Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

A Theory of Distributed Time

Sean W. Smith

December 1993
CMU-CS-93-231

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Natural intuition organizes experienceinto alinear sequence of discrete events, but thisapproachis
inappropriate for asynchronous distributed systems, where information is distributed and percep-
tionisdelayed. Distributed environmentsrequire a distributed notion of time, to abstract away not
only irrelevant physical detail but also irrelevant temporal and computational detail. By expressing
distributed systems concepts that are difficult to talk about in terms of real time and by distin-
guishing what really “happens’ from what physically occurred, atheory of distributed timewould
provide a natural framework for solving problemsin distributed environments. This paper laysthe
groundwork for that claim by formally building such atheory. Thisresearch improveson previous
work on time in distributed systems by supporting temporal relations more genera than partial
orders, by supporting abstraction through multiple levels of temporal relations, by separating the
family of temporal relations an application consults from the particular clock implementations that
track them, and by providing asingle arenato consider theseissues for awide range of applications.

©1993 Sean W. Smith

This research was sponsored by the Wright Laboratory, Aeronautical Systems Center, Air Force Materiel Command,
USAF, and the Advanced Research Projects Agency (ARPA) under grant number F33615-93-1-1330. Additional
support was provided by NSF Grant CCR-8858087, by matching funds from Motorolaand TRW, by the U.S. Postal
Service, and by an ONR Graduate Fellowship. The author isgrateful to IBM for equipment to support thisresearch.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the officia policies, either expressed or implied, of either Wright Laboratory or the U.S. Government.

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Keywords: Distributed systems, concurrency, security and protection, checkpoint/restart,
fault tolerance

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Contents

1 Introduction
1.1 DescribingComputation
1.2 Didributed Time e
1.3 OveviewofthisPaper.

| Computation

2 Systems
21 ProCesses. e e
22 HODevICeS e
23 Message TranSmisSioN o o e

3 Traces
3.1 What InfluencesanExecution
3.2 ObservingComputations.

[Time Models

4 Developing a Definition

41 ComputationGraphs
411 AD€finition
412 Notation
413 Subgraphs
414 ldentityand Isomorphism

4.2 Ground-Level ComputationGraphs
421 Turning TracesintoGraphs
422 Computationsand Ground-Level Graphs
423 NoAbstraction

43 TimeModels.
431 Eventsand Tempora Relations
432 Representation
433 Modes.

5 Properties and Operators

51 Trangitivity e

52 Bounds.

53 Cycles e

N B

11
11
13
14

17
17
18

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

54 Generators
55 Digointand CompleteModels.
56 MergingGraphsandModels L
56.1 MergingGraphs
56.2 MergingModels

Developing a Family of Models

6.1 WithinProcesses
6.2 ACIOSSProCESSES o
6.3 Patiad OrderTime

Relationships Between Models

7.1 Containment
711 TheContainmentRelation
712 TheContainmentMap
7.1.3 UsingContainment

7.2 Refinement

7.3 Components

7.4 Decomposition
741 ModelandComponent
7.4.2 Decomposing ModelsintoComponents

Simultaneity

Parallel Models

81 MultipleProcesses

82 Tools. e
821 Projection
8.22 Eventsin Modelsand Multicomponents
8.23 Tempora Relationsin Models and Multicomponents.

83 Vaiations
831 ConcurrentPairs.
832 MultilinearPairs.
833 PadledModels

Logical Simultaneity

9.1 Timedlices
9.1.1 VectorsandCuts.
9.1.2 TimMediCeS
9.1.3 TimedicesinPardld Pairs

9.2 SetPrecedenceandOperations

9.3 Lattices e
9.3.1 De€finitions.
932 TimMediCes

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

9.3.3 \Vectors, Cuts,and Consistent Cuts. 82

10 Timestamp Vectors and Rollback Vectors 87
10.1 TheDefinition e 87
10.1.1 TheAttempt 87

10.1.2 UniqueEntries. 88

10.1.3 MissingEntries 88

10.2 PropertiesDespite MissingEntries. L. 89
10.3 Vector Clocks 90

11 Real Simultaneity 93
111 Globa States 93
11.2 Timedicesand Global StatesinLinear Time 96
11.3 Timedlicesand Global Statesin Partial Order Time 97

12 View-Completeness 99
121 ToolsforEdges e 99
12.2 View-CompleteModels 100
12.3 TimedlicesinView-CompleteModels 102

13 Real Simultaneity and View-Complete Partial Order Time 105
13.1 OneFix: RestricttheDomain 105
13.2 Ancther Fix: InserttheNecessary Events 105
133 These FixesWork 106

14 Timeslices and View-Completeness 109
14.1 Two New Typesof Models. 109
142 Extendibility 109
14.3 Extremal Timedlices 110
14.3.1 Adjusted Timestamp Vectors and Adjusted Rollback Vectors 110

14.3.2 The Extremal TimedliceTheorem 111

144 Characterizing Timeslices 113
1441 A Model toExpressForcing 115

1442 Preparation 115

1443 TheManResult 117

15 Conclusion 119
151 SUMMary e e 119
152 FutureWork 120
1521 Using Distributed Time L. 120

1522 QuickSketches 121

1523 ResearchPlan 122

Index of Notation 123

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

List of Figures

11
12
1.3
14
15
1.6
1.7

4.1
42
43
4.4
45

5.1

6.1
6.2

7.1
7.2
7.3
14
7.5
7.6
1.7

8.1
8.2
8.3

9.1

111
11.2

131

141
14.2

An exhaustive physical description. L. 2
Abstracting from physical descriptionstoevents. 3
The physical descriptionitself isan abstraction. 3
Genuinely simultaneousevents.o 4
Apparently simultaneousevents. 4
Abstraction losesinformation. 5
Rollback inducestwo levels of abstraction. 6
A parringbetweengraphs. 24
Ground-level graphs and computational space-time. 26
Time models are representational transformations. 30
Compositionof timemodels. 31
TheLINEARmModel. 33
Union of computationgraphs. L 40
A composition hierarchy of timemodels. 44
The NONIDLEmode. 45
Containment and direct containment. 50
Containment and strongcontainment. 50
Thecontainmentmap. 51
Refinement. 55
Containment does not guarantee well-defined components. 56
Decomposition. 60
Thefactoringmodel. 62
A multiprocesspair providesfourviews. 67
Thelocalization. 70
Parallel pairs. 73
Cutsdonot formalattice. 83
Global states. 95
TheproblemwithPOT. 97
ThePHmodel. 107
Timestamp vectorsand adjusted timestamp vectors. 112
A timedlicethat isnot an adjusted vector. 114

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Vi

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Acknowledgments

The author is extremely grateful to Doug Tygar for his advice and continual encouragement, and
to Dave Johnson for his painstaking reading and discussion of many early drafts of this document.

Vii

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

viii

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Chapter 1
Introduction

Traditionally, we think of computation as some set of things that happen. Since things happen in
real time, we can use real time to organize these events into a linear sequence. By imposing a
discrete structure on events, thistraditional view already performs abstraction: full physical detail
does not express what really “happens.” The advent of asynchronous distributed computation
extends this abstraction to time: if two events occur without knowledge of each other, then their
real time sequence does not matter [La78,Pr86]. Expressing what really “happens’ in adistributed
computation requiresatheory of distributed time that abstracts away both irrelevant physical detail
and irrelevant temporal detail.

A theory of distributed time has practical motivations and uses. Many application problemsin
asynchronous distributed systems reduce to asking questions about temporal relations other than
the natural real time sequence. Thinking in terms of these alternative temporal relations would
clarify these problems; providing clocksfor these relationswould ssimplify protocol design. Indeed,
building protocol sfor these problemsrequiresconfronting these clock issuesin oneform or another.
However, doing wonderful things with aternative temporal relations requires understanding the
underlying framework. This paper considers the question of the appropriate notion of time for
distributed systems, and devel ops forma mechanismsfor atheory of distributed time. Later papers
will use these mechanismsto build aframework for secure applications.

Previous research developed the notion of time as a partial order. Lamport [La78] used partial
ordersto track causal dependency in distributed systems; Pratt [Pr86] argued for the universality
of partial order time. Fidge[Fi88] and Mattern [Ma39] explored partial order time and built vector
clocks; the author explored security issuesin tracking partial order time.! Other research includes
callsfor departing from the order of real time ([Je85] uses total orders; [Gr75] uses partia orders),
and explorations of the role of partial orders and asynchrony in application problems such as
communication [BiJo87, PBS89], distributed debugging [Fi89, Sp89], deadlock detection [Ma37,
TalL091], distributed snapshots [ChLa85, Ma93], and rollback recovery [StYe85, Jo89, JoZw90,
PeKe93].

This paper improves on earlier work by providing a single, general theory of distributed time
suitable for a wide range of applications. By supporting temporal relations more general than

1The author’s Ph.D. proposal [Sm91] discusses these issues, and presents a secure protocol for partial order time.
[ReG093] aso explores security for partial order clocks; more recent work by the author [SmTy93] improves on these
earlier protocols. [AmMJa93] considers some related security issues.

