
Signed Vector Timestamps:

A Secure Protocol for Partial Order Time

Sean W. Smith J.D. Tygar

October 1991; version of February 1993

CMU-CS-93-116

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

The language of partial order time expresses the issues central to many problems in asyn-
chronous distributed systems. A secure partial order time service would provide a general
method to develop secure protocols for these problems. In this paper, we sketch out these
issues and develop one such protocol: signed vector timestamps. The majority of this paper
is drawn verbatim from the �rst author's October 1991 thesis proposal, the �rst research
into security issues for non-scalar time services and the original presentation of the SVT
protocol.

This research was sponsored by the Avionics Laboratory, Wright Research and Development Center,
Aeronautical Systems Division (AFSC), U. S. Air Force, Wright-Patterson AFB, OH 45433-6543 under
Contract F33615-90-C-1465, Order No. 7597. S. Smith also received support from an ONR Graduate
Fellowship and J.D. Tygar from NSF Presidential Young Investigator Grant CCR-8858087.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the o�cial policies, either expressed or implied, of the U.S. Government.

Carnegie Mellon Computer Science Technical Report CMU-CS-93-116.

Keywords: security, cryptographic controls, distributed systems, concurrency

Carnegie Mellon Computer Science Technical Report CMU-CS-93-116.

1. Introduction

The language of partial order time expresses the issues central to many problems in asyn-
chronous distributed systems. A secure partial order time service would provide a general
method to develop secure protocols for these problems. In this paper, we sketch out these
issues and develop one such protocol: signed vector timestamps. This paper is drawn ver-
batim from the �rst author's October 1991 thesis proposal1 [20], except for minor edits, the
concluding Sections 5 and 6, and this paragraph. The original proposal document gives the
�rst research into security issues for non-scalar time services and the original presentation
of the SVT protocol. (It has recently come to our attention that this protocol was later
independently rediscovered. [18])

Traditionally, we regard time as a scalar value, totally ordering on the events in a system.
However, the very nature of asynchronous distributed systems suggests that we should use
an order that is partial, not total, so that we can deliberately leave unordered two separated
events that have no knowledge of each other. In this partial order time model, both the
presence and the absence of a path between two events carry meaning|whether one event
necessarily precedes the other, or whether they are concurrent. If we use merely a total
order, we lose the latter information.

Many problems in distributed systems reduce to questions about this partial order. Our
current research explores building tools that explicitly grant these abilities, thus providing
a general method to develop protocols to solve problems in this class|known problems
that currently have separate ad hoc solutions, and also new problems that arise from this
uni�ed framework. Our research also explores making these tools robust for various models
of Byzantine failure and information con�nement; thus, protocols based on these tools will
be secure and robust, since they will inherit the security properties already present in the
toolkit.

2. Partial Order Time

Partial order time provides an alternative way to order events in an asynchronous distributed
system. The goal of the �rst author's thesis [21] is to design a family of protocols that allow
processes in a system to examine local events in terms of this time model.

The concept of partial order time solves some of the di�culties introduced by merging
independent timelines into the same totally ordered stream. Using only a partial order on
events lets us ensure that event a happens \after" event b if and only if a can observe the
results of b|total orders only allow the converse direction. Deliberately leaving unordered
two events that lie outside each other's \observation cone" frees us from the paradoxes of
con
icting knowledge horizons.

1The proposal document is available by request from the School of Computer Science, Carnegie Mellon
University, and also by ftp on lunch.trust.cs.cmu.edu as /usr/smith/public/PROPOSAL.ps.

1

Carnegie Mellon Computer Science Technical Report CMU-CS-93-116.

A total order < is consistent with partial order � when a � b =) a < b. (If we think
of orders as a set of ordered pairs, than a consistent total order is just a total order that
contains the partial order as a subset.) Any partial order extends to a consistent total order;
further, the set of consistent total orders uniquely characterizes a partial order. Research on
concurrent systems raises ideas of partial order time precisely because of the need to reason
about this entire set. Total order time|even the total order provided by real time|provides
only one member.

