
Limited Delegation for Client-Side SSL∗

Nicholas Santos
nicholas.j.santos@gmail.com

Sean W. Smith
sws@cs.dartmouth.edu

Department of Computer Science
Dartmouth College

Abstract

Delegation is the process wherein an entity Alice des-
ignates an entity Bob to speak on her behalf. In
password-based security systems, delegation is easy:
Alice gives Bob her password. In the real world, end-
users find this feature rather useful. However, secu-
rity officers find it infuriating: by sharing her pass-
word, Alice gives all of her privileges to Bob, who
then becomes indistinguishable from her. As enter-
prises move to PKI for client authentication, such
secret sharing becomes impractical. Although se-
curity officers appreciate this, end-users may likely
be frustrated, because this more secure approach to
authentication and authorization prevents their ad
hoc but reasonable delegation. In this paper, we
present a solution that satisfies users as well as se-
curity officers: using X.509 proxy certificates (in a
non-standard way) so that user Alice can delegate
a subset of her privileges to user Bob in a secure,
decentralized way, for Web-based applications. We
validate this design with an SSL-based prototype: an
extension for the Mozilla Firefox Web browser and a
module for the Apache Web server that allow them
to handle multiple chains of these certificates.

1 Introduction

In real-world situations, users often want to tem-
porarily delegate some of their privileges to others, for
reasons that are often rather legitimate. Most legacy
computer systems implicitly tie a set of privileges to a
password and thus make delegation surprisingly easy.
If a user wants to use her computer—or read her
e-mail, or sign onto her favorite chat account—she
types in her password. If she wants to let her friend
check her e-mail for her, she gives him her password.

∗This work was supported in part by the NSF, under grant
CNS-0448499. The views and conclusions do not necessarily
represent those of the sponsors. A preliminary version of this
work appeared as the technical report [13]. The first author is
now affiliated with Google.

Like it or not, users are accustomed to this paradigm.

For many reasons, security experts promote PKI
as a replacement for passwords. Our own university
has rolled out an X.509 identity PKI to over 75%
of the user population, and has migrated its Web-
based applications from legacy passwords to client-
side SSL for user identification and authentication.
However, we fear that if PKI does not offer a way
for users to delegate permissions for the scenarios
they feel are reasonable, users will again force their
own form of delegation into the system. PKI advo-
cates may shudder to imagine one user lending an-
other her private key, but unless there’s an easy-to-
understand way to delegate rights, that might be her
only option.1 Hence, in order to be usable in many
real-world enterprises, client-side PKI authentication
needs a secure, generalizable way to allow for delega-
tion. This delegation mechanism should be decentral-
ized, to avoid the cost and hassle of enterprise-wide or
even application-specific databases that need to keep
track of every user and every privilege. (That would
negate many of the reasons for PKI in the first place.)

In this paper, we develop a system—Web-based
delegated authentication via proxy certificates—that
empowers Alice to unambiguously specify a limited
subset of her privileges to pass to Bob, so that he
can take care of business on her behalf. We equip
Web browsers with the ability to issue proxy certifi-
cates carrying security policies, and the ability to pass
proxy certificates to a Web server via client-side SSL.
We equip Web servers with the ability to pass the cre-
dentials encoded in these proxy certificates to server-
side scripts, which can then make their own security
decisions.

Pushing the delegation process below the applica-
tion layer makes this solution generalizable. If Alice
wants to delegate privileges to Bob, she does not have
to visit each one of her Web applications and explic-
itly delegate to Bob. She can issue one proxy certifi-
cate encoded with the policies for all these applica-
tions. Also, developers can build secure Web applica-

1Indeed, we’ve already seen this happen.

tions on top of this Web server, and take advantage
of delegated authentication without implementing it
themselves.

This Paper. Section 2 discusses the high-level
goals of our system. Section 3 discusses the PKI
framework we used. Section 4 discusses our design.
Section 5 discusses our prototype. Section 6 discusses
related work. Section 7 concludes with some direc-
tions for future work.

2 Goal

We’re considering an enterprise with a standard
X.509 identity PKI for its users. We consider two
classes of entities: end users (like Alice and Bob),
and service providers (Web sites that Alice visits).
The service providers follow the PKI gospel and use
client-side SSL to identify and authenticate users.

Alice has privileges on these Web sites, and may
wish to delegate some of these privileges to Bob. To
support this action, we need three things. For the
PKI, we need a format for a delegation certificate, a
digitally signed statement from Alice giving Bob some
rights. For the end users, we need a Web browser
plug-in to issue and manage delegation certificates.
Finally, for the service providers, we need a server
module to verify delegation certificates during client-
side SSL, and interpret the delegation appropriately.

The Web browser plug-in is easily distributed.
Most modern browsers have a system for installing
such a plug-in automatically by clicking a link, and
users are accustomed to installing such add-ons.
Mozilla Firefox, for example, has “extensions,” and a
similar plug-in could be written for Internet Explorer.

The module for the service provider will be more
cumbersome to install, and will vary depending on
the particular Web server software. Apache servers
provide support for configurable modules that are dy-
namically loaded on start-up. The SSL-handling code
is one such Apache module. So a service provider
with Apache would have to replace the SSL-handling
module with one equipped to handle delegation cer-
tificates.

We imagine a typical end user scenario might work
as follows. Alice asks Bob to check her Web-based
e-mail account while she’s out of the country. He
agrees. Bob e-mails Alice his public key certificate.
Alice inspects this certificate, then uses it as the ba-
sis for a new certificate for Bob: a delegation certifi-

cate signed by Alice’s secret key. This new certificate
contains Bob’s name and public key, and explicitly
authorizes Bob to log into Alice’s e-mail account and
read e-mail. It contains no statement that autho-
rizes him to send e-mail, nor to log into the university
record system and view her grades. Alice e-mails this
certificate to Bob, along with the certificate chain at-
testing to her own public key certificate. Bob installs
this certificate in his Web browser. When he logs in
to the Web-based e-mail account via an SSL session,
he presents the delegation certificate issued by Alice.
The Web server logs the fact that Bob logged in with
Alice’s identity. The server’s environment variables
indicate to the Web application that Bob has per-
mission to read but not send Alice’s e-mail. If it is a
well-designed application, it will check these permis-
sions and act accordingly.

Rejected Options. In our protocol, Alice issues
the certificate herself. She then transmits her certifi-
cate to Bob on her own, or via a disinterested third
party like a public certificate database. But this isn’t
the only way to solve the same problem. The delega-
tion of privileges could also be handled through the
enterprise’s CA or through the service provider. For
example, the CA could provide a Web-based service;
Alice submits authenticated delegation requests, and
the CA then issues the certificate. Or, alternatively,
Alice could log into the service provider’s Web appli-
cation, and tell that application explicitly that Bob
has permission to speak on her behalf. This second
method bypasses certificates completely.