1

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

partial orders® and by supporting hierarchies of temporal abstraction, this theory can express the
computational abstraction appropriatefor familiesof application problems. By providing ageneral
approach to distributed time, this theory allows us to unify in a single framework protocols that
separately consult and affect time, and to consider once the clock issues central to each separate
protocol. By introducing orthogonality between temporal relations and the clocks that track them,
this theory allows us to consider (and alter) clock implementations without changing higher-level
protocols.

The author’s current research [Sm94] involves building a single arena to analyze the tempo-
ral aspects of distributed application problems, to design protocols in terms of distributed time
primitives, and to independently consider secure implementations of these primitives. This paper
provides atheoretical foundation for that work.

1.1. Describing Computation

Loosely speaking, we use time to identify the things that happen and the order in which they
happen. What isthe best way to describe what actually “happens’ in a computation?

Describing Physical Reality On abasic level, computation is a physical activity. Physical
devices react to each other and the environment as time progresses. From this perspective, the
best description is astraightforward record of the physical activity: the notebook of an omniscient
observer who, each time something changes, glances at his watch and jots down what occurred and
when. Figure 1.1 gives atoy example.

Abstracting to Discrete Events However, merely recording physical activity is too naive.
Even the above toy example reveals a fundamental problem with this approach: granularity.
Recording alist requires imposing a granularity on actions: one thing happens, then another, then
another. Thisimposition raises two issues.

First, the granularity we desire when describing computation isusually far coarser thanthelevel
in an exhaustive physical description. A computational event represents some bundle of physical
events. Figure 1.2 illustrates this abstraction.

0:01 0:03 0:04 0:07 0:08 0:09 0:11 0:13
LDR1 INRL STR1 NOP LDR1 LDR2 ADD STR1

Figure 1.1 An example of an exhaustive physical description
is a timestamped list of machine instructions.

2For example, non-transitiverelations and cyclic relations both have some use.

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

0:01 0:03 0:04 0:07 0:08 0:09 0:11 013
LDRI INRL STRL NOP LDRL LDR2 ADD STRL

Figure 1.2 We may abstract away from the physical description by bundling basic
physical events into computational events. The detailed machine code becomes
“‘event A;, then event A,.”

Secondly, even constructing an exhaustive physical description begs the granularity question.
Why should werecord machineinstructions, rather than gatefirings, transistor activity, or subatomic
particles? Event abstraction continues at lower layers. Figure 1.3 sketches one approach.

Abstracting from Real Time If physical computation istaking place in adistributed environ-
ment, then the physical description should indicate not only when things happen, but also where.

The computational level should leave concurrent any events that represent simultaneous activity.
(SeeFigure1.4.)

Suppose the system isasynchronous aswell. Events A and B were not genuinely simultaneous
but only apparently simultaneous: that is, they had no knowledge of each other. Then we may still
want to leave them unordered. (SeeFigure 1.5.)

0: 01
LDRL
0: 00. 34 . 0: 00. 90
Gate 5 Gate 23
0: 00.'342 0:00:349
Tr ansi st or Tr ansi st or
478 523

Figure 1.3 The physical description is itself an abstraction: each instruction may
represent gate firings or transistor actions. The level of description we choose for
our base is essentially arbitrary.

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

D 0: 01 0: 04
LDRL 1NRL STRL .

...........

Figure 1.4 Abstractevents A; and B; representgenuinely simultaneous
computation; we regard these events as concurrent.

D: 0:01 0:03 0:04 /
" LDRL INRL STRL .~

q 0:04 0:05 0:07
: LDRL [NRL STRL

Figure 1.5 Abstract events A; and B, now represent computation that only “ap-
pears” simultaneous; nevertheless, we still regard these events as concurrent.

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Lacking any access to rea-time clocks and unable to perceive each other except through
messages, process p and process ¢ cannot distinguish the actual physical order of A and B in
this example. Hence we have not just condensed physical activity to events and removed edges,
we have condensed a set of physical descriptions to a single computational description. (See
Figure 1.6.) The processes should not know which physical description in this class is the “true”
description.

Abstracting from Abstractions Situations arise when even a single layer of abstraction
does not suffice. For example, consider the problem of rollback: modifying the computation
so that certain events appear to have never occurred. (Rollback arises arises when considering
fault-tolerance and checkpointing [Jo89, JoZw90], and will be considered in subsequent work.)
Suppose process p wants to roll back event A, and execute A’ instead. Initially we pretended
that the computational description, not the physical description, iswhat “really happens.” But now
we want to ignore detail in the computational description as well—we want to abstract away the
original event A,, and the rolled back computation that depended on it. Figure 1.7 sketches how
rollback induces two levels of abstraction.

0:01 0:03 0:04 | ‘! . 0:01 0:03 O0:04
PP bRt INRL STRL @ ¢ P (DRI INRL STRI
. 0:01 0:03 0:04 ! | . 0:04 0:05 0:07
O bRt InL STRL o+ O LDRL INRL STRL

Figure 1.6 An abstract computation graph represents a set of possible physical
computations. Once we abstract to the graph, we forget the presumably irrelevant
physical detail.

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

™
Y
&

0/01 0:03 0:04 0:07 0:08 0:09 0:11 0'13 0:15 0:18 0:20 0:21 025
LDRI INRL STRIL NOP LDRL LDR2 ADD STRL OOPS! LDRL LDR2 ADD STRL

Figure 1.7 Rollback induces two levels of abstraction. We prune away irrelevant
machine details to obtain description «; however, we presumably want to prune
away irrelevant rollback details to obtain the “real” description 5.

1.2. Distributed Time

These informal sketches demonstrate some issues critical to building a theory of time,

e We want to represent a computation as some abstract set of “things that happen,” with a
relation indicating the temporal order in which these things happened.

e The components in these abstractions themselves represent various parts of the exhaustive
physical description.

e These abstractions should permit temporal relations more general than that of linear time.
The rollback example of Section 1.1 motivates two more issues:

e We need to distinguish between the way we obtain the abstract representations, and the
representations themselves (since we may have multiple routes to the same representation).

e We will want to apply abstractions to abstractions.
We conclude that a general theory of distributed time should contain three components.

e astandard format for these abstract representations (so we can talk about computations)

e away to specify time models. representational transformations on these objects (so we can
abstract from one representation to another)

6

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

e a way to trandate some level of physical description into this format (so our chains of
abstraction have some footing in reality)

Once we develop a framework for distributed time, the challenge remains of developing and
using models in thisframework. Our sketches in Section 1.1 featured two implicit goals:

e to express the ordering that processes in an asynchronous distributed system perceive

e to use some natural level of discrete events

Initially we see two principal motivationsfor using distributed time models:

Best Approximation of Reality If the complete physical description is unavailable, our time
model should express as much as we can know about it.

Convenient Expressiveness |f thecomplete physical description obscureskey concepts, then
our time model should provide a more appropriate description.

The rollback example of Section 1.1 raises a third motivation:

Virtual Computation If theprocesses collectively pretend that the “ current” computation differs
from the one a complete physical description would record, then our time model should
express this abstraction.

If an application problem broaches these issues, then distributed time will be relevant to that
application. We quickly sketch a few examples:

e The problem of distributed snapshots consists of one process trying to take a snapshot of
the state of the system at some instant. Distribution and asynchrony impose knowledge
limitations that make thistask difficult: anything that the process can perceive about the rest
of the system is out-of -date.

e The problem of orphan detection requires determining if agiven event might have perceived
(and thus depend on) an aborted event. This perceive/depend relation formsapartial order—
real time alone fails to give enough information.

e The problem of rollback requires modifying the computation to pretend that a smpler one
(or at least a different one) occurred. The processes cooperate to add an additional level
of abstraction, and this new level—describing a fault-free computation that never really
happened—becomes the “real” computation.

Chapter 15 will return to these topics, and subsequent work will explore them more thoroughly.

7

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

1.3. Overview of this Paper

This paper formally develops a theory of distributed time. The initial goal isto build aframework
to express the ordering perceivable in asynchronous distributed systems; however, the framework
will extend to wider domains.

Aswe already observed, computation is fundamentally a physical activity; hence talking about
abstract representations of computation requires choosing some arbitrary level of physical de-
scription. Part | presents our system model, the level of physical description we choose for this
work.

Part 11 builds the machinery for time models. This construction follows the schema of
Section 1.2: we develop a computation graph format for abstract representations, trandlate the
physical description into thisformat, and build afamily of representational transformations

Part 111 explorestherelationship between model ed time and real time—the rel ationship between
logical smultaneity and genuine simultaneity. We extend the time model machinery to apply to
parallel computation, and we explore timeslices. sets of logically simultaneous events.

Chapter 15 concludesthis paper by discussing the second half of the problem: using thistheory
of time as aframework for a secure applications.

(A guideto the symbols and terminology we use follows the text of this paper.)

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Part |

Computation

The immediate focus of our work is building time models for computation in asynchronous dis-
tributed systems. However, before we can build models, we need to specify the things we want to
model. Part | handlesthistask. Chapter 2 presentsthe formalism we use for our distributed system
system: acollection of finite automata communicating with each other, and with the outside world
(via l/O devices, dso automata). Chapter 3 then defines the system trace format we use for the
ground-level, exhaustive physical description of computation.