2.1. Formal De�nitions

We base our partial order time model on Lamport's. [11] Formally, let us de�ne an event to
be an instantaneous, atomic action within a system (as per Mattern [14]). Each event takes
place at one speci�c process. We partition events into three categories:

1. send events, in which one process sends a message to another

2. receive events, in which one process receives a message from another

3. internal events|anything else that happens within a process

Send events take place at the sending process; receive events at the receiving process. Note
that since communication is asynchronous, a send event does not have to be simultaneous
with a receive event; depending on the failure model we use, a send event may not even have
a corresponding receive.

Isolating each event in a distributed system|e.g., requiring each process to throw away
its state after each event|would render irrelevant any discussion of event ordering. Only
when events can observe the results of previous events does the issue arise of deciding which
events are indeed \previous." To capture this notion of \previous," we will construct the
basic partial order (BPO) on events: we will write a�!b to indicate the event b potentially
depends on event a: that is, event a must be in the past in the timeline experienced by b.
One interpretation of the BPO is that it expresses the basic
ow of causality; a less mystical
interpretation is that it speci�es some minimum required level of structure in possible time
sequences.

To de�ne the BPO, we proceed from two basic rules:

� Recall that we assume that uniprocessors can totally order their own events. If events
a and b occur on the same process and a precedes b in this order, then let a�!b.

� Processes only in
uence other processes by sending messages, and are in
uenced only
by receiving them. So, if a is the sending of a message and b is reception of that
message, then a�!b.

Formally, we let the BPO be the transitive closure of this relation. Note that for two
events a and b, exactly one of three cases holds.

2

Carnegie Mellon Computer Science Technical Report CMU-CS-93-116.

� a�!b: b depends on a

� b�!a

� a 6�!b and b 6�!a; in this case, we say that a and b are concurrent.

We will write a 6 ! b to indicate the latter relationship.

2.2. The Graph Interpretation

Interpreting the BPO as a directed acyclic graph (DAG) makes discussing some of its proper-
ties easier. Construct a node for each event in the system, and draw directed edges according
to the two basic rules above. Then the relation a�!b holds exactly when a path exists from
a to b.

Regarding the BPO as a graph|without transitive closure|allows us two di�erent ways
to de�ne restrictions on a BPO. Let S be a subset of the events (perhaps those events
occurring at some subset of the processes).

� We construct the nontransitive restriction of the BPO to S simply by deleting all nodes
not in S, and all edges incident to these nodes.

� We construct the transitive restriction of the BPO by �rst taking the transitive closure
of the graph, and then deleting the nodes and edges not in S. This is the standard
restriction for partial orders.

We will use the notation a
S
�!b to indicate that event b depends on a under the nontransitive

restriction of the BPO to S, and a
Ŝ
�!b under the transitive restriction.

3. Secure Clocks for Partial Order Time

This paper proposes a secure toolkit for distributed partial clocks. We now o�er a more
detailed discussion on what we mean by this|Section 3.1 presents the basic issues involved
in de�ning these clocks, and Section 3.2 examines security and robustness issues.

3.1. Clocks for Partial Order Time

The problem of robustly implementing a traditional clock on a distributed system (where by
\clock" we refer to a global event counter, although some ideas extend to approximations of
real time) is di�cult but solvable (e.g., [12],[13],[22]). Researchers observe that a necessary
condition for distributed clocks is that the total order calculated be consistent with the BPO.

3

Carnegie Mellon Computer Science Technical Report CMU-CS-93-116.

That is, the system computes a time function T , mapping events to integer timestamps, such
that for all events a; b,

T (a) < T (b) =) a�!b

However, we stress the importance of a system being able to calculate the BPO exactly.
Our goal is to implement a distributed partial clock: we want a timestamp set, with partial
order � ; a function T from events to timestamps satisfying

T (a) � T (b) () a�!b;

and the ability for processes within the distributed system to compute the function T and
the comparison � .