These other approaches have disadvantages. First,
they both put a burden on a central server. Decen-
tralization is a boon to all parties—the process is less
complicated for Alice, and it relieves the server of
the responsibility. Consider banks that charge ridicu-
lously large “service fees” for printing an on-line bank
statements, in the hopes that customers will just
print the bank statement out at home. They want
users to take care of business on their own. Second,
they may have privacy problems. Suppose that Alice
delegates access to Bob for emergencies—she may not
want anyone to know about this delegation until he
steps forward. Direct correspondence between Alice
and Bob allows them to keep this arrangement (rel-
atively) secret. Lastly, these approaches may have
scalability problems. For example, it would be ineffi-
cient for each service provider to keep its own list
of the parties to whom Alice has delegated privi-
leges. In the approach where the CA issued the del-
egation certificate, the CA delegation service would
have to change to accommodate every new service

provider and every new privilege that service might
provide. But if Alice and Bob issue their certifi-
cates to each other directly, then the scalability issues
aren’t so bad—Alice only has to keep track of which
delegation-enabled service-providers she has visited.

Orthogonal Issues. Before we move on, we should
clarify what problems we’re not trying to solve.

Once we give Alice the ability to delegate her priv-
ileges to Bob, Bob may want the ability to act on
behalf of two people at once. He may want to read
both his mail and Alice’s mail at the same time—in
other words, he may want to assert multiple iden-
tities. There are some tricky semantics involved in
how applications should deal with a user with multi-
ple delegated identities. We recognize that these se-
mantics are difficult. And different applications will
have different ways of handling such users. But the
scope of this project does not extend beyond the low-
est level of multiple-identity authentication. We will,
however, provide a framework for application devel-
opers to deal with multiple identities.

Additionally, the goal of this project is not to ex-
plore how we can specify delegation in policy state-
ments. There are many standardized languages, such
as XACML, that allow security professionals to pre-
cisely specify authentication and access control rules.
They are a useful tool for security administrators.
But we assume that most users will not care for such
a fine level of access control when they are determin-
ing which privileges to delegate in a proxy certificate.
We need a simple mechanism for users to describe
this delegation. This simplicity should be reflected
in the server-side directives as well. A set of rudi-
mentary directives—based loosely on the directives
defined for access control in Apache—will be enough
to demonstrate the possibilities of delegation. For the
purposes of this project, that’s what we care for.

3 Delegation Certificates

As Section 2 described, we need a format for “delega-
tion certificates.” We chose X.509 proxy certificates.

SDSI-SPKI is attractive because it provides a much
more straightforward and simple syntax for the del-
egation of credentials [3]. However, it’s an X.509
world, and that’s what the standard infrastructure
supports. Prior experience in our lab (e.g., [4]) sug-
gested that swimming against the current is not pro-
ductive.

The ruling certificate standard, X.509, is rigidly hi-
erarchical and does not allow the average user to issue
certificates. In X.509, there are certificate authorities
(CAs), and there are end entities (normal users like
Alice). CAs can issue certificates, but only to enti-
ties that are “subordinate” to the CA. End entities do
not have the authority to issue any certificates—the
reason that they are called “end entities” is because
their certificates can only appear at the end of a cer-
tificate chain [6]. To delegate her privileges to Bob
in the X.509 system, Alice would need to find a CA
that she and Bob had in common, and ask this CA
to sign her privileges over to Bob. Such a common
trusted CA might not even exist. And even if Alice
does find a common CA, delegation may be difficult.
CAs are the bureaucrats of the X.509 world—it can
be cumbersome (and often financially expensive) to
get their approval

The Globus Toolkit (http://www.globus.org/)
ran into this problem while building a secure frame-
work for distributed computing. But part of its goal
was to share “securely,” and “without sacrificing lo-
cal autonomy.” A process sitting on a remote, au-
tonomous machine may need access to restricted re-
sources, so it needs a mechanism to authorize this
access dynamically. The CA approval process was un-
satisfactory, for the exact reasons noted above. CAs
were too cumbersome to be practical for authorizing
short-lived processes [15]. Thus, the Globus Toolkit
developers invented proxy certificates for delegation.
This is probably the most widespread use of PKI-
based delegation in real-world applications today. Af-
ter some evolution, proxy certificates were standard-
ized for X.509 in RFC 3820.

Proxy certificates are an extension to the X.509
certificate standard that allow end entities to sign
certificate statements that delegate their own privi-
leges to other entities. By the standard, an end entity
generates temporary private and public keys, signs a
short-lived proxy certificate that passes on some of
her privileges to the temporary keypair, then gives
those credentials to a third party entity. The iden-
tity of the proxy certificate is derived from the iden-
tity of the end entity. Because a proxy certificate can
also testify to another proxy certificate, the identity
of a chain of proxy certificates is the last non-proxy
certificate in the chain (the end entity certificate).

Notice that when we say that these credentials are
“temporary,” this is merely a convention. There is
no rigorous definition for the length of a “temporary”
period of time [14]. This flexibility is intentional, be-
cause simplicity is of the essence. On the Grid, these
proxy certificates can be issued to dynamically cre-

http://www.globus.org/

ated processes without requiring the approval of a
CA.

The X.509 proxy certificate offers numerous advan-
tages for our scheme. Because it contains so much
auxiliary information, the server can keep compre-
hensive server logs on who Bob is and which iden-
tities he’s assuming. It’s also explicitly intended for
delegation, as opposed to X.509 attribute certificates,
which can handle more general attributes. But most
importantly, current tools actually contain support
for X.509 proxy certificates. The OpenSSL libraries
can issue and verify them [8]. The same support is
not behind X.509 attribute certificates. And it cer-
tainly cannot be said for SDSI/SPKI, for which there
is little support in major applications, with the ex-
ception of some closed environments.

X.509 proxy certificates piggy-back off standard
X.509 certificates. The major technical differences
are that proxy certificates can be signed by end en-
tities, and a proxy certificate must define a critical
ProxyCertInfo extension [14].

4 Our Design

To achieve the vision of Section 2, we need several
things. Alice needs a way to issue proxy certificates.
The Web application needs a way to tell Alice what
permissions she can delegate, so that Alice can select
which of these permissions to encode in her proxy
certificate. Bob’s Web browser needs to be able to
send multiple chains of proxy certificates in an SSL
session. Bob must be able to choose which identities
he would like to assert. (In this example, he has a
choice between his own identity “Bob” and his del-
egated identity “Alice.”) The Web server must un-
derstand proxy certificates, and be equipped to deal
with multiple chains of them.