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

10

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

(Part I)

Chapter 2
Systems

A process is a sequential, localized computational entity. A process may interact with its local
environment through a collection of 1/0 devices. A systemisafinite collection of processesand 1/0
devices. Processes and 1/0 devices have unique names. For a given system, let PROC-NAMES
be the set of process names, DEV-NAMES the set of I/O device names, and NAMES be their
union. (To keep things smple, we assume these sets are static.)

Processesinteract with each other and with the I/O devices by asynchronously passing messages
that arrive either once (after an unpredictable delay) or not at al. (Thus, the system does not
necessarily preserve message order, and may lose messages.) A message isatriple indicating the
sender, the destination, and the message content. Formally, define

MESSAGES = NAMES x NAMES x X

where ¥ isthe set of finite binary strings.

2.1. Processes

The Automata Model Internaly, aprocessisadeterministic finite automaton operating in rea
time. Each process has a finite set of states () (with initial state ¢ €) and a send queue S and
areceive queue R from MESSAGES".! (These queues are not necessarily FIFO.) Such triples
constitute process configurations:

CONFIGS = () x MESSAGES" x MESSAGES"

Transition Functions A process aso hasatransition function é that specifies transformations
of the process configuration.

0 : CONFIGS—CONFIGS

1The notation 17 * denotes the set of strings of items from aset 1.

11

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

However, not just any function will do. All transition functions must respect the operation of the
send and receive queues. For example, the send queue lists the messages sent by this process that
have not found their way into the network yet. Transition functions must treat the send queues as
write-only.

Exactly how atransition function should treat the receive queue—the list of messages that have
arrived at that process but have not yet been “received”—is another matter. Should a process be
able to execute only “blocking receives,” where a receive operation causes the process to read
a message off its queue (if the queue is nonempty) or wait indefinitely until a message arrives?
Should the arrival of a message interrupt the process, so that a receive happens spontaneously on
the arrival of a message? Or should a process have a poll operation, where it formally determines
if amessage iswaiting?

A Interrupt/Polling 6 Asanexample, wedevelop aspecification that admitstransition functions
that can do both explicit polling and spontaneous interrupts.

The Informal Version Wewant such aé to allow aprocessto examineits current state and
whether or not the receive queueis empty. Thisinformation alone then enables one of three types
of trangitions:

e send: the process changes state and adds a message to the send queue.

e receive: the process changes state, removes a message from the receive queue, and readsiit.

e compute: the process only changes state (without modifying the queues).

The receive transition can only be enabled if amessage iswaiting, and only in areceive transition
may the process actually examine the value of the of the message at the head of the queue.

The Formal Version Let EMPTY be the predicate indicating that a queue is empty, CAR
return the first element of a nonempty queue, CDR return the remainder, and APPEND(s,) return
the queue s with the element = appended.

Axiom 2.1 (Interrupt/Poll) There exist functions

CLASS: (@ x {true,false} — {send, receive, compute}
STATE,; () x {true,false} — Q

STATE, : () x MESSAGES — Q

MESS : Q@ x {true,false} — MESSAGES

such that

CLASS(q,x) = receive — x =true

12

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

and
(STATE;; (¢, EMPTY(R)), APPEND(S, MESS(¢, EMPTY(R)), R)
if CLASS(¢,EMPTY(R)) = send
6(¢.5.R) = | (STATE:(g, CAR(R)), S, COR(R))

if CLASS(¢, EMPTY(R)) = receive

(STATE.i(q, EMPTY(R)), S5, k)
if CLASS(¢, EMPTY(R)) = compute

This paper assumes the processes in the exampl e systems have transition functionsthat satisfy this
axiom.

In Real Time A process operates in real time. Each process receives ticks; at each tick, the
process transforms its state according to 6. This paper treats transformations as instantaneous (to
insure they are atomic), and assumes a past-closed convention (to keep state well-defined). If a
tick occurs at time u, the old configuration persists for ¢ < w, and the new one exists for ¢t > «
(until the next tick).

Since the processes are asynchronous, these ticks occur at indeterminate intervals, indepen-
dently at each process. However, these intervals must be “reasonable.” The following axiom
presents one characterization of reasonableness.

Axiom 2.2 (Discrete Behavior) Inany finite period of time, aprocess receivesonly
afinite number of ticks.

Philosophy Central to the family of time systemswe build in this paper is the assumption that
the system is indeed asynchronous and distributed. Processes have no access to real time: an
outside observer can generate timestamps from God'’s wristwatch, but individual processes never
get to look at this device. Further, processes may perceive the rest of the system only through the
messages they receive.?

2.2. 1/O Devices

Throughout its execution, a process may interact with local parts of the outside world—perhaps a
hard disk, a user at the console, or a fermentation vat with sensors and valves. From a process's

2Local input and output (through I/O devices) provides an avenue for covert communication that violates this distri-
bution requirement. Such pathology lies beyond the scope of this paper (but subsequent research will examine this
issue).

13

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

point of view, these /O devices are black boxes. The process can communicate with them and may
have someidea of what they might be doing, but the environmentsessentially have nondeterministic
behavior and unobservable state.

Similar to processes, 1/0 devices appear in our model as automata, with a set of states ()pgy
(containing initial state ¢q), a send queue, areceive queue, configurations of the form

DEV-CONFIGS = Qpev x MESSAGES® x MESSAGES®

and atransition function §.

An |/O-device automaton differs from a process automaton in two important ways. First, the
state set (Jpey May be countably infinite (since the real world can be fairly complex). Second,
a given configuration may enable transitions to several new configurations (to alow for the ran-
domizing influence of the outside world). The transition function for 1/0O-device automata maps
configurationsto sets of configurations:®

§ : DEV-CONFIGS—P(DEV-CONFIGS)

In a transition from configuration ¢, the automaton takes on one of the new configurations from
6(c¢) nondeterministically.

Each process has a (possibly empty) collection of I/O devices. We make the smplifying
assumption that these collections are digoint. The 1/O devices that a process uses are private to
that process (e.g., only process p communicates with its 1/0O devices).

As with process automata, asynchronous, independent ticks (satisfying the Discrete Behavior
Axiom) trigger transitionsin 1/O-device automata.

2.3. Message Transmission

The previous sections presented automata models for process behavior and 1/0 devices. This
section completes the picture by formally describing their interaction: message transmission.

A process automaton (or I/O-device automaton) sends a message by appending it to the send
gueue, and receives a message by examining the receive queue (according to its §). However,
forces external to the actual automata determine how messages get from one queue to the other.
In our model, a message added to a send queue remains there an indeterminate amount of time,
after which it spontaneously vanishes into the ether. The message might arrive in the appropriate
receive queue after some unpredictable positive delay, or it might remain in the ether forever.

Aswith configuration transitions, these changes are past-closed and instantaneous: the old state
existsfor timet < u, and the new state for time¢ > .

3The notation P(W) denotes the set of &l subsets of a set V.

14

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

(Conceivably, we may wish to require more predictable message behavior for I/O messages—
such as bounded transmission time—because of their connection to a processis presumably more
reliable than the network between processes.)

15

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

16

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

(Part I)

Chapter 3
Traces

Having described what the system is, we now describe what the system does.

3.1. What Influences an Execution

A system consists of a set of processautomata, each withitscorresponding I/O-deviceautomata. I1n
agiven system, each process has an individual program. Inaparticular execution, the system starts
computation at time ¢ = 0 with each process and 1/0 device initsinitial configuration (qo,),).
Naturally the program at each automata i nfluence how the configurations evolve in this execution.
But there are woollier influences. the tick sequences, the transitions of 1/0O-device automata, and
the lifetime and fate of messages.

The behavior of these influences—the delays on messages and ticks, the choices of state
and fate—is unpredictable from the point of view of a process, or even of an outside observer
with perfect knowledge of all the processes (or even of the entire system). But formalizing this
nondeterminismistricky. For example, what mechanism best models the generation of aprocess's
ticks in a particular execution? A simple random choice—e.g., at time ¢ the process obtains a
positivereal A at random, and movesagain at ¢t + A—does not suffice. Neither does obtaining an
increasing sequence from a set of permissible sequences (according to some specified distribution),
nor does any mechani sm obtaining one process s sequence independently from the other sequences.

In reality, the universe calculates this behavior. The delays and transitions that occur in a
particular execution depend on the state of the universe when the execution commences. But
since the universe is afairly intractable beast, in our model things just happen unpredictably. We
formally acknowledge thislack of determinism.

Axiom 3.1 Inan execution, any pattern of behavior (obeying the Finiteness Axiom)
may occur.

17

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

3.2. Observing Computations

An execution begins when an outside observer sets his stopwatch to 0 and simultaneously resets
the processes and their I/O-devicesto their initial configurations. The automatarules of Chapter 2,
and the particular way the ticks, state choices, and message fates unfold, allow the process and
|/O-device configurations to be well-defined for all time¢ > 0.