More precisely, we want our partial clock toolkit to enable processes to be able to calculate
these functions for the events they know about: process Pi need only calculate T and � on
some subset Ei containing the events perceivable by Pi. De�ning this notion is a bit tricky.
The weakest nontrivial de�nition follows:

� if event a occurs at Pi, then a 2 Ei

� if event a is the sending of a message to Pi, which Pi received, then a 2 Ei

Note that this is nontrivial because, if events a; b are the sending of messages to process Pi
and event c is internal, then answering the questions of whether a�!b or c�!a may require
information not easily available to this process. This de�nition is still rather weak: suppose
the message sent to process Pi in event a at process Pj contains information about events
preceding a? One could argue that Pi ought to be able order those event too.2 Further,
suppose that event b is the reception at process Pj of message m sent by event a at Pi.
Should b 2 Ei? Clearly Pi knows that its event a in
uenced b|but does Pi necessarily know
that b exists?

In the spirit of saying that our de�nition of BPO is purely syntactic, we claim that this
weak de�nition of Ei is the corresponding purely syntactic version. As with BPO, we can
construct more complicated extensions of this basic concept by considering other issues.

3.2. Security Issues

The problems of robustness and security in distributed partial clocks take two forms: fault
tolerance, and some special challenges the nature of partial clocks creates for information
con�nement.

2This fact|that the BPO is transitive but this notion of \perceivability" is not|will cause problems
when consider information con�nement (in Section 3.2).

4

Carnegie Mellon Computer Science Technical Report CMU-CS-93-116.

3.2.1. Fault Tolerance

A natural question to ask when considering a distributed system that consists of a physically
distributed collection of machines is: what happens when one of them goes awry? In our
distributed systems model we have several elements:

� physical processors

� communication links between processors

� processes running on processors

Physical machines can fail (either gracefully or maliciously); processes can be downright
malevolent; processes go into suspension while their machine is down, or when they move
operation to a di�erent machine; communication links can deliver messages out of order, or
garbled, or not at all.

(In the remainder of this paper, we make the simplifying assumptions that each process
resides on its on processor, and that the network never corrupts messages.)

We would like our distributed partial clocks to maintain some kind of reasonable perfor-
mance in the face of such troubles. We can imagine the standard spectra measuring severity
of individual failures and number of such failures, with a family of implementations that
achieve increasing levels of performance on these spectra, probably by trading o� against
simplicity and e�ciency, and by balancing the various types of robustness.

However, a new issue is exactly what we should regard as \reasonable performance." The
functions we wish our clocks to calculate capture distributed, global properties. Even though
events a and b might occur in the immediate proximity of a process Pi (e.g., in the weakest
Ei), the individual arcs in the BPO graph that cause a�!b to hold might be distributed
throughout the entire system. We could require the nonfaulty processes to calculate the
BPO correctly on their perceivable events; less strongly, we could restrict these events to
those belonging to nonfaulty processes (so we absolve nonfaulty Pi from any confusion that a
message from a faulty process causes). Some of our work already suggests even weaker fault
tolerance: requiring nonfaulty processes only to calculate the nontransitive restriction3 of the
BPO to the set of nonfaulty processes. Each of these cases partitions the set of processes, and
hence the set of events, into nonfaulty and faulty categories, but only speci�es how events in
the former should be handled. How nonfaulty processes should deal with bad events raises
another set of research questions.

3.2.2. Information Con�nement

To illustrate another set of security issues, we now consider an especially naive implemen-
tation of partial clocks. Suppose a distributed system explicitly maintains the BPO graph.

3Recall the de�nition in Section 2.2.

5

Carnegie Mellon Computer Science Technical Report CMU-CS-93-116.

After initialization, each process starts building a linear chain of its internal events. When
sending a message, a process sends along its chain; when receiving a message, a process
incorporates the graph information contained into its own graph. Consequently, whenever
a process executes an event, it knows the entire BPO subgraph induced by taking all the
ancestors of that event. This implementation allows processes to calculate the T and �
relations. However, even aside from questions of e�ciency and fault tolerance, this im-
plementation would be unsatisfactory in two crucial areas: reasons of security policy and
reasons of innate causality may render it undesirable or impossible for a process to know the
complete history behind every event.

Con�nement by policy. Recall in Section 3.1 we o�ered a weakest de�nition of the events
perceivable by a process: Ei, consisting of the events internal to process Pi and the send
events of messages received by process Pi. In many real instances of distributed systems
we may want to enforce an information con�nement rule such as \process Pi can know
nothing of the global BPO graph except its transitive restriction to Ei, unless authorization
is explicitly granted in some way."