This section explains the design of these tools for a
suite of Web applications and Web standards: X.509
proxy certificates (Section 4.1), Mozilla Firefox (Sec-
tion 4.2), SSL/TLS (Section 4.3), and the Apache
Web server (Section 4.4).

4.1 Non-standard Proxy Certificates

For our project, we decided to depart from the stan-
dard that a proxy certificate must testify to the public
key of a temporary keypair generated exclusively for
that certificate [14]. Instead, in our system, proxy
certificates will testify to an existing public key, and

for which previous certificates—an identity certifi-
cate, and perhaps other proxy certificates—exist.

This departure from the standard gave us several
advantages. It does not require Alice to send a new
temporary private key to Bob. In fact, no secret in-
formation is exchanged between them. Only their
public key certificates are transmitted. As long as
Alice can verify Bob’s certificate, this will be secure.
Secondly, in our application scenarios, having lots of
temporary keypairs will not be appealing for users. In
a human-usable delegation system, simplicity should
be a major goal, and a single keypair for each key-
store is much more simple. Lastly, notice that we
can repeat the delegation process with other users
each delegating their own privileges to Bob’s public
key. This allows Bob to obtain a grab bag of cer-
tificates, all with the same name and public key, but
corresponding to different delegated identities. This
could be useful in scenarios when Bob needs to repre-
sent more than one party in a service request authen-
ticated via client-side SSL—which, by design, allows
Bob to prove knowledge of only one private key. (The
first author actually has done this in a process that
has not yet made it to the Web: Dartmouth’s on-
campus housing auction. Two friends wished to share
a room with each other. Neither could make it to the
event, so they both delegated to the author, who then
made a selection representing both of them.)

Revocation. Because proxy certificates are usually
short-lived, researchers often wave their hands at the
problem of revocation, as the potential for damage
is reduced greatly by the certificate’s early expira-
tion date. In some projects, delegation is used to
make the revocation process obsolete—the proxy cer-
tificates expire more quickly than a certificate revo-
cation list (CRL) could be issued. For this project,
we take this approach.

Privilege Attributes. In order to give a user the
ability to pick and choose which applications the del-
egate can use on their behalf, we allow them to define
attributes in terms of a service (the URL of a service
provider) and an ability (an arbitrary string expres-
sion).

This will become clearer with an example. Suppose
Alice wants to delegate to Bob the ability to read her
mail from her Web-based www.mail.gov account, and
to edit and post on her blog www.aliceblog.com. So
she gives him the attributes “www.mail.gov: read”
and “www.aliceblog.com: edit post.” In other
words, the attributes will consist of a list of permis-

www.mail.gov
www.aliceblog.com.
www.mail.gov
www.aliceblog.com

sions, and each list will be tied to a service provider.
Proxy certificates have a space allotted to specify such
a list of permissions as a policy OCTET-STRING in
the ProxyCertInfo extension [14].

This list of attributes constitutes a list of privileges
granted to Bob. Alice must explicitly name each ser-
vice provider that Bob can interact with on her be-
half. This allows each service provider to define its
own set of privileges at any granularity. We tie priv-
ileges to service providers to avoid the trouble that
would arise if two service providers use the same priv-
ilege name. For example, this prevents Alice from
confusing “edit” privileges on mail.gov with “edit”
privileges on aliceblog.com. Because the privileges
are tied to the URL of the service provider, they re-
main unique. In effect, we solve the name collision
problem by leveraging somebody else’s infrastructure
that has already solved the problem.

At least, that’s how we’ll think about the situa-
tion. URL addresses are not unambiguous. First,
some Web pages use server farms, with one address
mapping to multiple servers. Secondly, an adversary
can spoof a URL. But for our purposes, these nuances
are orthogonal. When we use the URL in this con-
text, we are not assuming a trusted relationship with
the service provider at that address. The URL sim-
ply allows us to differentiate between different service
providers and the privilege sets that they offer.

We have not yet answered the question: How do
service providers notify Alice of their set of privilege
names? We will do that in Section 4.4 below.

4.2 The Browser

The Mozilla Framework is an open source software
development framework. The most famous (cur-
rent) application to come out of it is the Firefox
Web browser. The framework strives to be cross-
platform, programming-language-independent, and
locality-independent. The framework also has use-
ful properties that make it easier to modify—most
notably the availability of the source code.

The Framework. First, we quickly review
Mozilla’s high-level code architecture to help the
reader to understand how we modified Firefox.

Mozilla’s organizes its code via the XPCOM (the
Cross-Platform Component Object Model). XPCOM
is the system for organizing all of the software li-
braries underlying Mozilla. In XPCOM, a central
component manager keeps track of a number of exclu-

sive, encapsulated components that each implement a
well-modularized set of functions. These components
can be written in any language for which XPCOM
language bindings are defined, including Python and
Java—but are typically written in C++ or Javascript.
The methods and attributes of an XPCOM compo-
nent can only be accessed by defining a public inter-
face through a second language called XPIDL (long-
wise, that’s the Cross-Platform Interface Description
Language). This interface then allows the component
to be used as an object in any XPCOM-supported
language. One can define an interface in XPIDL, then
implement it with several different components (pos-
sibly in different programming languages), that sat-
isfy the interface in different ways. For example, the
nsISocketProvider interface is implemented by one
component that handles SSL sockets, and another
component that handles TLS sockets. See Chapter
8 of [1] for more information.

The components are managed by a component
manager, which keeps a hash table with entries for
each component. The entries of the hash table are in-
dexed by human-readable URIs called contract IDs.
Each entry also contains a universally unique identi-
fier (UUID) as a sequence of integers, and the mem-
ory location of a constructor for this component.
When one component wants to use another, it gives
the component manager the URI, and the component
manager gives it back an object.

This structure is relevant to our project. If we
could overwrite an entry in the hash table, we could
replace any native Firefox component with our own
component. As long as the custom component im-
plements all the XPIDL-defined functions, the rest of
the Mozilla Framework will treat it exactly like the
native component.

Extensions. The Mozilla Framework provides a
simple mechanism for installing “extensions” from
over a network. The modification for proxy certifi-
cates should be packaged as such an extension. After
all, few users would be willing to download a custom
browser with modified source code to use delegated
authentication.

We create new XPCOM components that handle
proxy certificates. We then develop a GUI for this
application to interact with the local XPCOM com-
ponents, and by extension, the proxy certificate li-
brary. In this way, our extension can be divided into
three pieces.