A system trace is a discrete representation of what an omniscient observer outside the system
can realistically perceive of acomputation over afinite period of time. In aparticular computation,
the observer takes afinite series of photos of the system and jots down the time of each photo on the
back. We assume the observer is lucky enough to catch all the action by taking at least one photo
immediately after every change to a process configuration: after every processtick, and after every
message arriving at a process's receive queue or vanishing from aprocess' s send queue. (Sincethe
|/O-device automata are black boxes, we shield their behavior from the observer.)

We can imagine traces to be tables, with one column for each photo. In each column, the first
row contains the time of the photo, and the remaining rows (one for each process) contain the
process configurations that the photo captures.

Definition 3.2 Suppose a system has n processes, P; through P,. A system trace
isafinitetuple T = ((to, o), ---, (tk, Sk)), Where each ¢, is a nonnegative integer and
each s; isan n-tuple (¢;1, ..., ¢;,,) Of process configurations, such that

o g <ilp< ... <1

e 5o consists of theinitial configurations.

e There exists some system computation such that each ¢; ; is the configuration of
process P; at timet;

e For this computation, let up < u; < ... < u,, be the sequence of time values
from the closed interval [to, ;] at which a process ticks, a message arrives at a
process receive queue, or a message leaves a process send queue. Then:

— 1o < ug
— Uy, < Tk
— For each 7 < m, at least one ¢; falls between u; and .

18

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Part Il

Time Models

A system trace provides the maximum amount of physically observable information about a com-
putation. However, thisinformation containstoo much detail and too littlestructure. Consequently,
we develop atime model framework for transforming the detailed representations to more abstract
representations. Presumably, these abstract representations better expressthe essential aspects of a
computation by abstracting away the irrelevant details.

Part 11 buildsthis framework. Chapter 4 develops the definition of time models. Chapter 5 ex-
plores some basic properties of time models, and presents some basi ¢ operators (which themselves
take the form of time models—abstracting abstractions). Chapter 6 develops a particular family
of time models (to express the hierarchy of abstractions) from real time ordering of al eventsto
partial ordering of interesting events. Collections of models suggest some natural relationships;
Chapter 7 explores these relationships.

19

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

20

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

(Part II)

Chapter 4
Developing a Definition

Loosely speaking, timeis a mechanism for ordering things that happen. Talking about a computa-
tion requires enumerating the things that happen and placing some type of order on them. Hence,
weintroduce acomputation graph format to describe acomputation as a particul ar set of “ordered” !
objects. Modeling acomputation entailstaking its description in thisformat and constructing anew
description (also in thisformat), whose parts may represent various parts of the old description. A
time model is thus a representational transformation of computation graphs. For these chains of
transformed graphs to talk about the physical reality of computing, they require a foundation: a
computation graph that explicitly describes computation, rather than one that is just an image of
another graph. We provide this foundation by transforming traces into ground-level computation

graphs.?

Section 4.1 develops this computation graph representation. Section 4.2 trandates system
traces to ground-level graphs. Section 4.3 then presents the notion of a time model as a particular
way of transforming (and presumably abstracting) sets of computation graphs.

4.1. Computation Graphs

4.1.1. A Definition

Abstractly, a computation is some set of discrete events that happen in some particular order. (In
this paper, we assume that this set is alwaysfinite.)

Lstrictly speaking, thistemporal relation may not always be an order.

2As we observed in Section 1.1, the choice of what constitutes ground-level is somewhat arbitrary. In this paper,
ground-level graphs come from traces; other uses of thistheory might require other foundations.

21

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

We express this abstraction as a computation graph: a labeled directed graph representing a
computation.®> The graph consists of directed edges and labeled nodes. Each node is an event—a
distinct “thing that happens.” The label describes the event. We distinguish between events and
event labels in order to allow repeated occurrences of the same type of event.

The edges have two roles. to indicate the temporal relation of events, and to indicate the
transition from one event to another. The role an edge plays will be clear from the construction of

agraph.

4.1.2. Notation

The atoms of a graph are its nodes (with labels) its edges. Where convenient, we will regard a
graph as the set of itsatoms. « € « refersto an atom « from graph «. Lower-case Greek letters
denote computation graphs. Upper-case Roman letters from the beginning of the aphabet denote
specific nodes, and lower-case Roman letters starting with = denote specific atoms. Variations on
the notation G will denote special sets of computation graphs—e.g., the graphs obtained in some
particular way, with event labels from some specified set.

4.1.3. Subgraphs

We obtain a subgraph of a computation graph in the natural way: by pruning away some nodes
and edges.

Definition 4.1 A subgraph of a computation graph « is the graph obtained by
removing from a:

e asubset of the nodes
e asubset of the edges, including any edge incident to a deleted node

When computation graph «' is a subgraph of computation graph «, we write

o/Coz

4.1.4. Identity and Isomorphism

We introduce terminology to describe when two computation graphs completely match:

SLabeled graphs are essentially identical to ordered multisets, which surface in the literature (such as Pratt’'s work
on partial order time [Pr86]). However, we feel the former representation is more amenable to computer scientists.
Further, using graphs rather than pomsets grants us the liberty to use more general temporal relations.

22

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Definition 4.2 Two computation graphs «; and «, are identical
a1 = Q2

when they match: when abijection exists giving an exact matching of nodes and edges.

Since nodes in computation graphs have labels (by definition), for two nodes to match, they must
possess the same label. The standard graph-theoretic notion of isomorphism ignores labels and
consequently gives aweaker correspondence:

Definition 4.3 Two computation graphs «; and «; are isomorphic

~

a1 a

when they areidentical, except for the node labeling. That is, we can relabel the nodes
in o to obtain agraph o', satisfying o’y = ax.

Both identity and isomorphism depend on the existence of a bijection between two graphs.
Having explicit access to this bijection will be useful:

Definition 4.4 A pairing between two graphs «; and o, is Ssmply a subset P of

a1 X ap. If ag = ap and pairing P enumerates the identification, we write

a1 =p Q2
Similarly, if a; = o, and pairing P enumerates the isomorphism, we write

~

ag p Q2

The correspondence between two identical or isomorphic computation graphs does not neces-
sarily induce unique pairings. consider two copies of an edgeless graph consisting of two nodes
with the same label.

Identity and Isomorphism on Subgraphs Supposetwo graphs have identical subgraphs:
a1 D o'y =p da C a
Then the pairing P between the subgraphs extends to be a pairing between graphs. The pairing

not only enumerates the identification between the subgraphs but also specifies the subgraphs.
Figure 4.1 illustrates this relationship.

This technique al so applies to isomorphic subgraphs.

23

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Figure 4.1 The pairing enumerating the identification between two identical sub-
graphs also specifies the subgraphs. Here, each o/; C o/;,and o'; =» a,. However,
P is a pairing not only between the subgraphs «'; but is also a pairing between the
graphs «;. Given a; and «a, and P, we can figure out that the «; subgraphs are
identical.

4.2. Ground-Level Computation Graphs

Currently we describe real physical computation via traces. Our time models will provide the
means for more abstract descriptions. In order to have closure on composition, time models will
operate on computation graphs. Thus, in order for time models to apply to real computations, we
need to lift traces into this computation graph format.

We want to perform this action with a minimum of abstraction, since abstraction is the duty of
models. Thislifting isjust some deight of hand so that models can talk about the real world.

4.2.1. Turning Traces into Graphs

Since we will perform abstractions on computation graphs, we need to make sure that the
ground-level graph for a trace contains everything of interest in the trace. Consider the trace
T = ((to,50),-ws (tg, Sk)), With s; = (¢i1,¢i2, ..., ¢). ThiStrace expresses ahandful of interesting
things about the underlying computation:

e Attimet,;, the jth processisin configuration ¢; ;.

e Either thisconfiguration persiststhrough ¢;, 1, or there exists exactly onetime u; in the open
interval (¢;,7;11) a which this process changes configurations. This change must have one
of thefollowing forms:

— the process undergoes a send, receive, or compute transition (from Axiom 2.1).
— amessage departs from the send queue of this process
— amessage arrives at the receive queue of this process

But the exact value of w; is not known.

¢ If thetrace indicates that two different processes each undergo a configuration change in the
interval (t;,t,+1), the changes occurred at the ssame instant. (Thisfollowsfrom the definition
of trace: otherwise the observer would have taken an intermediate photograph.)

24

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

We construct the ground-level computation graph of 1" by, for each process, creating anode for
each of these interesting actions. (Thus, each of these actions becomes an “event.”) We then draw
edges to represent the basic transitions from action to action at each process. The basic transitions
go from photo to photo, if nothing happened, or from photo to configuration change and from
configuration change to the next photo.

We choose event labels from the seat:

PROC-NAMES x (({photo} x CONFIGS x non-negativereals)
U ({send, receive, depart, arrive} x MESSAGES)
U {compute})

This set just follows the above schema. Each label is a pair containing a process name, and a
description of the event: atimestamped photograph or a configuration transition.

4.2.2. Computations and Ground-Level Graphs

Physical computation takes place in space and time. The computation that trace 1" represents takes
place in the space-time region PROC-NAMES x [t, {1] (the cross-product of a discrete set with
aclosed interval of the reals). The ground-level graph for 7" has two important properties relating
to thisregion.

e Each atom of the ground-level graph of 7" naturally represents some part of the underlying
region.