For example, consider distributed workstations in a university environment. Just because
Alice sends a message to Bob does not mean Bob has the right to know everything Alice
has been doing. We need to consider con�nement from the future as well: professors Bob
and Carla may need to have a lengthy discussion of student Alice's proposal|but naturally
Alice should not be privy to this discussion, or even to the fact that \a lengthy discussion
of my proposal is going on."

We formalize these concepts by introducing two new terms:

� forward con�nement: keeping private information about a process from leaking to
processes it in
uences in the BPO

� backward con�nement: keeping private information about a process from leaking to
processes that have in
uenced it

Enforcing principles of forward and backward information con�nement raises some inter-
esting implementation challenges. Let a be a send event at process P1, and let events b at P2

and c at P3 be in the future of a (that is, a�!b and a�!c) and suppose processes P2 and P3

need to know di�erent details of the history of a in order to timestamp b and c, respectively.
Forward con�nement requires that P1 not transmit this information with a. But backward
con�nement requires that P2 and P3 cannot just query P1!

Con�nement by structure. Con�nement principles are just that|principles we impose
for reasons external to the basic problem of tracing causality. However, some common
systemmechanisms create information barriers that fundamentally a�ect this basic problem.
Suppose student Alice sends an anonymous suggestion to the suggestion box maintained by
Professor Bob for his class, who acts on this suggestion. Bob's actions depend on Alice's

6

Carnegie Mellon Computer Science Technical Report CMU-CS-93-116.

suggestion|but he cannot know whose action this suggestion is. Further, the suggestion is
not completely anonymous, for in her later interactions with Bob, Alice knows that Bob's
actions follow from her actions. Greif [7] calls this the phenomenon of hidden causality, and
gives a more fundamental example: the relation between V and P operations on a binary
semaphore.

How to resolve the problem of hidden causality in a distributed partial clock is another
research issue we intend to explore. We may need to extend the BPO formalism to make it
su�ciently rich to express all these nuances.

4. The SVT Protocol

4.1. Overview

The central issue in building a secure distributed partial clock toolkit is how to keep track
of the partial order. Essentially, our BPO is a dynamically changing directed acyclic graph
whose behavior meets the following criteria:

� Monotonicity. As [real] time progresses, edges and nodes are added. In the basic
problem, nothing is deleted.

� Distribution. New nodes originate from individual processes within a distributed
system; new edges from either individual processes or (in the case of message trans-
mission) from pairs of processes.

Our toolkit needs to allow individual processes to answer connectivity queries about this
graph, and hence must maintain this graph, at least in some virtual form. The distributed
nature of the DAG forces processes to require nonlocal information in order to answer these
queries. The issue of how and when this information should propagate|piggybacked on
system messages, or transmitted only when requested by a query|delineates one axis of
possible implementation approaches.

In this section we outline a starting point for our implementation work: signed vector

timestamps (SVTs). This approach falls at the \piggyback" end of this axis. The SVT
protocol extends Lamport event counters to provide an implementation of distributed partial
clocks that is moderately robust against Byzantine failure. We conjecture that this may be
the best protection possible if we disallow any special underlying computational structure.

However, this initial approach o�ers two principal drawbacks: ine�ectiveness at enforcing
forward con�nement, and computational ine�ciency in certain scenarios. Analyzing these
drawbacks suggests several new directions for implementation research.

We begin by discussing Lamport clocks (Section 4.2), then extend them to vectors (Sec-
tion 4.3), and then turn to SVTs: the protocol, its problems, and the new research avenues
suggested (Sections 4.4 and 4.5).

7

Carnegie Mellon Computer Science Technical Report CMU-CS-93-116.

4.2. Lamport Clocks

Lamport [11] discusses the issue of determining the BPO and presents an elegant partial
solution using local event counters. Timestamps sent along with every message keep the
local counters roughly synchronized, and capture a total order4 consistent with the BPO.

