the host-side code runs on Linux platforms
and handles an arbitrary number of coprocessors by
launching a separate thread to handle each one. The
card-side code runs in the application layer of stan-
dard production IBM 4758 Models 2 and 23 devices.
This means the card-side code confines itself to the
standard CP/Q11 embedded operating system pro-
vided with the IBM 4758. As noted below, we believe
significant performance improvement will be possi-
ble with modifications to kernel-level code in the
card. As part of this prototype, we built a framework
that allows, via compile-time options, the host-side
code to either work directly with real cards, or sim-
ulate a number of cards. In our initial prototype, we
used outer-CBC 3DES as the symmetric cipher, and
SHA-1 on the plaintext for redundancy.

To date, we have validated this prototype running
it with one real card and with larger numbers of sim-
ulated cards. More work is in progress, as noted be-
low.

Basic approach. In an idealized implementation, the
card-side CPU just brings in stripes and saves or dis-
cards them. In our initial prototype, we had to work
with the generic CP/Q11, which only lets the card-
side application do data transfer and cryptography
through a fairly limited API (application program-
ming interface), which did not support this ideal vi-
sion. Furthermore, as previous work7 shows, the
CP/Q11 system has a per-request cost that penalizes
multiple small requests.

Given these constraints, our prototype card-side code
allocates an internal DRAM (Dynamic Random Ac-
cess Memory) buffer that can accommodate an en-
tire bucket, brings a bucket in at once (through 3DES),
checks the SHA on each stripe, then saves, and in-
ternally re-encrypts, the interesting stripes in an in-
ternal output buffer. Doing a hash on each stripe
saves us the trouble of recomputing it when we do
the re-encryption. When the buffer is full, it blasts
the contents back out to the host.

Our prototype also supports asynchronous requests.
The system model we introduced earlier implicitly
assumed that all QueryNum queries show up at the
same time. In reality, they may show up at different
times. Since, essentially, the coprocessors are just cy-
cling through the data and there is no natural rea-
son why any particular record is denoted as 51, any
given query can start at any point in the cycle.

Error detection and active attacks. Our algorithms sec-
tion focused primarily on using symmetric cryptogra-
phy for secrecy of records against a passive adversary.
The realities of accommodating storage/transmission

errors, and an active adversary who might deliber-
ately tamper with data, required that we also con-
sider using redundancy of some type to detect and
suppress such errors.

We needed to consider who should respond to an
authentication error, and how; the answers are rel-
evant to preserving privacy. If each coprocessor de-
tects and responds to errors on a bucket granularity,
independent of whether or not the error was in an
interesting stripe, then an active adversary can learn
nothing, even in a coalition with users. If the user
then detects an error, he or she can request retrans-
mission of the postcoprocessor output without re-
vealing which record he or she is interested in. This
is so because if the adversary had introduced an er-
ror on the way into the coprocessor, the coprocessor
would have detected it. How to structure this redun-
dancy and how to check are not issues for asymp-
totic complexity, but for practical performance.

Performance issues. As long as the number of simul-
taneous queries are a small fraction of the number
of records, our model suggests that the turnaround
time for each query is approximately the time it takes
to send each byte in the entire database into some
card in the card farm, for symmetric cryptography
and integrity checking.

The good news is that our prototype confirmed this.
The bad news is that our bytes-per-second-per-card
figure was in the 600–800 kilobytes/second range—
disappointing for a device whose 3DES engine can
exceed 18 megabytes/second! From our previous
work7 with performance optimization for this device,
we speculate that the main bottleneck here is DMA
(direct memory access) between the 3DES engine and
the card’s internal RAM. It is interesting to note that
in our prototype, bringing in the data via DES, 3DES,

In our prototype, the host-side
code runs on Linux platforms

and handles an arbitrary
number of coprocessors.

IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001 SMITH AND SAFFORD 691

or no encryption at all, made no difference in the
transfer time, supporting the hypothesis.

For another approach, the card’s 3DES engine sup-
ports doing 3DES and SHA in series. If we could ex-
ploit this fact, we could decrypt and calculate a hash
of the plaintext as part of bringing the data in—in-
stead of decrypting on the way in, then hashing as
a second step. This approach would bring the trans-
fer speed up to 1.2 megabytes/second/card. The ad-
vertised API does not officially support this opera-
tion, but we may be able to exploit an unofficial
mechanism by having our application bypass the of-
ficial library and send a message directly to the
CP/Q11 module in charge of the 3DES/SHA engine.

To summarize, our prototype established that the
scheme works and that the limiting factor for per-
formance is the transfer/encryption rate of the na-
tive hardware. Since the hardware is rated over 25
times faster than what we measured, however, we
are optimistic that we can remove this bottleneck.
In some sense, our work is hindered by the fact that
the COTS hardware was not designed for the “exter-
nal-to-internal-to-external” processing that this ap-
plication requires.