— Event (p, (photo, ¢, ¢;)) represents the instant (p, ¢;) of the photo.

— A configuration change event (p, foo) (between the ¢; and ¢,,1 photos) represents the
instant of transition foo: the point (p, «) for the [unknown] instant « in the open interval
(t;,t;+1) when the change occurred.

— Edges represent the transitions between consecutive events at the same process. We
induce the region this edge represents from the regions the events represent: the edge
from the (p, t) node to the (p, «) node representsthe region (p, (¢, u)).

e The regions represented by the atoms in the graph of 7" form a partition of the region
represented by 7.

Every instant at every process in a computation that trace 7' describes corresponds to exactly one

atom in the ground-level computation graph. Every atom in the ground-level computation graph
represents adigoint set of theseinstants. Figure 4.2 sketches an example of these properties.

4.2.3. No Abstraction

We reiterate that the ground-level computation graph of 7' is merely agraph version of thetrace 7',
expanded toincludethe (inferred) configurationtransitions. Thegraph containsno explicit ordering

25

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

real time

represents computational

computation graph

-level
space-time. Each atom in the ground-level graph « represents activity at process

p Or ¢ at some point or interval of real time.

Figure 4.2 A ground

26

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

information that was not already present in the trace. The graph also contains information—such
as the times of the photos, and even the existence of the photos—not available to the processes.

The graph version of atrace merely expresses the trace in graph format. Any higher abstraction
(such asimposing orders or pruning away uninteresting actions) isthe job of atime model.

4.3. Time Models

Formally, a time model is a particular way of transforming one set of computation graphs into
another set, presumably more abstract. Concomitant with this transformation is a notion of repre-
sentation: an atomin thetransformed graph may represent aset of atomsintheoriginal graph. Time
models usually depart from physical reality in order to better express some underlying conceptual
structure.

4.3.1. Events and Temporal Relations

Events Aswesaw in Section4.1, building computation graphsrequiresbundling process activity
into discrete packages called events. We identify events, the basic “things that happen,” with their
nodes. Events are atomic in the sense that they provide the fundamental level of granularity in the
computation graph: inthisgraph, one cannot talk about anything finer. Thelabel on an event should
describe that event in sufficient detail for the level of abstraction in this graph—for example, if a
graph representswhat a process perceives about acomputation, the label s should make no reference
to things that process cannot observe, such asrea time.

Temporal Relations Intheground-level computation graphsfrom Section 4.2, edges represent
transitions between events. In more general graphs, the edges will represent a temporal relation
on events—the “order” in which they happen.

A temporal relation is a binary precedes relation on a collection of elements (which, in this
paper, will be events). Wewrite A — B to indicatethat event A precedesevent B inthisrelation.
We also use some variations:

e A— BwhenA — BorA=10H

e A —/~ B when A doesnot precede B
e A— BwhenA— Band B — A
e A— BwhenA+«— BorA=1H

e A /> Bwhenneither A— BnorB — A

27

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

A relationistransitive when (for any events A, B, () if A— Band B — (' then A — (.
A relation is antisymmetric when A — B and B — A cannot both hold for A # B. A relation
isirreflexive when no A — A. A partial order is arelation that transitive, antisymmetric, and
irreflexive; a total order is a partial order that is complete: for any A # B either A— B or
B — A.

We introduce a new term: a linear time order is a partial order where concurrency is an
equivalence relation whose equivalence classes induce atotal order. In alinear time order, we can
assign each event A areal number 7'(A), such that 7'(A) < T'(B) iff A — B, for distinct A, B.
(A linear time order isjust atotal order that allowsfor simultaneous events.)

4.3.2. Representation

From Graph to Graph Eventsrepresent discrete units of computation. Inthe physical system,
computation takes placein space and time. Expressing computation astracesimposes agranularity
on perception: things happen at processes (the space coordinates), and time values from the trace
must delimit the time periods (the time coordinates). The graph version of a trace constructs
events and edges by packaging portions of the space-time computation region as single atoms. As
Section 4.2.2 observes, this packaging has some convenient properties. each atom represents a
digoint subregion, and together these subregions congtitute a partition of the full region.

Constructing a computation graph 3 to model another computation graph « should proceed
in the same fashion. Each atom in 3 may represent some portion of the computation region that
« expresses. (A ghost atom is one that represents nothing.) However, this region is no longer
space-time, but rather isthe graph «. Aswith traces, the structure of the region forcesagranularity
on the perceivable subregions. they must be composed of subsets of atoms of «.

We could express this representation in a number of ways (regarding a graph as the set of its
atoms):

as arelation between o and 3

asapartia function from « to 3

asafunction from o to P (3)

asafunction from 5 to P («)

The first approach makes composition of models awkward; the second forces each atom in
« 10 have at most one representative in 3 (a restriction which we suspect may cause problems
eventually); the third makes it difficult to talk about the multiple atoms a single atom might
represent.

We conclude that the fourth approach is the cleanest and the most flexible. It most closely
follows the principle that each atom in 5 represents some set of atomsin «. It aso alows usto

28

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

express easily properties such as “each « atom has at most one representative in 57 and “ /3 may
have no ghost nodes.” Such afunction naturally extends to act on sets of atoms: apply the function
to the individual elementsin the set and take the union of the results.

Terminology Suppose graph 3 represents graph «.. A representation map is a function taking
each atom of [to aset of atoms of «. (Aswe will seein the next section, representation mapswill
accompany model applications.)

Since we' re talking about representation, we' Il adopt a democratic model for terminology. Let
x bean atom of 3, y an atom of «, and R arepresentation map from 5 to «. Then we say:

e v isarepresentative of y (if y € R(x))
e R(x) isthe constituency of «

e yisaconstituent of x (if y € R(x))

However, we allow for general, Chicago-style democracy:

e Some representatives may have overlapping constituencies.
e Some representatives may have empty constituencies.

e The collection of constituencies might not cover the entire populace.

4.3.3. Models

A Formal Definition We put the elementsof Section 4.3.1 and Section 4.3.2 together to produce
aformal definition of atime model: a uniform way to build a computation graph whose pieces
explicitly represent pieces of another computation graph.

Definition 4.5 A time model isapartia function M taking computation graphs to
computation graphs, such that (if M isdefined on graph «) the applicationa — M(«)
induces a representation map from M(«) back to «. We write

(M, a)

to indicate this representation map.

Figure 4.3 illustrates the action of atime model and its representation map.

29

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Figure 4.3 Model M transforms computation graph « to computation graph M («).
The representation map (M, «) takes each atom of M («) back to the set of atoms
in « it represents. The bold arrow indicates the action of M; the dashed arrows
indicate the action of (M, «).

Conventions Models are partial functions, so the domain of amodel isthe set D of graphsfor
which it is defined.

When 3 isunderstood to be a particular computation graph that model M generates from graph
o, wewrite
A— BinM

to indicate that event A precedes event B in 3 (and, implicitly, that events A and B appear in j3).
(In some situations, we will want to emphasize the model, not the particular graph names. This
shorthand makes such emphasis possible.)

A time model M naturally induces transformations of graph sets that its domain contains:
M(G) isthe set consisting of the transformed graphs {M(«) : « € G}.

Composition and Inversion Simple manipulations of functions apply to models too—the
only trick is handling the representation maps. For example, composing models yields a model.

Definition 4.6 Suppose model M (with domain D;) and model M, (with domain

Mqi(D1) C D,

Then their composition M, o M1 isthe model on domain D; taking o to Ma(M;j(«)),
with

<M20M1,Oé> = <M1,0é> 0 <M2, Ml(Oé)>

30

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

(M2.My(a))

M,oM,; (Mo My, a)

Figure 4.4 To obtain 5 = (Mz0M3)(«), we transform « according to M4, and then
transform the result according to M,. To figure out what an atom of 3 representsin
«, we obtain the set of atoms it represents in M1(«), and then figure out what each
of these represents in «. Solid arrows indicate the action of M; and M5; the bold
solid arrow indicates the action of M,0oM;. Dashed arrows indicate the action of the
representation maps (M1, «) and (M, Mi(«)); the bold dashed arrow indicates
the action of the representation map (Mo M3, a).

31

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Figure 4.4 illustrates composition of models.

We can also talk about the inverse image of graphs (relative to a given model and class). If «
isagraph from M(G) where G isunderstood, then M~1(«) is the set

{peg 1 M(B)=aj}

A Simple Example The computation that a trace 7" expresses has a natura synchronized
structure. But the ground-level computation graph of 7" not only failsto express this structure—it
also includes items from the trace (the photographs) and items induced from the trace (arrive and
depart nodes) that one ordinarily would not regard as genuine events in the computation. We
now introduce a simple time model that abstracts ground-level graphsto graphsthat more cleanly
represent the computational activity.

Definition 4.7 Themodel LINEAR takes ground-level graph « to the graph /5 built
asfollows. Let o be the graph of trace T' = ((to, s0), .-+, (tk, 5k))-

Nodes For each process p:

e Createanode L in 3 for the node (p, photo, 7o) in a.
e Createanode T in 3 for the node (p, photo, #;) in «.

e Node (p, photo, ¢;) leads to node (p, photo, #;,1) in «, possibly through an
intermediate node A;. Examine thistransition:

— If theintermediate node A; existsand isa send, receive or compute, then
create a copy of this node (minusthe p name) in j.