Formally, each process Pi maintains a local scalar clock Ci. Process Pi marks each event
a that occurs there and each message m it sends with a timestamp C(a) (or C(m)), which
re
ects the current value of the clock Ci. This current value changes with each event a at
Pi; the type of event determines the change.

a is internal C(a) Ci

Ci Ci + 1
a is sending of message m C(a) Ci

C(m) Ci

Ci Ci + 1
a is reception of m Ci maxfCi;C(m) + 1g

C(a) Ci

Ci Ci + 1

These timestamps order events consistently with the BPO:

Theorem 1 For all events a; b, if a�!b then C(a) < C(b).

However, this method has two principal drawbacks|it only produces a total order (the
converse to Theorem 1 does not hold), and it is egregiously unsecure, as each process's clock
is essentially world-writable. For example, suppose process Pi has Ci = s and receives a
message m from process Pj with C(m) = t � s. Ostensibly, the timestamp t testi�es that
at least t � s events have occurred in the outside world since Pi last received a message.
But Pi cannot distinguish this presumed scenario from one where malicious process5 Pj
arbitrarily in
ates the timestamp. After all, such maliciousness o�ers advantages:6

� If Pi lacks a \sensibility check" on its timestamps but plans to interact with process
Pk that does, then Pj 's action causes Pk to erroneously identify Pi as faulty.

� If processes store timestamps as a �xed-length word with maximum value N , then Pj
could use t = N�1 and cause Pi to roll over, either making Pi appear faulty or causing
dangerous anachronism.

4Strictly speaking, it produces a partial order, as events at two processes could receive the same value
timestamp. But we can easily linearize this order by choosing a linear order on the processes and using that
order to break ties.

5We oversimplify here|consider that Pj itself may only be the last link in a chain of honest processes
unwittingly passing on bogus information introduced by the malicious process.

6Again, actual scenarios may be even more complex: Pi may be just a link in a chain to reach the intended
victim process.

8

Carnegie Mellon Computer Science Technical Report CMU-CS-93-116.

� If processes store timestamps as unbounded values, Pj could still increase by orders
of magnitude the number of words Pi uses for its clock. This both slows down Pi's
dealings with its neighbors, and allows Pj to observe the spread of its in
uence|a
violation of backward con�nement.

� If Pj interacts with most processes fairly regularly, then it can render the entire clock
system e�ectively useless by blowing up every timestamp with each message.

4.3. Extending Lamport Clocks to Vectors

Our SVT implementation extends Lamport counters by making timestamps vectors instead
of scalars, and incorporating digital signatures. These extensions rectify the cited drawbacks.

In the vector timestamp protocol, processes maintain a vector indicating their \knowledge
horizon"|the most recent event they (syntactically) know about at each other process.
(Technically, we should note that this structure is not so much a vector but an indexed set:
the length need not be �xed, nor the indices known a priori. This raises some interesting
research questions regarding what to do with lost or missing members.) The SVT protocol
extends this by using public key decryption to authenticate these timestamps.

The vector timestamp protocol exactly captures the BPO. The SVT protocol even allows
the set of honest processes|no matter how few|to calculate the nontransitive restriction
of the BPO despite any action whatsoever by malicious processes. The concept of using
dependency vectors without authentication surfaces in earlier research (e.g., [23], [15], [5],
[6]), but this paper is the �rst to consider these vectors as an implementation for a general
purpose, secure partial clock toolkit.

The remainder of this section presents the basic protocol, and Sections 4.4 and 4.5 add
authentication.

4.3.1. The Vector Timestamp Protocol

We begin by discussing the basic protocol, without authentication. Let n be the number
of processes. Each process Pi maintains a local clock Ci, an event counter. Each process
also maintains an n-element vector Vi to keep track of the most recent event it knows about
at every other process. We will use the notation Vi(j) to refer to the jth component of
vector Vi|this component re
ects process Pi's most current knowledge of process Pj . We
can dispense with Ci altogether, and just store the value as Vi(i). Let each component of
each Vi be zero initially.

Each process will timestamp its events and outgoing messages with an n-element vec-
tor. To follow our previous notation strictly, we should denote these timestamps by V (a);
however, to make component indexing easier, we will use subscripting instead: Va is the
timestamp on event a, Vm on message m. The following table outlines how processes obtain
these timestamp vectors and update their own vectors. Let event a occur on process Pi.