Next steps. The most significant next step is to im-
prove this per-card performance. Modifying kernel-
level code in the card to allow the CPU to directly
pull bytes from the 3DES engine via PIO (programmed
input/output), and to do SHA in serial should signif-
icantly improve performance. Our earlier optimiza-
tion work yielded a factor of 1000 improvement, but
from a worse starting point; here, we anticipate a
factor of 10. This kernel-level approach would also
free us from having to allocate an internal DRAM
buffer for a bucket, allowing us to accommodate
larger buckets and fewer flushes of the output buffer.

We also want to run the prototype with larger num-
bers of real cards. We note that the PCI bus is rated
in excess of 130 megabytes/second, and therefore,
in theory, it should not be a bottleneck for any rea-

sonable number of cards in a host. Furthermore,
many new servers have multiple sets of PCI buses.

Projected performance. To make things concrete, let
us assume we have a five-card set-up, and consider
two data sets: 1000 5-kilobyte Web pages, and 1000
5-megabyte MP3 files. Let us also assume that Que-
ryNum , RecNum/10. We then estimate the turn-
around time for what the current prototype would
support and what the system would support if we
could improve the per-card performance to 10
megabytes/second—still barely half of its rated per-
formance, as shown in Table 1.

Clearly, a critical barrier to the practicality of this
solution, particularly for large record sizes, is improv-
ing the per-card performance!

If future technical experiments validate these esti-
mates, we would then have to face the question: Are
users and other stakeholders willing to accept these
turnaround times in exchange for this level of pri-
vacy? We note that, in the projected case, we could
service 1000 5-gigabyte movies in about 31 hours,
which is less than the typical download time in the
typical home dial-up connection.

The rest of the system. Our initial prototype focused
on demonstrating that the design and the data struc-
tures worked. Our next steps will focus on improv-
ing the card performance. However, to show that a
complete working system is possible, we also need
to demonstrate that a real host can feed its cards
quickly enough.

To offer this service in the real world, remote clients
with legacy browsers need a root-secure way to in-
teract with the system. In our related WebALPS proj-
ect1,2 we are modifying legacy Web servers to per-
mit remote clients to establish certain SSL (secure
sockets layer) sessions directly with an entity inside
a coprocessor. WebALPS provides the necessary
root-secure interface, and also enables many other
exciting avenues to enhanced security and privacy
of Web interactions.

The key element in making our design practical is
enabling a service provider to prove root-secure pri-
vacy. Our security architecture and outbound au-
thentication support for the IBM 4758 enables an on-
card application from an officially sanctioned
developer to request generation of key pairs certi-
fied to belong to that application, in that configura-
tion, in that untampered card, and then to access pri-

Table 1 Query turnaround time for current prototype and
its future enhancement

Current Prototype Projection

Web pages ,2 seconds ,1 second
MP3 songs 26 minutes ,2 minutes

SMITH AND SAFFORD IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001692

vate-key services for these key pairs. This technology
will enable the WebALPS guardian at the server site
to prove that it is a bona fide front end to a bona
fide privacy server, and also enable authentication
and key management between the various cards in
the server farm.

Future work and concluding remarks

This paper presents a snapshot of one aspect of re-
search that is ongoing. The primary avenue of fu-
ture work is to address the rest of performance, fea-
ture, and system issues discussed in the previous
section. As noted previously, the major barrier to rea-
sonable performance of this scheme for large record
sizes is the limitations imposed by the production-
level COTS devices: the components support suffi-
ciently fast transfer and encryption, but the config-
uration and firmware (as shipped) do not. In the
short term, we plan to try rewriting the kernel-level
drivers inside the coprocessor. But in the long term,
these issues would vanish entirely with a new hard-
ware design around the existing encryption engines.

Database structure. The coprocessors need to ac-
cess host-side data. However, once records are ar-
ranged in encrypted stripe sets, the host-side trans-
fer overhead should be no different from the
straightforward scheme. However, in this work, we
have not considered how to structure the database
to minimize the restructuring cost when coproces-
sors are added or removed.

Reducing storage. It is the practice to assume all rec-
ords have length RecSize, not just because it makes
analysis easier, but because otherwise the adversary
could deduce query information based on the size
of the encrypted record. But this leads to much
wasted space and time, because short records must
be padded out. While it appears inevitable that the
encrypted response to any given query must be Rec-
Size bytes, we could reduce a lot of storage and pro-
cessing time in the striping algorithm, if we do not
mind giving away some information about the dis-
tribution of record sizes in the database, by not pad-
ding the stored records. That is, coprocessors might
read in shorter buckets, and still output QueryNum z
StripeSize bytes. If UnpaddedSize is net size of all the
unpadded records, then the time complexity would
go down to

UnpaddedSize 1 QueryNum z RecSize
CardNum

That is, RecNum z RecSize goes down to Unpadded-
Size.