— Otherwise, nothing interesting happened, so create anodeidlein /3.
Edges Thus, there existsanode in 3 for time ¢¢ a each process, for time ¢, at each
process, and for the transitionfrom ¢; to ¢, ; at each process. Draw an edge from

node A to node B in f—not necessarily from the same process—whenever any
of the following hold:

e A represents the transition from ¢, to ¢,,1, and B represents the transition
fromi¢,,1t0t; 42

o A representsito and B representsthe transition from ¢q to ¢5.

e A representsthetransition fromt,_; tot,, and B representst

e A representsto and B representsi,, in the degenerate case when £ = 1.

The representation map formalizes this natural representation. (LINEAR, «) takes
each non-idle node in /3 to the corresponding node in «, and the idle nodesin 3 to the
atoms lying between the corresponding pair of photo nodes. The edgesin /5 between
sequential nodes at the same process represent the internal atomsin the paths between
the nodes they represent; the cross-process edges are ghosts.

Figure 4.5 shows the application of LINEAR to asimple trace graph.

32

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Figure 4.5 We obtain 5 by applying LINEAR to the simple ground-level compu-
tation graph «. Dashed lines connect each atom in /3 to the atoms it maps to under

(LINEAR,).

The LINEAR model derivesitsnamefromthefact that it expresses the basic stepsin the natural
linear time order on computations. Fully expressing the linear time order requires one more tool

(which Section 5.1 will provide).

33

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

34

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

(Part II)

Chapter 5
Properties and Operators

This chapter presents machinery to talk about some properties of computation graphs and time
models. We develop this machinery both by considering the actual properties—of graphs, of sets
of graphs, and of models that produce such graphs—and aso by considering operators on graphs
that ensure that some given property holds. (Conveniently, such operators take a familiar form:
time models.) Section 5.1, Section 5.2 and Section 5.3 consider some special issues arising from
relations. Section 5.4 and Section 5.5 consider the generation and representation issues arising
frommodel applications. Finally, Section 5.6 considerstheissuesinvolved in merging computation
graphs and merging the models that produce them.

5.1. Transitivity

The computation graphs that we' ve seen so far (ground-level graphs and their LINEAR images)
express events and transitions between events. However, usually we think of temporal relations as
being transitive: if event A happens before event B, and event B happens before event (', then
event A happens before event C'.

Defining Transitive Closure Hence, we say that a computation graph « is trangtive if its
relation istrangitive: an edge exists from A to B whenever B isreachable from A. We obtain the
transitive closure @ of a graph o by adding an edge from A to B whenever a path but no edge
exists between them.

A model istransitive when it producesonly transitive computation graphs. Taking thetransitive
closure of amodel seems anatural operation, but the representational aspect of models makesthis
operation somewhat non-trivial. Suppose model M actson graph «.. Clearly wewant the transitive
closure of M to produce atransitive version of M(«). Unless M(«) aready istransitive, we will
need to add edges. Which edges should we add? What should these edges represent?

35

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Inthis paper, we choose the simplest approach:! simply take thetransitive closure of each graph
that M produces, and et any new edges be ghosts. Here we begin to see some of the expressiveness
of time models. the transitive closure operator isitself atime model that copies a graph and adds
edges. We call thismodel TRANS, and use the shorthand:

M = TRANSoM

Using Transitive Closure As we have mentioned, usually we think of temporal relations as
transitive. However, these relations usually arise by first considering some “basic” transitions on
events. Having an explicit transitive closure operator alows us to follow this technique when
building models.

For example, the transitive closure LINEAR expresses the full linear time ordering of process
actionsinduced by real time.

Asking about precedencein graph M(«) is equivalent to asking about pathsin M(«). (Having
the flexibility to talk about both the “full” version and the “single-step” version of a time model
will be useful in subsequent papers when we consider knowability issues.)

5.2. Bounds

Isthereawell-defined “ earliest” or “latest” event in acomputation? In this section, we define what
thismeans and present an operator to force models that produce extremal eventsto produce unique
extremal events.

The Property An eventis minimal in a graph if no event precedes it. Similarly, an event is
maximal if no event succeedsit.

A computation graph « is bounded when it contains a unique minimum that precedes all other
events in @, and a unigue maximum that follows all other eventsin@. When a graph is bounded,
the unique extrema are its bounding nodes.

LAnother approach would be to add an edge for each nontrivial path from event A to event 5. The new edge would
represent the internal atoms in this path. This aternative approach alows us to reach through some precedence
assertion to the individual steps that cause it to hold. This ability might be useful: for example, it makes it easier to
state one of our preliminary security results [Sm91]: an honest process (using a certain clock implementation) will
always detect the presence of an edge, if the events that edge represents occur only at honest processes.

Should we eventually be interested in the more complicated form of closure, we could insert that between M and
M by first defining TRANS; (which adds representative edges for each nontrivial path) and then TRANS, (which
replaces al edges from A to B by a single representative ghost edge). Then we would re-define TRANS as the
composition TRANS; o TRANS;.

36

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

A model M is bounded when it produces only bounded graphs.

A graph « istransitively bounded when @ is bounded; amodel M istransitively bounded when
M isbounded.

An Operator Suppose model M produces graphswhose transitive closure contains minimaand
maxima. One way to insure that M is transitively bounded is to collapse the extrema into single
events.

Definition 5.1 Themodel EXTREMA takes a graph « to the graph 3 asfollows:

Nodes Partition the nodes of the transitive closure @ into three sets: S, containing
the minima, S+ containing the maxima, and S 4. the remaining nodes. The
nodes of 3 consist of one copy of each nodein S 4., plus anew node labeled L
if S, isnonempty, plusanew nodelabeled T if S+ isnonempty.

Edges Thenode constructioninducesanatural surjection /' from nodesin « to nodes
in 3. Use this surjection to draw edges: if an edge exists from A to B in «, then
draw one from F(A) to F(B) in 5. (Thus F' extends to a surjection £’ from
atomsto atoms.)

The representation map (EXTREMA, «) istheinverse of the surjection F”.

Applying EXTREMA to amodel does not necessarily yield atransitively bounded model. For
an easy counterexample, suppose model M produces graphs that are smple cycles. Since M
produces ho minimaor maxima, we have

EXTREMAoM = M

and thus M is not bounded.

5.3. Cycles

Given adirected graph, a natural question is to ask whether it contains any cycles. This question
appliesto our work, since time model s produce computational graphs.

Hence, we say that anode A in graph « isacyclic when no cyclein o containsit. We say that
graph « is acyclic when it contains no cycles. Finally, we say that a model M is acyclic when it
produces only acyclic graphs.

Conversely, anode A iscyclicif it is contained in acycle; agraph « iscyclic if it contains a
cycle.

37

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

5.4. Generators

On abasic level, we might regard possible system behavior—what the system does in a given set
of circumstances—as a set of possible system traces. Our time theory allow us to regard possible
system behavior instead as a set of possible computation graphs. However, this set of graphs
cannot stand alone as a descriptive entity; we need to specify how this particular set originatesin
the ground-level graphs.

This specification consists of two things: amodel M and agraph set G, such that G1 = M(G»).
We say that such a model is a generator of set G;. If G, consists of ground-level computation
graphs, then M isagrounding generator of G;: each graphin G, isgrounded in physical redlity. If
M produces no ghost eventsin Gy, then it is a concrete generator of G;: each event in a g, graph
has concrete meaning in its G, pre-image.

Some interesting scenarios will develop when a set of models induces multiple grounding
generators for asingle graph set. For example, the graph 3 in Figure 1.7 might arise from failure-
free execution or from a faulty execution smulating (through rollback) a failure-free execution.
Subsequent papers will present a more thorough exploration of thistopic.

5.5. Disjoint and Complete Models

Suppose computation graph « lies in the domain of model M. The new graph M(«) represents
the original graph «. How expressive is this representation? Two issues arise immediately.

e Dotheatomsin M(«) have unique meanings?

e Inthe M(«) graph, can we still talk about every atomin a?

We introduce two terms to handle these issues. Model M isdigoint on « if the constituencies
of the atoms in M(«) are digoint (that is, no atom of « has multiple representatives in M(«)).
Model M iscomplete on « if the constituencies of M(«) completely cover « (that is, each atom of
« has at least one representative in M(«)). If M is complete and disoint on « and M(«) is free
of ghosts, then (M, «) partitions the atoms of «.

The model M isitself digoint when it isdigoint on every graph in its domain; similarly, the
model M is complete when it is complete on every graph in its domain.

Suppose graph « lies in the domain of model M. If M is complete, every atom in « is
represented in M(«). We can use M(«) to talk about every atom of « (although we may not be
able to distinguish some atoms). If M is digoint, every atom from « that is represented in M(«)
is represented uniquely. We may not be able to talk about every part of the original graph «, but
we can distinguish everything we can talk about.

Every model we consider in this paper will be digoint.