9

Carnegie Mellon Computer Science Technical Report CMU-CS-93-116.

a is internal Vi(i) Vi(i) + 1
Va Vi

a is sending of message m Vi(i) Vi(i) + 1
Va Vi
Vi(i) Vi(i) + 1
Vm Vi

a is reception of m 8j 6= i Vi(j) maxfVi(j); Vm(j)g
Vi(i) Vi(i) + 1
Va Vi

The reason for the two increments in send events may not be intuitively clear. We
increment the local component before sending a message so that the receiving process can
treat all components equally when maximizing. We increment again so that the subsequent
event at the sending process will not precede the receive event.

We de�ne a natural ordering on the timestamp vectors.

De�nition 2 For vectors V;W , we say that V � W when 8i V (i) � W (i) and 9i V (i) <
W (i).

This ordering exactly captures the BPO.

Theorem 3 For all events a; b, a�!b i� Va � Vb.

4.3.2. Security Problems

Consider the timestamp vector Vi on process Pi. It is true that the components Vi(j) are
world-writable (for i 6= j) in the sense that a party sending Pi a message can force these
components arbitrarily high. If Pk has Vk(j) = 42 (for k; j; i distinct), then Pk can send a
message to Pi and know that afterward, Vi(j) � 42. If Pk is malicious, then it can render
the vector Vi e�ectively useless.

But assume for the moment that everyone is honest. Let 0 be the initial value of all
vector components. Process Pk can change a component of its vector in only two ways: it
can increment its own component

Vk(k) Vk(k) + 1

or it can copy other components from incoming messages

Vk(j) maxfVm(j); Vk(j)g

The vector on a message is just a copy of the vector at the sending process. Hence we can
observe:

10

Carnegie Mellon Computer Science Technical Report CMU-CS-93-116.

Theorem 4 Let a be an event on process Pi, and let j 6= i. Then Va(j) is either 0 or is a

copy of Vm(j), where m is a message sent by event b at process Pj, and b�!a.

So processes now have some means of detecting when someone is sending them bogus
information in a message's timestamp: they know that each nonzero component j of the
timestamp should have been originally generated by process Pj .

4.4. SVT: Adding Signatures to the Vectors

By adding signatures to the vector timestamp scheme, we can add tolerance against Byzan-
tine faults|arbitrary behavior by arbitrary numbers of processes.

Let us assume a public key decryption scheme, where for any x each process Pi can
generate a signature Ei(x) such that

� any process Pj can, given x,i, and y, quickly determine whether y = Ei(x)

� for j 6= i, any �nite set X , and any x 62 X , no process Pj can calculate Ei(x), even if
it has an oracle for Ei on X .

We directly extend the basic vector timestamp protocol to produce the secure protocol
SVT. Namely, we just include and check signatures.

Every vector V will now have two �elds in each component|the actual value V (i), and
the signature V (i)0. When a process Pi sends a message m, it sets

Vi(i)
0 Ei(Vi(i))

and then assigns Vm Vi. When a process Pi receives a message m, it �rst checks the
signatures

8j Vi(j)
0 = Ej(Vi(j))

before accepting it. If Pi decides to copy a component from the incoming message

Vi(j) Vm(j)

then Pi copies the signature as well

Vi(j)
0 Vm(j)

0

Let H be the set of honest processes. The SVT protocol allows honest processes to
correctly calculate the nontransitive restriction of the BPO.

Theorem 5 If a
H
�!b then Va � Vb.

11

Carnegie Mellon Computer Science Technical Report CMU-CS-93-116.

In the other direction, we can show something a bit stronger.7

Theorem 6 Let events a and b occur at processes Pi and Pj . Let i 2 H, and let Vb have

proper signatures. If Va � Vb then a�!b.

A nice thing to observe about SVT is that honest processes do not need to know which
other processes are honest.

4.5. Problems with the SVT Implementation

The SVT protocol has several drawbacks. For one thing, its tolerance of Byzantine failure
is not ideal|the \reasonable performance" it achieves falls short of what we would have
desired. We suspect that this behavior may be inherent for this style of implementation.
Another problem is that the amount of information that SVT timestamps contain violates
forward con�nement and, in certain situations, might be rather ine�cient.