Private information storage. So far, we have dealt
exclusively with retrieving records. The algorithm
ought to extend easily to updating records as well.
However, each “examine a bucket” step would also
need to re-encrypt the bucket, to keep the host from

learning which stripes were changed. This continual
re-encryption suggests nontrivial freshness, key man-
agement, and host storage issues, and the extra trans-
fers would reduce performance.

Anonymization. As noted earlier, this paper ad-
dresses a problem that is complementary to the prob-
lem of hiding user identities. It would be interesting
to combine our work with a CROWDS-like anonym-
ity scheme14 to provide privacy for the entire inter-
action.

Additional server computation. The coprocessor ap-
proach provides a trusted computational entity with
full knowledge of user activity. This fact may pro-
vide promising ways to address other problems that
are more difficult to handle in designs without cryp-
tographic coprocessors. Such problems include: pro-
viding flexible key recovery schemes, preserving pri-
vacy of user actions while providing atomicity against
various failures, and balancing privacy with market-
ing services. As an example solution for the last prob-
lem, the coprocessor could track a user’s purchases
and offer him or her special deals based on these pat-
terns, but this information would be hidden from
root.

Experimental evaluation of theory. In this paper, we
presented an algorithm that is linear in the total size
of the database, but which meets our practicality
goals and is linear with a small constant, in compu-
tation at which these devices are quick. However,
there exist a number of theoretical results for var-
ious other settings of this PIR problem. It would be
very interesting to explore implementing these in this

Although we have dealt
so far with retrieving records

from the database, the algorithm
can be extended to updating

of records.

IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001 SMITH AND SAFFORD 693

client-server-coprocessor framework. For example,
prior work in single-server PIR might directly fit our
framework, with the coprocessor functioning as a
proxy for the PIR user and the host functioning as
the PIR server. Furthermore, our striped-bucket ap-
proach should extend to add parallelization to these
more complex schemes. For example, we could re-
place the streaming phase with an instance of PIR
on smaller records. However, it is not clear how
quickly the special-purpose devices could carry out
this work, or whether things would scale well to more
queries and parallelize well with more coprocessors.
These are all interesting areas for exploration and
experiment.

Ethical and legal implications. Building and deploy-
ing a root-secure database service raises some po-
tential ethical issues. For a timely example, it would
enable someone to set up a service that allows users
to download MP3 compressions of recorded songs,
while making it impossible for recording artists to
determine which of these downloads violated copy-
right laws.

One might characterize solutions to such problems
as selective weakening of root security. For example,
the community in the above scenario might decide
that an acceptable arrangement is that the service
provider pay royalties for the frequency of access to
copyrighted songs, and in turn prohibit users from
downloading more than some maximum number of
these in any given one-week period.

Our use of secure coprocessors to provide full root
security provides an interesting avenue to implement
such selective weakenings: because we already have
trusted third parties (the coprocessors) with full
plaintext access, we can implement such policy so-
lutions as computation alone, instead of via more
complex cryptographic schemes that change with
each new policy.

Broader research issues. While privacy of retrieval
is of interest, we are also interested in the broader
issue of how to improve security and privacy of dis-
tributed information services, in practical ways, with
minimal deviation from the current infrastructure.
As part of the newly established Dartmouth College
PKI Lab, we are currently exploring a number of ar-
eas, using coprocessors (e.g., the WebALPS project)
and other techniques.

Concluding remarks. We have shown that practical
server privacy appears feasible with commercially

available secure coprocessor technology. In some
sense, what we are doing is extending the limits
of secure coprocessing. Secure coprocessors pro-
vide—if the physical security assumptions hold—a
haven where details of internal computation are hid-
den even from a dedicated adversary. In this paper,
we have explored (for a sample problem) how to pre-
serve this property while extending the file system
to the host and the computation across several co-
processors. One wonders at the implications of more
general “secure multiprocessing.”

Acknowledgments

The authors gratefully acknowledge helpful discus-
sions with Nao Itoi, Peter Gutmann, Mark Linde-
mann, Charles Palmer, Ron Perez, and Michael
Waidner, and helpful comments from the referees.

This work was supported in part by Award No. 2000-
DT-CX-K001 from the National Institute of Justice, Of-
fice of Justice Programs.

**Trademark or registered trademark of The Open Group.

Cited references

1. S. W. Smith, WebALPS: Using Trusted Co-Servers to Enhance
Privacy and Security of Web Interactions, Research Report RC-
21851, IBM Thomas J. Watson Research Center, Yorktown
Heights, NY 10598 (October 2000).

2. S. Jiang, WebALPS Implementation and Performance Anal-
ysis, Technical Report TR2001-399, Department of Computer
Science, Dartmouth College, Hanover, NH (June 2001).