First, we need an interface to allow Alice to issue
proxy certificates. At first glance, there’s no reason

mail.gov
aliceblog.com.

for this to be built into the browser—it could easily
be a stand-alone application. The reason it’s in the
Web browser is not for Alice’s benefit, but for the
service provider’s benefit. As we will soon see (Sec-
tion 4.4), each service provider will propagate the set
of privilege names that it defines by talking to this ex-
tension. Then the user interface can show Alice a list
of delegation-enabled service providers she’s visited,
as well as the privileges she can delegate for them.

Secondly, we need a back-end database to manage
proxy certificates issued to Bob. Network Security
Services (NSS), the cryptographic library underly-
ing the Mozilla Framework, does not behave properly
around proxy certificates. At best, it’s schizophrenic.
NSS will often accept them at first—but as soon as it
realizes that the proxy certificates have been signed
by an end entity, it may immediately trash them. We
simply need a database that can handle proxy certifi-
cates properly, and will safely store them outside of
NSS.

Finally, we need a way for Bob to use his proxy
certificate(s) in client-side SSL authentication. This
part of the extension will be responsible for getting
the proxy certificates to the server during an SSL
session. This is more difficult than it sounds, because
this will require slight changes to the SSL protocol.

4.3 SSL/TLS

SSL/TLS is the ubiquitous protocol for secure com-
munication on the Internet2. It consists of three es-
sential pieces. In the “Hello” phase, the client and
server initiate communication. In the “Handshake”
phase, the server and client exchange information
using a chosen asymmetric-key algorithm, with the
goal of establishing a session secret. This informa-
tion may optionally include a certificate exchange,
and the server and client may optionally verify each
other’s certificates before they agree to connect. Fi-
nally, in the “Application” phase, we can now send
data across the network encrypted and MAC’d with
the session secret via our favorite symmetric-key al-
gorithm [2]. To incorporate delegation into this pro-
tocol, we only need change a narrow segment of the
client behavior during the Handshake phase. We can
leave the rest of the protocol alone.

The Handshake phase changes because SSL/TLS
expects the client to transmit no more than one chain
of certificates. In this chain, each certificate testi-

2SSL/TLS is a suite of several different standardized proto-
cols. All these protocols are just variations on the same high-
level ideas, though. For our purposes, they’re interchangeable.

fies to the public key of the keypair that signed the
certificate that came before it [2]. But for delega-
tion, the client might need to transmit several cer-
tificate chains, with one chain corresponding to each
delegated identity. To make this work, we have the
client transmit the certificate chains for each dele-
gated identity in serial, and assert that the first proxy
certificate in each chain must testify to the same pub-
lic key. Figures 1 and 2 demonstrate the change in
the protocol when we add multiple certificate chains3.
We do not permit Bob to use two different keypairs
in the same session.

The “one public key” rule gives us an easy way
to distinguish between certificate chains—when the
validator sees a certificate in the chain that contains
the same public key as the first certificate, this is the
bottom of a new chain. As an additional bonus, this
ensures that legacy certificate-validation code (appli-
cations that don’t know about multiple-identity dele-
gation) will reject any user that tries to assert multi-
ple delegated identities. A certificate chain, after all,
should not have a cycle.

From a theory standpoint, the idea that “public
key” is a unique identifier of the user is also a cleaner
way to think about PKI. The SDSI/SPKI certificate
model makes this observation elegantly. The secu-
rity of public-key crypto-systems implicitly depends
on the assumption that public keys are unique. If
two users had the same public key, then their cryp-
tographic operations would be indistinguishable [3].

4.4 The Web Server

For the Web server, we focused on Apache, which is
both open-source and market-dominant. For Apache,
we only have to modify mod ssl, which can hook into
the Apache server from a dynamically loaded library.
We can easily distribute this library to server admin-
istrators to enable delegation.

Code Additions. We need to modify the certifi-
cate validation code to accept proxy certificates and
to be able to recognize when the client is sending
multiple chains of proxy certificates. Recognizing the
proxy certificates is simple—that functionality comes
standard with OpenSSL, the cryptographic library
underlying Apache. The validation of multiple chains

3 TLS protocol extensions (RFC 4366) could make this
change more graceful by allowing the client to explicitly ask
the server to accept multiple certificate chains. These stan-
dards are recent, and were not available at the implementation
phase of this project.

The CA's
Public

Key, Self-
Signed

Bob

Bob's
Public
Key,

Signed by
the CA

Server

Figure 1: Passing client certificates to the server by the TLS 1.0 standard. Notice that Bob’s public key
certificate is sent first, while the CA certificate that testifies to it comes afterwards. (The self-signed CA
certificate is optional. We include it here to enhance the illustration.)

The CA's
Public

Key, Self-
Signed

Bob

Charlie's
Public
Key,

Signed by
the CA

Charlie's
Proxy Cert

for Bob,
Signed by
Charlie

Alice's
Proxy Cert

for Bob,
Signed by

Alice

Server

The CA's
Public

Key, Self-
Signed

Alice's
Public
Key,

Signed by
the CA

both certificates attest to
the same public key, Bob's

Figure 2: Passing multiple certificate chains to the server. As before, each certificate in the same chain
testifies to the one sent before it. The dashed arrow represents the point where a traditional TLS server
would register an error, because Bob did not sign the CA’s public key certificate.

of certificates is not so easy to implement, because it
requires changes to both Apache and OpenSSL. It
has also some tricky semantics. What happens if the
client sends two certificate chains, and only one of
them is valid? On one hand, the SSL protocols im-
ply that if the server sees an invalid client certificate,
it should notify the client by sending an error mes-
sage, and should cut short the SSL session. But it
seems more natural for the server to accept the valid
chain, and quietly fail to grant the privileges speci-
fied in the invalid chain. In this implementation, the
tie goes to the specification—if one certificate chain
is invalid, the whole authentication should fail. This
will make it clearer from a user interface perspective
that something has gone wrong.

Access Control Directives. We also define some
additional directives in the Apache configuration files.
These directives will tell Apache how to respond to
proxy certificates. A legacy server will only accept a
single certificate chain. So the modified server will, by
default, only accept a single identity. It will consider
multiple identities only when it sees a special directive
in the configuration files.

These new directives are as follows.

The SSLMultipleIdentities directive tells the
server to allow a user to assert multiple identities
at once. The server will accept multiple certificate
chains, one for each identity. And for each user, it will

keep track of the list of privileges delegated by that
user.4 To ensure the same privilege is not counted
twice, we ensure that if there are multiple certificate
chains, no two chains derive authority from the same
end entity.

The SSLExclusiveIdentity directive tells the
server to accept only the first identity. In truth, it
is the default case. But because these directives are
interpreted on a per-directory basis, this directive is
useful for overriding the SSLMultipleIdentities di-
rective in a parent directory.