4.5.1. Lost In
uence

In Section 3 we state that a central goal of this work is to discover a protocol by which an
honest process Pi can determine the BPO among its perceivable events Ei. The SVT protocol
does not achieve this goal. It is true that in SVT, a malicious process cannot overwrite the
clock values of other processes, and cannot generate arbitrarily large values in timestamp
components corresponding to honest processes. However, the protocol does permit spoo�ng
(in the sense of Herlihy and Tygar [9]). During the course of system operation, a process
will receive many timestamp pairs x; Ei(x) for many of the i. A process is supposed to use
the largest x it has received in each component, but it can use any other one it wants to.

For example, suppose Alice and the Bank are honest, but Carla is pretty nasty. Suppose
Alice deposits $10 in her previously empty bank account, and then gives Carla a check for
$10. Carla can roll back all her timestamps and quickly cash the check|and the Bank would
believe that Alice's request depends on Carla's, and thus will execute Carla's �rst, getting
Alice into trouble.

The problem remains that any dealings with dishonest or faulty processes will be suspect.
We conjecture8 that this behavior is inherent for a large family of implementations: any
protocol built around the following assumptions will risk losing chains of in
uence through
malicious processes.

7Actually, the question of whether Theorem 6 is stronger than the converse of Theorem 5 is not answered

so easily: we could interpret proving the latter as being able to distinguish a
H
�!b from a�!b, which broaches

the awkward topic of honest processes identifying the dishonest ones. Research questions remain here.

8Since the preparation of the original document in 1991, we have formalized and proved this conjecture.
The proof will appear in the �rst author's thesis. [21]

12

Carnegie Mellon Computer Science Technical Report CMU-CS-93-116.

� the processes themselves do all the computation|nothing is hidden or unconscious

� no honest process has a right to know anything about the internal events of any other
process

4.5.2. Con�nement and E�ciency

Since SVT timestamps are real data packets which entirely determine event ordering, the
SVT implementation easily enforces backward information con�nement. A process examin-
ing a timestamp does not need to bother anyone else. However, a cursory inspection of the
protocol reveals a a fundamental violation of forward con�nement: the fact that processes
must pass on the most recent timestamp components from everyone in the system.

If the distribution of messages is fairly uniform, then SVT is reasonably e�cient. But the
real world contains highly non-uniform scenarios. For example, consider a system consisting
of clusters of workstations at various universities. Most of the communication takes place
within each cluster, so the system graph has two fairly densely connected components, with
only a few edge between the components. If we have n processes and only � � n messages
across this cut, then we're transmitting much extra data|
(�n) when we really only need
O(�2).

One can argue similarly that much of the timestamp information in a tightly coupled clus-
ter is irrelevant, as everyone knows everything already. This situation is troublesome because
of redundant data, rather than unnecessary data. Some fairly straightforward methods exist
to reduce this waste|consider that process P1 can obtain from the timestamps it exchanges
with process P2 a good lower bound for each component in P2's internal vector, and only
needs to transmit the components that exceed this bound.9

5. Future Work

The traditional way to regard time is as a linear order on the events in a system|for any
pair of distinct events e1; e2, one must have happened before the other. By deliberately
leaving unordered events that did not in
uence each other, the BPO opens the door for
more general classes of temporal orderings.

Besides being of theoretical interest (e.g., Pratt [17]), these alternative time models have
some exciting implications for asynchronous distributed systems. Partial orders in form or
another lie at the heart of many application problems.10 For example:

� Tracking concurrency. In terms of the partial orders, the distributed snapshot prob-

9After the 1991 document, we discovered that Singhal and Kshemkalyani [19] had previously examined
some optimization techniques for vector timestamp protocols.

10E.g., [1],[2], [3],[4], [8], [10], [16]. See [20] or [21] for a more thorough overview.

13

Carnegie Mellon Computer Science Technical Report CMU-CS-93-116.

lem reduces to �nding a maximal set of mutually concurrent events.

� Tracking forward in
uence. The problem of rollback requires determining the
future of an event: if event e1 is to be undone, then all events e2 with e1�!e2 must
be undone. Protocols based on linear time orders only detect a superset of what e1
in
uenced; protocols based on partial orders give the set exactly.