3. B. S. Yee, Using Secure Coprocessors, Ph.D. thesis, Computer
Science Technical Report CMU-CS-94-149, Carnegie Mel-
lon University, Pittsburgh, PA (May 1994).

4. S. W. Smith and S. H. Weingart, “Building a High-Perfor-
mance, Programmable Secure Coprocessor,” Computer Net-
works (Special Issue on Computer Network Security) 31, 831–
860 (April 1999).

5. IBM4758 Models 2 and 23 PCI Cryptographic Coprocessor,
G221-9091-02, IBM Corporation (2000).

6. S. W. Smith, R. Perez, S. H. Weingart, and V. Austel, “Val-
idating a High-Performance, Programmable Secure Copro-
cessor,” 22nd National Information Systems Security Confer-
ence, National Institute of Standards and Technology,
Washington, DC (October 1999).

7. M. Lindemann and S. W. Smith, “Improving DES Hardware
Throughput for Short Operations,” USENIX Security Sym-
posium, August 2001, to appear (a preliminary version is avail-
able as IBM Research Report RC-21798).

8. J. Schwartz, “Computer Security Experts Question Internet
Wiretaps,” The New York Times, December 5, 2000.

9. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Pri-
vate Information Retrieval,” Journal of the ACM 45, 965–982
(November 1998).

10. C. Cachin, S. Micali, and M. Stadler, “Computationally Pri-
vate Information Retrieval with Polylogarithmic Communi-
cation,” EUROCRYPT 1999, Springer-Verlag, Berlin (1999).

SMITH AND SAFFORD IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001694

11. O. Goldreich and R. Ostrovsky, “Software Protection and
Simulation on Oblivious RAMs,” Journal of the ACM 43, 431–
473 (May 1996).

12. R. Anderson, R. Needham, and A. Shamir, “The Stegano-
graphic File System,” D. Aucsmith, Editor, Information Hid-
ing: Second International Workshop IH98, Portland, Oregon,
Springer-Verlag, Berlin (1998).

13. S. W. Smith, Secure Coprocessing Applications and Research
Issues, Los Alamos Unclassified Release LA-UR-96-2805, Los
Alamos National Laboratory, Los Alamos, NM (August
1996).

14. M. Reiter and A. Rubin, CROWDS: Anonymity for Web Trans-
actions, DIMACS Technical Report, Center for Discrete
Mathematics & Theoretical Computer Science, Rutgers, NJ
(August 1997).

15. D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, and
G. Tsudik, “Itinerant Agents for Mobile Computing,” IEEE
Personal Communication Systems 2, 34–49 (October 1995).

16. B. S. Yee, A Sanctuary for Mobile Agents, Computer Science
Technical Report CS97-537, University of California, San Di-
ego, CA (April 1997).

17. A. Menezes, P. Oorschcot, and S. Vanstone, Handbook of
Applied Cryptography, CRC Press, Boca Raton, FL (1997).

18. C. S. Jutla, “Encryption Modes with Almost Free Message
Integrity,” Cryptology ePrint Archive, Report 2000/039 (2000).

19. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduc-
tion to Algorithms, MIT Press, Cambridge, MA (1990).

Accepted for publication April 17, 2001.

Sean W. Smith Department of Computer Science, Dartmouth Col-
lege, 6211 Sudikoff Laboratory, Hanover, New Hampshire 03755
(electronic mail: sws@cs.dartmouth.edu). Dr. Smith is interested
in the practical and theoretical aspects of security and reliability
in distributed computation. As a postdoctoral fellow and staff
member at Los Alamos National Laboratory, he performed se-
curity reviews and designs for a wide variety of public sector cli-
ents. As research staff member at the IBM Thomas J. Watson
Research Center, he designed the security architecture for (and
helped code, test, and validate) the IBM 4758 secure coproces-
sor. Since July 2000, Dr. Smith has been on leave of absence from
IBM, in order to teach and do research at Dartmouth College.
Dr. Smith was educated at Princeton and Carnegie Mellon Uni-
versities, and is a member of ACM, USENIX, Phi Beta Kappa,
and Sigma Xi.

David Safford IBM Research Division, Thomas J. Watson Research
Center, 30 Saw Mill River Road, Hawthorne, New York 10532 (elec-
tronic mail: safford@watson.ibm.com). Dr. Safford is manager of
the Global Security Analysis Laboratory, which performs research
in security of networked systems, including vulnerability analy-
sis, security auditing and intrusion detection tools, cryptographic
coprocessors, and secure operating systems. His current research
interest is adding strong security features, such as mandatory ac-
cess control and mandatory authentication, to open source op-
erating systems. He received his Ph.D. degree from Texas A&M
University in 1990.

IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001 SMITH AND SAFFORD 695