A server connection environment variable

SERVER[‘‘SSL DELEGATED IDENTITIES’’]

will be set to STRING, an ASCII character string en-
coded as a Lisp s-expression. It will contain the com-
mon name of each certificate in an identity asserted
by Bob. Obviously, this encoding doesn’t work if
common names have parentheses. So if the server
sees a common name with a parenthesis, it simply re-
fuses to grant this identity. Application-level scripts
can read this environment variable, and thus find out
easily which identities Bob has.

We will also have directives for interpreting the
policy field of the ProxyCertInfo extension.

4This is the simple-minded way to enumerate sets of priv-
ileges delegated by a set of users. There are more special-
ized ways to model multiple simultaneous identities. We’ve
explored this a bit elsewhere [13].

The SSLRequirePrivilege directive takes a name
and a Description. The name must be an alphabetic
character string (with no white space), and must not
conflict with any other privilege names. It will speci-
fying the name of a privilege as it appears in the proxy
certificate policy. If this directive is used, then Bob
will be allowed access in the current directory subtree
iff he has this privilege. If SSLMultipleIdentities
is given as well, Bob will need to have this privilege
for every identity that he tries to assert, or he will
be rejected. The Description portion of the directive
will be used for the propagation of the privilege set,
which we will discuss shortly.

The SSLRequestPrivilege directive also takes a
name and a Description. This directive is similar
to the SSLRequirePrivilege directive. But in this
case, Bob can access the directory whether or not he
has the described privilege. The directive is used to
specify privileges that are not used to restrict access
at the server level, but are exposed via the environ-
ment variables anyway. (An application-level script
might use this privilege as part of an XACML-based
decision request.)

Notice that with these directives, every server can
define a set of privileges. After the server verifies
Bob’s proxy certificate chain(s), it will check the
policy field of each ProxyCertInfo extension in the
chain, and grant Bob the privileges encoded in it.
It will then set a connection environment variable
SERVER[‘‘SSL DELEGATED PRIVILEGES’’] to be
STRING, a Lisp s-expression. Bob’s privileges will be
stored as a list of lists. Each sub-list will start with
the identity name (the user delegating to Bob), fol-
lowed by the privileges granted by that end entity.

Privileges in the Grand Scheme. To deter-
mine its set of privileges, the server parses all of
its access files for the SSLRequirePrivilege and
SSLRequestPrivilege directives described above,
then builds a set of (name , description) or-
dered pairs of privileges. They are keyed by the
name, so if the same name appears twice, one pair
is rejected. All servers implicitly define the reserved
pair (all , ‘‘All privileges’’). When Alice
visits the server, the server gives her a cookie contain-
ing the privileges defined as Lisp s-expressions. The
Firefox extension can then read these cookies, and
add them to its list of (service provider, privilege)
pairs. When Alice wants to sign a proxy certificate
for Bob, the user interface will provide her with a list
of all the servers that she’s ever visited that support
this form of delegation.

When Bob wishes to assert the privileges granted
by Alice, he authenticates with this certificate in a
client-side SSL session. He will pass the server the en-
tire certificate chain, so that the server will see both
Alice’s end-entity certificate, and the proxy certifi-
cate she signed for Bob. The server then interprets
the policy in the proxy certificate, and records in an
environment variable that Alice granted Bob those
privileges.

The reader should take note that this still leaves
the Web application with a lot of responsibility to
make authorization decisions. Our system simply
records what Alice has granted in the proxy certifi-
cate policy—it makes no claim that Alice had the
authority to grant Bob this privilege. An applica-
tion can use the identity and privilege information to
make authorization decisions; our directives are part
of a server-level system that make it a easier to pro-
cess and manage this information.

5 Our Prototype

To illustrate the functionality of our prototype, we’ll
consider an example. Nicholas Santos has hired De-
tective Sam Spade to represent him. He would like to
sign a proxy certificate for Spade that will delegate
all his permissions to Spade for a period of five days.
(He’s trying to get back a jeweled falcon, and he’s
asked Spade to negotiate on his behalf.) The next
five figures illustrate the process he goes through to
do this.

We will also discuss how to manipulate and issue
proxy certificates with NSS, the Mozilla Framework’s
cryptography library, and to understand them with
Apache. The point of this discussion is to examine
the particular successes and pitfalls of our implemen-
tation, so that the reader has an idea of what it would
take to reproduce such a system.

5.1 The Mozilla Extension

Making Room for Proxy Certificates. The
ProxyCertInfo X.509 extension must be attached
to all proxy certificates and marked critical [14].
By specification, cryptographic libraries must trash
any certificate with unrecognized critical extensions
[6]. So before we load any components that handle
proxy certificates, the Object Identifier (OID) for the
ProxyCertInfo extension must be dynamically reg-
istered with NSS. RFC 3820 additionally lists a num-
ber of OIDs for proxy policy languages that must be

Figure 3: Using our Delegation Wizard (part 1):
Choosing a user certificate (any certificate for which
we have the private key) and a target certificate to
which its identity is delegated.

Figure 4: Using our Delegation Wizard (part 2):
Choosing permissions to delegate. Each tree orga-
nizes the permissions by service provider. The tree
on the left is a list of all available permissions; the tree
on the right is a list of the permissions that will be
delegated. The tree of available permissions is built
by iterating through the cookies, and parsing them
for the permissions.

Figure 5: Using our Delegation Wizard (part 3): The
constraints page, which allows setting a path length
constraint and a validity period.

Figure 6: Using our Delegation Wizard (part 4): Sav-
ing the certificate to a file, so it can be e-mailed to
Detective Spade.

Figure 7: Using our Delegation Wizard (part 5): The
ASN.1 structure of the new proxy certificate.

understood by any proxy certificate implementation.
Those OIDs must be registered as well.

The ProxyCertInfo extension contains three
fields. The optional pCPathLenConstraint describes
the depth of the cert chain below this one. The re-
quired policyLanguage is an OID for a policy lan-
guage. The optional policy is, as noted earlier, the
designated place for issuers to record policy info on
what permissions they’re delegating.

NSS allows developers to write templates—arrays
of constants—that tell the ASN.1 encoder how to en-
code and decode types. A few wrapper functions and
a ProxyCertInfo template are required to encode
and decode that extension. The Mozilla Framework
also has a separate ASN.1 handler that pretty prints
ASN.1 sequences for GUIs. A few more functions
on top of that object will make the ProxyCertInfo
extension readable from a dialog box, as shown in
Figure 7.

The reader should be aware that in order to handle
proxy certificates adequately, our extension needed a
lot more infrastructure than this. To handle the cer-
tificates internally, the extension needed access to raw
data structures, including wrapper objects for the
certificates, for their validity periods, and for some
certificate-based GUI objects. But these needs were
satisfied by simply copying the existing certificate-

handling code, modifying it slightly for proxy certifi-
cates (and for publicly exported APIs), and compiling
it into the extension. It’s not academically interest-
ing, and we will say no more of it.