� Tracking reverse in
uence. The problem of orphan detection requires determining,
given event e1, if any aborts preceded it. Protocols based on linear time orders only
detect a superset of what in
uenced e1; protocols based on partial orders give the set
exactly.

In his thesis proposal [20], the �rst author argues that solving such application problems
requires �rst solving the problem of maintain partial order information, and hence these
solutions to these application problems will automatically inherit the security problems of
partial order clocks. Hence developing a theory of partial order time and encapsulating
its clock primitives and security issues into a single package will provide a framework for
building secure protocols for these general application problems. Forthcoming publications
will expand on this research.

6. References

1. Birman and Joseph. \Exploiting Virtual Synchrony in Distributed Systems." Eleventh

Symposium on Operating Systems Principles. 123-138. 1987.

2. Birman and Joseph. \Reliable Communication in the Presence of Failures." ACM

Transactions on Computer Systems, 5: 47-76. February 1987.

3. Chandy. The Essence of Distributed Snapshots. Caltech CS TR 89-5. March 1989.

4. Chandy and Lamport. \Distributed Snapshots: Determining Global States of Dis-
tributed Systems." ACM Transactions on Computer Systems. 3: 63-75. February
1985.

5. Fidge. \Timestamps in Message-Passing Systems That Preserve the Partial Ordering."
11th Australian Computer Science Conference. 56-67. February 1988.

6. Fidge. \Logical Time in Distributed Computing Systems." IEEE Computer. 24
(8):28-33. August 1991.

7. Greif. Semantics of Communicating Parallel Processes. Ph.D. thesis, MIT, 1975.

8. Herlihy, Lynch, Merritt and Weihl. On the Correctness of Orphan Elimination Algo-

rithms. MIT LCS TM-329. 1987.

9. Herlihy and Tygar. How to Make Replicated Data Secure. CMU-CS-87-143. August
1987.

14

Carnegie Mellon Computer Science Technical Report CMU-CS-93-116.

10. Johnson. Distributed System Fault Tolerance Using Message Logging and Checkpoint-

ing. Ph.D. thesis, Rice University, 1989.

11. Lamport. \Time, Clocks, and the Ordering of Events in a Distributed System." Com-

munications of the ACM. 21: 558-565. July 1978.

12. Lamport and Melliar-Smith. \Byzantine Clock Synchronization." Third ACM Sym-

posium on Principles of Distributed Computing. 1984.

13. Marzullo and Owicki. \Maintaining the Time in a Distributed System." Second ACM

Symposium on Principles of Distributed Computing. 1983.

14. Mattern. \Algorithms for Distributed Termination Detection." Distributed Comput-

ing. 2: 161-175. 1987.

15. Mattern. \Virtual Time and Global States of Distributed Systems." In Cosnard, et al,
ed., Parallel and Distributed Algorithms. Amsterdam: North-Holland, 1989. 215-226.

16. Peterson, Bucholz and Schlichting. \Preserving and Using Context Information in
Interprocess Communication." ACM Transactions on Computer Systems. 7: 217-246.
August 1989.

17. Pratt. \Modeling Concurrency with Partial Orders." International Journal of Parallel

Programming. 15 (1): 33-71. 1986.

18. Reiter and Gong. \Preventing Denial and Forgery of Causal Relationships in Dis-
tributed Systems." 1993 IEEE Symposium on Research in Security and Privacy. (To
appear.)

19. Singhal and Kshemkalyani. An E�cient Implementation of Vector Clocks. Ohio State
TR OSU-CISRC-11/90-TR34. November 1990.

20. Smith. Secure Clocks for Partial Order Time. Thesis proposal, School of Computer
Science, Carnegie Mellon University. October 30, 1991.

21. Smith. Secure Clocks For Partial Order Time. Ph.D. thesis, School of Computer
Science, Carnegie Mellon University. (In preparation.)

22. Srikanth and Toueg. \Optimal Clock Synchronization." Journal of the ACM. 34 (3):
626-645. July 1987.

23. Strom and S. Yemini. \Optimistic Recovery in Distributed Systems." ACM Transac-

tions on Computer Systems. 3: 204-226. August 1985.

15

Carnegie Mellon Computer Science Technical Report CMU-CS-93-116.