38

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

5.6. Merging Graphs and Models

Suppose computation graph « liesin the domain of two models M ; and M,. We have two different
abstractionsof «: thegraphs 51 = Mi1(«) and 5, = Mj(«). (Perhapseach 3; isolates and abstracts
some particular aspect of «).

How can we merge 3, and 3, to obtain a single, more complete abstraction of «? How can we
merge M; and M into amodel that always produces this more complete abstraction?

5.6.1. Merging Graphs

Suppose we are given two computation graphs «; and a, and we we want to construct a graph that
retains all the information in both. The semantics of computation graphs make this task tricky: a
graph may have multiple nodes with the same label. Suppose «; and a, each have a node labeled
A. Should we merge these nodes or keep them separate? What if «; and «, instead have identical
subgraphs «'; a bit more complicated than the singleton A? If «; and a, have multiple pairs of
identical subgraphs, which pair should we merge?

To rectify this confusion, we need to explicitly the pairs of atomswe will identify (that is, the
pairs of atoms that will take on the same identity in the merged graph). Section 4.1.4 gives usthe
necessary tools.

Definition 5.2 Suppose computation graph «; has subgraph «’;, computation graph
ap has o'y, and o'y =5 o', We obtain the union with respect to P

a7 Up (8%
by joining the two graphs «; and merging the two atomsin each pair in P.
Of course a quick and dirty solution to the problem of merging graphs is to take the digoint

union: deliberately keep al nodes and edges separate, and obtain a disconnected graph with two
components o; and «p. Thisisjust taking the union with respect to the empty pairing.

Figure 5.1 illustrates the two forms of graph union.

5.6.2. Merging Models

Suppose M ; and M, share domain D. Merging these models by merging the graphs they produce
requires specifying which atoms in these graphs will be identified. Hence, for each o € D, we
need to exhibit a pairing P between the M, («). However, not just any pairing will do, since the
atomsin a transformed graph represent atomsin the original graph. The pairing must respect this
representation.

39

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Figure 5.1 Suppose two computation graphs «; and a, have identical subgraphs
(/1 and o/, respectively), matched by pairing P (left). We obtain the union a;Upa;
by merging the «’; according to the pairing P (top right); we obtain the disjoint union
a1Ugap by keeping both graphs separate and disconnected (bottom right).

40

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

The possible presence of ghosts makes constructing this list dightly nontrivial. Should two
ghost nodes with the same label be considered the same? What about two ghost edges?

In this paper, we take the most strai ghtforward approach to this dilemma—we keep ghost nodes
distinct but we merge ghost edges that obviously coincide.

Let M, and M, share domain D, and let o be a graph from D. Let «; be the image M, («).
Suppose node A; in «; and node A, in a, have the same label and represent the same (nonempty)
part of «:

(Mg, a)(A1) = (M2, a)(A2) # @
Then clearly we should regard A; and A, as the same node in the merged graph.

For preserving edges, wedrop the prohibitionagainst ghosts, but add another rule: the endpoints
must be common. If edge F£; connects node A; to node B; in graph «;, node A; isidentified with
node A,, node B, isidentified with node B, and (M1, «)(£1) = (M, o)(E->) then weidentify
these edges.

Definition 5.3 For models M; and M, and graph « in the domain of both, let
COMM(M1, M, o) denote the pairing between M;(«) and Ma(«) constructed as
above.

That is, COMM (M1, M, o) isalist of pairs of nodes and pairs of edges. A pair of
nodes (A1, Az) isin thelist iff the A, have the same label and the same non-empty
constituency; apair of edges (£y, E») isinthelist iff (A4, Ay) and (B1, B») areinthe
list (where F; connects A; to B;), and the F; constituencies are equal .

The COMM pairing behaves as desired:

Proposition 5.4 Let « lie in the domain of models M; and M,. Let P be the
pairing COMM (M1, M, «) and let 3; = M, («). Then

1. The atoms of 3; occurring in the pairing P form a subgraph, 5’.
2. 51=p 0

Proof These results follow directly from Definition 5.3, Definition 4.4 and Definition4.1. [

We can now extend union to models:

Definition 5.5 The union of model M4 and M, is the model M, U M, on the
intersection of their domains, with

(MpUMz)(a) = Mi(a) UcommM,,Ma,e) M2(@)

41

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Since the representation maps (M1, «) and (My, «) agree on pairs of atoms from
Mi(«) and Mp(«) that get identified, define the representation map M; U M, as
follows:

(M3, o) onatomsfromM;(«)

(MiUM, a) = {<1\/[27 a) onatomsfrom My(«)

Of course, the quick and dirty approach to merging models works as well:

Definition 5.6 The digoint union of model M; and M is the model M;UzM; on
the intersection of their domains. M1UgM, takes takes o to M (a) UMy () with the
representation map

(M3, o) onatomsfromM;(«)

(M1UgMy, o) = {<M27 a) onaomsfrom M;(«)

We extend these operations to act on finite sets of modelsin the natural way.
U{My,...,M;} = M;UM,U...UM;
This operation is well-defined:
Proposition 5.7 The above two unions on models are associative. For models
M17 M27 MS:

1. (M; U M,) UMz = My U (M, U Ms)

Proof Thedigoint unioncaseistrivial. For theother case, observethat nodesdon’t go away. Let
A; befrom M;; if youmerge A; and A, in (M3 U M), then A, will still be around in (M, U M3)
to merge with A;. A similar argument worksfor edges. [

42

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

(Part II)

Chapter 6
Developing a Family of Models

Section 5.1 developed the LINEAR model to expressthelinear timeordering that real timeinduces.
Yet the crux of the discussion in Chapter 1 is that real time sequences are not sufficient—so this
chapter uses the model toolsfrom Chapter 5to formally develop an alternative model: partial order
time.

Section 6.1 developsacollection of timelines: modelsimposing alinear structure on eventsat a
single process. Section 6.2 presents two models relating events at different processes. Section 6.3
uses these components and the tool s from Chapter 5 to assembl e the partial order time model POT.

Figure 6.1 shows the compositional development of this family of models.

6.1. Within Processes

A ground-level computation graph givesalinear sequence of eventsfor each process. astart point,
a sequence of process actions, and a stop point.

WEe' ve already seen LINEAR perform this abstraction:

Definition 6.1 For each process p € PROC-NAMES, define LINLINE, to be
the model that takes a ground-level graph « and returns the LINEAR(«) subgraph
corresponding to process p.

However, these timelines still contain elements that we would not normally consider part of the
computation: the idle events. We introduce a model to abstract them away:

Definition 6.2 Definethe model NONIDLE to removetheidle events from graphs.

e NONIDLE applies only to graphs « whose idle nodes have in-degree one and
out-degree one. (For example, LINLINE graphs meet this criteria.)

e Such « have well-defined maximal idle chains. NONIDLE copies the entire
graph, but replaces each maximal chain with a single edge.

43

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

4 1‘\POT

U
SYNC
\
EXTREMA
NONIDLE MSG
LINLINES L\ @Es
Uy Uy
NONIDLE
T S
R L\
LINLINEp TIMELINE
LINLINEq TIMELINEq

GROUND-LEVEL COMPUTATION GRAPHS

Figure 6.1 The models we discuss here fit into a composition hierarchy. The
boxes indicate sets of computation graphs; an arrow M between two boxes indi-
cates that model M is a surjection from the one set onto the other. What's more,
the functional identities we illustrate here are also model identities—e.g., the model
LINEAR equals the composition of models SYNC o LINLINES.

44

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

e The graph NONIDLE(«) consists thus of atoms from « and new edges. The
atoms from « represent themselves, the new edges represent the chain they
replaced.

Figure 6.2 illustrates the action of the NONIDLE model.

We can now define the linear timeline of interesting events.:

Definition 6.3 For processp € PROC-NAMES, let
TIMELINE, = NONIDLE o LINLINE,

We frequently want to consider the set of timelines as awhole, so we set up some shorthand:

Definition 6.4 DefinethemodelsLINLINES and TIMELINES:

LINLINES = Ug{LINLINE, : p € PROC-NAMES}
TIMELINES = UG{TIMELINE, : p € PROC-NAMES}

6.2. Across Processes

Messages We defineamodel that captures a cross-process order induced by message passing:

Definition 6.5 The model MSG on ground-level computation graph « retains only
send and recelve nodes, and draws aghost edgefrom A to B only when B isthereceipt
of the message sent at A.

Edges are ghostsin MSG because all we want to know isif amessage got through or not. If we
were interested in exploring fault tolerance in message transmission, then perhaps we would want
to expand what an edge represents.

Y

NONIDLE

Figure 6.2 The model NONIDLE replaces maximal
chains of idle nodes by a representative edge.

45

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Linear Synchronization Asan aside, we can defineamodel SYNC that links up equal length
straight-line graphs by grouping each “column” of eventsinto an equivalence class.

Definition 6.6 Let the model SYNC act on a collection of equal length timelines,
one per process, by drawing a ghost edge from the m node at process P; tothem + 1
node at each process P; (j # ¢).

Whether SYNC actually performs meaningful synchronization depends on the graphsit acts on—
whether the equivalence classes can be meaningfully regarded as synchronized units.