Issuing Proxy Certificates. To issue a proxy cer-
tificate, we need an issuer and a target. The issuer
testifies to the private key that will sign the new cer-
tificate. The target testifies to the name and public
key that will be the subject of the new certificate (see
Figure 3). This information is used to construct a cer-
tificate request internally. We call an NSS function
to transform this certificate request into an unsigned
certificate, at the same time adding an issuer and a
validity period.

When creating any certificate—not just proxy
certificates—there are standards and there are styles.
The first is mandated in writing, the second is man-
dated by strong social pressure and convention. For
standards, it’s best to work straight from the source,
RFCs 3280 and 3820. For style, we recommend Peter
Gutmann’s “X.509 Style Guide.”[5]

For every proxy certificate we issue, we copy the
name and public key directly from the target certifi-
cate. Per Gutmann’s recommendation, we use the
time in seconds since the UNIX epoch as the serial
number, to ensure unique serial numbers5.

We additionally attach several extensions. We
have already covered the ProxyCertInfo extension.
On the advice of OpenSSL’s proxy certificate guide
[8], we include a BasicConstraints extension that
indicates that this certificate may not be a CA.
We include a SubjectKeyIdentifier extension that
contains a SHA-1 hash of the target certificate’s
DER-encoded public key data. Finally, we attach
an AuthorityKeyIdentifier if and only if the is-
suer certificate has the SubjectKeyIdentifier ex-
tension. If it does, the key identifier from the issuer
is simply copied into the key identifier field of this
AuthorityKeyIdentifier.

The SubjectKeyIdentifier and
AuthorityKeyIdentifier extensions are not
really necessary, and may just be another example
of redundancy in the X.509 standard. However,
they do reinforce the idea that the public key
identifier is a better indicator of identity than a
X.500 distinguished name, because an identity is
only as unique as its keypair. We mainly include

5A malicious user could certainly issue multiple certificates
with the same serial number by changing the system clock,
but this would do no actual damage. It would merely spite the
standard.

this extension for ideological reasons. But we should
mention that these extensions made the certificate
validation code easier to debug, because the crypto
library code that compared two key identifiers was
usually much simpler than the crypto library code
that compared X.500 names.

NSS did not encode the AuthorityKeyIdentifier
correctly, so we copied the encoding function, fixed it,
and compiled it into our library.

Once the extensions are added, the certificate is
ready to be signed. A Mozilla XPCOM component
provides functionality to log into any PKCS #11 in-
terfaces (cryptographic tokens), asking the user for
a password if we need one. Other publicly-exposed
NSS functions allow us to get a handle on the private
key, and use it to sign the data in a DER encoding.

To our knowledge, this is the first implementation
of a proxy certificate issuer with NSS.

Storing Proxy Certificates. Once we have a
DER encoding of the proxy certificate, we need a
place to store it. NSS is no good, for numerous rea-
sons. It is not aware that end-entities can sign cer-
tificates. Furthermore, this Firefox extension may be
uninstalled, and if it is, it shouldn’t be abandoning
proxy certificates in the regular NSS database.

The key insight to storing proxy certificates is that
the storage medium does not need to store any secrets
(such as private keys). It can leave the private keys
in the NSS secure storage, and only needs to remem-
ber where those private keys are located. The only
disadvantage of this method is that the user could
delete his private key from the NSS database, thus
rendering his proxy certificates useless. Our imple-
mentation does not protect against this case; it just
blames the user for the problem.

Because proxy certificates do not need to be pro-
tected for confidentiality, it would have sufficed to
keep them in any non-volatile storage mechanism. In
our extension, they are simply stored in an SQLite
database6. The database key for each proxy certifi-
cate is derived from the serial number and the issuer
name. Because issuers should issue certificates with
unique serial numbers, this database key should be
unique. Each entry in the database also contains a
DER encoding of the certificate, as well as database
keys to access the issuer certificate, “delegator” cer-
tificate, and private key in the regular database. The

6SQLite is a open source file-based database engine with
a C API that accepts and executes queries in a subset of the
SQL language. More information can be found at http://www.
sqlite.org/.

“delegator” certificate is the end-entity certificate in
the chain ending in this proxy certificate. It names
the end entity from which this proxy certificate de-
rives its identity. (In chains with only one proxy cer-
tificate, the issuer is the delegator.)

The database can be described in two sections: del-
egated certificates and the user’s proxy certificates.
The sections must not be assumed to be mutually
exclusive, although they likely will be for most users.
The portion for delegated certificates is merely a log.
It tells Alice which proxy certificates she has issued,
and allows her to re-export them if she needs to send
them again (Figure 8). The other section of the
database holds certificates delegated to the user, cer-
tificates for which the user has the private key (Fig-
ure 9). These are the identities that can be used in
an SSL session.

Using Proxy Certificates, in Theory. The code
to inject proxy certificates into an SSL session per-
forms an interesting acrobatic stunt.

Recall from the original discussion of the Cross-
Platform Component Object Model (XPCOM) that
the Mozilla Framework keeps all its components in a
hash table, hashed by a human-readable contract ID.
If we ask the component registrar to load a compo-
nent with the same contract ID, the registrar will, by
default, simply overwrite that entry of the hash table.
From reading the source code, this feature seems to be
intentional, although it is not otherwise documented.
But this also means that there is no documentation
assuring us that this is a safe mechanism for extension
development. Thus, we use it cautiously.

This feature allows us to play man-in-the-middle
with Firefox’s SSL/TLS handling code. First, the
XPCOM objects that handle SSL and TLS sessions
are registered at a second contract ID. Then, custom
SSL/TLS handlers are registered at the first contract
IDs, overwriting the entries there. These custom han-
dlers intercept method calls intended for the origi-
nal handlers, change the passed arguments, and then
pass the altered arguments along to the traditional
handlers by looking them up at the second contract
ID. The same man-in-the-middle game can be played
with return values. Thus, we can change the method
arguments and return values at will to produce the
desired effect. That’s the theory—but it’s not so sim-
ple in practice.

Using Proxy Certificates, in Practice. The ac-
tual implementation is far more complicated and in-
volves several levels of indirection. The flow can be

http://www.sqlite.org/
http://www.sqlite.org/

Figure 8: Viewing the certificates in the database that have been issued by this user.

Figure 9: Viewing the certificates in the database that have been issued to this user. Observe that only fools
delegate their privileges to this particular user.

confusing. There are custom SSL/TLS handlers that
intercept calls to the traditional SSL/TLS handlers in
XPCOM. But those handlers turn around and use the
pure C NSS libraries to handle the SSL handshake.
Our method only allows us to intercept method calls
between the object-oriented XPCOM components.
Pure C method calls cannot be intercepted by the
same trick. So we need to use a different trick.

The SSL/TLS handler objects allow clients to set
a callback function that retrieves the client certificate
for the SSL handshake. (In the NSS documentation,
this callback is known as the ClientAuthDataHook
[12].) We can apply a second man-in-the-middle
strategy to this function, by changing the function
pointer to point to a function of our choosing. NSS
calls the callback function when it needs a certificate.

Unfortunately, that’s not the end of it. The cus-

tom certificate-retrieval callback only returns a single
certificate—NSS builds the rest of the chain. Fortu-
nately, there is a way to fool NSS into building an
arbitrary chain. NSS stores its certificates in data
structures with a lot of redundant information. These
data structures contain a DER encoding of the certifi-
cate, as well as pre-computed fields so that it doesn’t
have to decode and re-encode the certificate repeat-
edly. But there’s the rub: it uses the values of the pre-
computed fields to decide which certificates to push
onto the certificate chain, but the it uses the DER
encodings to construct the bits of data actually sent
across the network. And it assumes these fields are
in-sync. By feeding it out-of-sync data, we can fool
NSS to build a certificate chain based on the mock-up
certificate fields, and NSS will end up sending arbi-
trary DER data across the SSL session. This DER
data will, by more than coincidence, be the proxy

Figure 10: Registering two proxy certificates to use
in an SSL session. The chains for both will be sent
in client-side SSL/TLS authentication.

Figure 11: This test page shows the values of en-
vironment variables SSL DELEGATED IDENTITIES and
SSL DELEGATED PRIVILEGES.

certificates that we intend to transmit.

And that’s how an extension can add limited dele-
gation with proxy certificates to Firefox without mod-
ifying any existing code.7

5.2 The Apache Codebase

The Apache codebase is much smaller than the
Mozilla codebase, and our application allows its
source code to be modified. The changes made to
Apache are thus much more lightweight.

7 A lot of our reviewers were surprised by this result—in
particular, that a Firefox extension could throw so much weight
around and behave so intrusively. It’s worth pointing out that
the term “extension” is slightly misleading. “Extension” sug-
gests that the software is sandboxed; that it can only “extend”
the browser. But in reality, installing an extension is just as
dangerous as executing a binary.

New Directives. The Apache build system leans
heavily on an automated parser generator. A
single macro can add a new configuration direc-
tive, and define the callback function that will
process the arguments to that directive. The
new proxy certificate-handling directives defined in
Section 4.4 were designed to take advantage of
this existing infrastructure. Adding them is not
complicated. The SSLMultipleIdentities and
SSLExclusiveIdentity directives are processed by
changing global context variables. The two privilege
directives are processed by adding them to a global
privilege table, sorted by unique privilege name. For
each directory-specific SSLRequirePrivilege direc-
tive, we take the corresponding directory context
structure and give it a pointer to the required entry
in the global privilege table.

Privilege Propagation. Apache comes packaged
with a module, mod usertrack, that enables track-
ing cookies. This module supplies the basis for the
code needed to pass the supported privilege set to the
client via a cookie. We register a hook function with
the main Apache module to get called every time a
client connects. When this function gets called, we
can iterate through the permission table, encode it
in a cookie, and add that cookie to the HTTP reply
headers. (Actually, since the same cookie is transmit-
ted each time, and no permissions can be added after
the server starts, we just compute this cookie once.)

Certificate Verification. Because there may be
multiple chains of proxy certificates in an SSL session,
OpenSSL needs to be modified to accept a) proxy
certificates, and accept b) multiple chains of them.

Proxy certificate support in OpenSSL is contingent
upon the state of a particular environment variable.
But the Windows code for reading this environment
variable did not appear to be working correctly, so
OpenSSL was modified to accept proxy certificates
all the time.

Apache lets OpenSSL take care of the standard cer-
tificate verification, but sets a callback function to go
through the certificates after OpenSSL has verified
them, and do any custom verification. The OpenSSL
verification function normally stops immediately as
soon as it can’t find the issuer for a certificate in the
chain, then looks in the local store for a trusted chain
of issuers. The verification succeeds iff it finds such a
chain. If there are multiple chains, OpenSSL accepts
the first chain and says that it is satisfied. This ap-
pears to be non-standard. We modify the OpenSSL

verify function so that after it verifies the first chain,
it looks at the first certificate in this chain and the
first certificate in the chain of the “unverified” certs.
If these two certs match, and the global flag for mul-
tiple chains is set, it calls itself recursively on the
“unverified” cert chain to verify the other chains.

When the Apache callback function receives the
verified certificate chains, it iterates through them
again. For each chain, it looks for the end-entity
(the first non-proxy certificate) in each chain, and
pushes it onto an identity list. It also interprets the
ProxyCertInfo extension’s policy field, and deter-
mines which privileges are delegated all the way down
the chain. The implementation of this part should be
self-evident.

6 Related Work

SDSI/SPKI SDSI/SPKI is an alternative certifi-
cate standard that stresses simplicity over the com-
plication of X.509.

The SDSI/SPKI group at MIT developed an
Apache module and Netscape Communicator plug-in
that allowed users to authenticate with the server us-
ing SDSI/SPKI certificates. (Project Geronimo was
the name of the Apache module.) To accomplish this
goal, they developed an entire new protocol on top of
HTTP that performed this authentication. In their
system, the server notified the client of the permis-
sions it supported by sending an access control list
(ACL) to the client during the authentication hand-
shake. (Thus, the protocol handshake was used for
authorization as well as authentication.) The client
could then use this ACL to determine which certifi-
cates to send back [10]. This ACL solved the prob-
lem that we addressed by sending the permissions in
cookies.

Our system differs in that it is also concerned with
providing the user with an interface to delegate their
credentials. We also depend more on the existing
protocols and standards (X.509 and SSL/TLS) when
we can, rather than creating new ones.

Greenpass The Greenpass project grafted SDSI-
SPKI delegation on top of X.509 identity certificates
for EAP-TLS. In that project, system administrators
could maintain a secure wireless network without the
hassle of verifying the identity of temporary guests.
Regular users could delegate access to the network
to their guests. This made the network more man-
ageable and usable from both the administrative and

end-user standpoints.

In order to sign these delegation certificates, both
the regular user and her guest would visit a Web site
(the guest via a captive portal). This site provided
an interface wherein the regular user could verify the
guest and create the certificate, and the guest could
import the new certificate into her browser. Neither
had to install new software; they only needed to run
a trusted Java applet [4].

Notice that the Greenpass project and our project
ran into a similar problem: how does Alice transmit a
delegation certificate to Bob? We could circumnav-
igate this problem by using public e-mail. Because
the guests in Greenpass did not have access to the
network, they accomplished the same task with the
assistance of an internal Web server.

Distributed Systems. Delegation offers a decen-
tralized way to propagate privileges. It can also be
used to delegate a limited set of privileges for a very
limited time to a less trustworthy key. For these
reasons, people working in distributed systems love
delegation. They use it as a lightweight mechanism
for granting privileges to temporary processes. It’s
lightweight because it doesn’t require a central au-
thority, and no new identities need to be created. The
Grid created proxy certificates to take advantage of
these features of delegation [15, 11]. Marchesini et al
married Grid-style MyProxy to hardware trustwor-
thiness levels [9]. Howell specifically extended Lamp-
son’s access control calculus to include delegation, so
that he could use formal semantics to analyze dis-
tributed systems that lacked a central authority [7].

7 Conclusions

In the real world, users like to delegate privileges.
If next-generation authentication systems (such as
PKI) do not allow for this delegation, users will find
a way to work around them—and undermine the se-
curity that drove adoption of the strong system in
the first place. In this paper, we have presented both
the design and prototype of a way to extend PKI (via
standard client-side SSL) to permit this delegation.

When users can delegate rights to each other, we
can end up with a user with a set of delegated rights
from multiple sources. This raises the question: how
can applications make sense of this heterogeneous set
of rights? Consider some real-world examples. When
a group of people elect a delegate to the U.S. Electoral
College, they delegate a simple duty—to elect a presi-

dent. But when a number of persons sign their power
of attorney over to a single lawyer, a complex set of
rules governs how the lawyer can use these rights,
to prevent a conflict of interest. Clearly then, some
applications need fine-grained controls over how to
enforce delegated rights, and some don’t. Further
exploration there is one area of future work. Another
area is exploration of the user interfaces involved in
delegation.

There is a lot of political theory behind the de-
sign of X.509 and how it propagates authority. En-
gineers have politics too. Indeed, certificate theory
raises questions about authority and trust that have
been wrestled with since the Greeks. We have no
hope of setting those issues to rest here. But the
reader should be aware that one motivation behind
this paper is the political ideal that Alice and Bob
should have the authority to delegate their own priv-
ileges. This paper seeks to empower them with that
authority.

Code Availability

We plan to make the code available for public down-
load in 1Q2007.

References

[1] David Boswell, Brian King, Ian Oeschger, Pete
Collins, and Eric Murphy. Creating Applications with
Mozilla. O’Reilly, September 2002. Retrieved on-line
from http://books.mozdev.org/index.html.

[2] T. Dierks and C. Allen. TLS Protocol Version 1.0.
IETF RFC 2246, January 1999.

[3] C. Ellison, B. Frantz, B. Lampson, R. Rivest,
B. Thomas, and T. Ylonen. SPKI Certificate Theory.
IETF RFC 2693, September 1999.

[4] Nicholas C. Goffee, Sung Hoon Kim, Sean Smith,
Punch Taylor, Meiyuan Zhao, and John Marchesini.
Greenpass: Decentralized, PKI-based Authorization
for Wireless LANs. In 3rd Annual PKI Research
and Development Workshop Proceedings, pages 26–
41. NIST/NIH/Internet2, 2004.

[5] Peter Gutmann. X.509 style guide. October 200.
Retrieved on March 9, 2006 from http://www.cs.

auckland.ac.nz/~pgut001/pubs/x509guide.txt.

[6] R. Housley, W. Polk, W. Ford, and D. Solo. Internet
X.509 Public Key Infrastructure Certificate and Cer-
tificate Revocation List (CRL) Profile. IETF RFC
3280, April 2002.

[7] Jon Howell and David Kotz. An Access Control Cal-
culus for Spanning Administrative Domains. Tech-

nical Report PCS-TR99-361, Dartmouth College,
1999.

[8] Richard Levitte. HOWTO Proxy Certificates,
May 2005. Retrieved on March 11, 2006
from http://www.openssl.org/docs/HOWTO/proxy_

certificates.txt.

[9] J. Marchesini and S. W. Smith. SHEMP: Secure
Hardware Enhanced MyProxy. In Proceedings of
Third Annual Conference on Privacy, Security and
Trust, October 2005.

[10] Andrew J. Maywah. An Implementation of a Secure
Web Client Using SPKI/SDSI Certificates. Master’s
thesis, Massachusetts Institute of Technology, May
2000. Retrieved on-line from http://theory.lcs.

mit.edu/~cis/theses/maywah-masters.ps.

[11] J. Novotny, S. Tueke, and V. Welch. An Online
Credential Repository for the Grid: MyProxy. In
Proceedings of the 10th International Symposium on
High Performance Distributed Computing (HPDC-
10), pages 104–111. IEEE, 2001.

[12] Bob Relyea, editor. Network Security Services
(NSS). The Mozilla Foundation, May 2005. Re-
trieved on March 11, 2006 from http://www.

mozilla.org/projects/security/pki/nss/.

[13] Nicholas Santos. Limited Delegation (Without Shar-
ing Secrets) for Web Applications. Technical Report
TR2006-574, Dartmouth College, May 2006.

[14] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and
M. Thompson. Internet X.509 Public Key Infras-
tructure (PKI) Proxy Certificate Profile. IETF RFC
3820, June 2004.

[15] Von Welch, Ian Foster, Carl Kesselman, Olle Mulmo,
Laura Pearlman, Steven Tuecke, Jarek Gawor, Sam
Meder, and Frank Siebenlist. X.509 Proxy Certifi-
cates for Dynamic Delegation. In 3rd Annual PKI
Research and Development Workshop, 2004.

http://books.mozdev.org/index.html
http://www.cs.auckland.ac.nz/~pgut001/pubs/x509guide.txt
http://www.cs.auckland.ac.nz/~pgut001/pubs/x509guide.txt
http://www.openssl.org/docs/HOWTO/proxy_certificates.txt
http://www.openssl.org/docs/HOWTO/proxy_certificates.txt
http://theory.lcs.mit.edu/~cis/theses/maywah-masters.ps
http://theory.lcs.mit.edu/~cis/theses/maywah-masters.ps
http://www.mozilla.org/projects/security/pki/nss/
http://www.mozilla.org/projects/security/pki/nss/

	Introduction
	Goal
	Delegation Certificates
	Our Design
	Non-standard Proxy Certificates
	The Browser
	SSL/TLS
	The Web Server

	Our Prototype
	The Mozilla Extension
	The Apache Codebase

	Related Work
	Conclusions