For example, SYNC allows us to give a bottom-up definition of LINEAR:

LINEAR = SYNCo LINLINES

6.3. Partial Order Time

The model LINEAR induces the linear time order LINEAR. This only makes sense, as the trace
ordering followsreal time. However, our building blocks allows us to define an alternative:

Definition 6.7 Definethe partial order time model POT:

POT = MSGU (EXTREMA o TIMELINES)

Essentially capturing Lamport’s causal dependency partial order, the POT model isthe primary
focus of the remainder of this paper.

46

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

(Part II)

Chapter 7
Relationships Between Models

The handful of models presented so far suggest some natural ways we can consider one model to
be“part” of another. For example:

e POT(«) isaways asubgraph of (EXTREMA o LINEAR)(«).

If two graphs o1 and «, give the same POT image, then they give the same TIMELINE,
image.

Indeed, given any graph generated by POT, we can uniquely identify the component that
TIMELINE, generates.

In arough sense, POT amost appearsto be amodel onits TIMELINES components.

This chapter presentsformal machinery to describetheserelationships. Section 7.1 describesforms
of containment (thefirst bullet); Section 7.2 presentsrefinement (the second bullet); and Section 7.3
presents components (the third bullet). Finally, Section 7.4 describes how a set of components may
comprise adecomposition of amodel, and how we can factor this decomposition out of the model
(the fourth bullet).

7.1. Containment

We want to describe the relationship when the action of one model always includes the action of
another. Section 7.1.1 devel ops the containment relation; Section 7.1.2 introduces a related tool,
the containment map, and Section 7.1.3 sketches some uses of containment.

47

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

7.1.1. The Containment Relation

Suppose two models M; and M, share! the same domain D. A minimum requirement for M,
to be contained in M is that for any o € D, Mj(«) is isomorphic.? However, once again the
representational aspect of models complicates things. The atoms in M;(«) and My(«) carry
additional meaning: their constituenciesin «. For M to be contained in M,, we also require that
corresponding constituencies also satisfy a containment relation.

To avoid some pathological situations, we will require uniqueness of pairing.
Definition 7.1 Suppose models M; and M, act on the same domain D. Model M,
is contained in M, written

M; C M,

when for each o € D, there exists a unique pairing P between M;(«) and My(«)
satisfying these two conditions:

1. Isomorphism Thereexists 5 C My(«) such that
Mi(a) 2, 3
2. Constituency Containment If (x1,x2) € P then

(M, a)(x1) C (Mg, a)(z2)

The symbol for containment () contains two elements, suggesting isomorphism (=) and sub-
graph (C). These concepts characterize containment: M; C M, when each M; graph isisomor-
phic to a subgraph of the corresponding M, graph (with representation behaving nicely).

Special Cases Suppose M; C M,, with domain D. Then for each o € D, Definition 7.1 tells
us that two graphs—M;(«) and a a subgraph of M(«)—will satisfy Condition 1 and Condition
2. However, each of these conditions has a natural alternative that is more restrictive:

1. Identity The graphsareidentical.

2'. Constituency Equality The constituency of each atom in the M, subgraph equals the con-
stituency of the corresponding atom in the M graph.

INaturally, we can make any pair of models share the a domain by replacing the individual domains with their
intersection.

2We could requireidentity instead of isomorphism, but that would lead to some label awkwardness in Chapter 8 when
we want to merge individual process graphs into a globa graph. The relabeling that isomorphism permits will be
convenient.

48

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

We obtain special cases of containment by replacing the original conditionswith their stronger
Versions:
Definition 7.2 Suppose M1 C M.

o If M; and M also satisfy Definition 7.1 with Condition 1 replaced by Condition
1, we say that M directly contains M, and write

M; C M;

o If M; and M also satisfy Definition 7.1 with Condition 2 replaced by Condition
2', we say that M, strongly contains M, and write

IMe

M M,

Since the two conditions of Definition 7.1 are independent, we can strengthen both
simultaneousdly, giving athird version:

o If M; and M also satisfy Definition 7.1 with Condition 1 replaced by Condition
1’ and Condition 2 replaced by Condition 2/, we say that M strongly directly
contains M, and write

M; C M,

Each of these relationsis clearly transitive.

Figure 7.1 distinguishes containment from direct containment; Figure 7.2 distinguishes con-
tainment from strong containment.

Proposition 7.3 For any M;, M,

1. M;C M, — M;C M,
2. MliMz — MléMZ

Proof Condition 1’ implies Condition 1, and Condition 2’ implies Condition 2. [

7.1.2. The Containment Map

It will be useful to transform the unique pairing from Definition 7.1 into a function:

Definition 7.4 Suppose M; C M, with shared domain D. For a € D, let P bethe
unique pairing satisfying Definition 7.1. Define the containment map ((M2, M, «))

49

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

M2() M (@)
M,@) (e—p— M, (@)
7 3
M, ':' M, M, ". M,
a a

Figure 7.1 Containment of any form requires that one model always produces
a graph isomorphic to a subgraph of what another model produces. However

for direct containment, this isomorphism is in fact the identity. The left diagram
shows ordinary containment: M, C M; the right diagram shows direct containment:
M C Mo.

e [«

A
<
®

[]
1
l' l'
4 ’
l' l'
<Ml’a> :' <M2’G> <M1,G> :' <M2,(X>
l' l'
, 1
, ’
Figure 7.2

If M1 C M», then the M; representation on any atom = yields a subset
of what the M, representation yields on the matching atom y (left). For strong
containment M1 C M, the representations are equal (right).

50

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

to be the bijection that /> determines from the M («) subgraph back to My («). That
is,

<<M2, Ml, Oé>>($2) = I < (1’171}2) epP

We can regard ((M, M3, «)) asapartia function on al of My(«).

Figure 7.3 illustrates the action of the containment map.

Hiding Awkward Notation Strictly speaking, the ((My, Mi, «)) function is partial. As
such, it is not defined for some elements of its domain: namely, the atoms from M»(«) that are
not part of the subgraph corresponding to M(«). In order to prevent statements like “take the
unionof ((My, M3, «)) over theset W” from becoming too awkward—because we would have
to explicitly specify the subset of W for which the containment map is defined—we will adopt the
convention that identification maps are “defined” on the remaining elements in the domain, but

they just produce the empty set.

a

Figure 7.3 When one model contains another, a unique pairing connects the
graphs they produce. Here we see that M; C M,, so Mi(«a) is isomorphic to a
subgraph g of My(«). The containment map ((M2, M1, «)) acts on all of M(«) to
take this subgraph 3 back to M4 («).

51

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

This convention allows statements like the following:

Ml(a) = (U <<M27 M17a>>(x))

zeMy(a)

7.1.3. Using Containment

Temporal Relations Suppose M; C M, act on graph . Then we obtain M(«) by copying
M;(«), changing the labels, and adding more edges and nodes. This observation yields the
following facts:

Proposition 7.5 Suppose M; C M, act on graph «. Let A, and B, be nodesin
M («). Suppose ((M2, M1, «)) isdefined on these nodes; define:

A1 = ((Mz, My, a)) (A2)
Br = ((Maz, My, a)) (B2)

Then:
Al — B — Az — B>

Ao %Bz — Aq %Bl

Proof Edgesinthe M graph show up initsisomorphic imagein the M, graph. [

Ignoring Edges Situations arise when we would rather ignore the edge constituencies when
worrying about containment. To handle these cases, we introduce a new operator:

Definition 7.6 The model GHOSTIFY transforms a computation graph by forcing
all edgesto be ghosts.

Transitive Closure Taking the transitive closure will not cause containment to stop holding:

Proposition 7.7 For models M, M3:
MlgMz — 16@
M]_EMZ — EEE

Proof TRANS adds only ghost edges; and if TRANS adds an edge to the M; graph that didn’t
already exist in the M, graph, then TRANS will also add that edge to the M, graph. [

Proposition 7.7 does not hold for strong containment: suppose M, aready has transitive edges
inits M image, except these edges are not ghosts.

52

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Examples of Containment Thefamily of modelsfrom Chapter 6 providesanumber of natural
examples of containment:

Proposition 7.8 For p € PROC-NAMES:

TIMELINE, C EXTREMA o TIMELINES
EXTREMA o TIMELINES C POT
TIMELINE, C POT
GHOSTIFY o POT C EXTREMA o LINEAR
LINLINES C LINEAR

Proof

1. The p timeline shows up in the complete set; the representations coincide exactly except for
the transitive extrema.

2. Only the message edges (and the transitive edges they imply) are missing.
3. Containment istransitive.

4. The POT graph is clearly a subgraph. The nodes have identical representations. But the
edges of POT that do not appear in LINEAR will correspond to ghost edges in LINEAR.
The POT versions of these edges may actually represent something; hence the GHOSTIFY .

5. Only the SYNC edges are missing.

7.2. Refinement

Suppose we have two time models act on the same domain of computation graphs. Section 7.1
providesthe terminol ogy to talk about the situation when one model’s graphs always containimages
of the other model’s graphs. However, our research has demonstrated the need to talk about amore
subtle correlation: if model M; collapses a set of input graphs by taking each of them to the same
output graph, then model M, also collapses this set. This property allows us to compare M; and
M, graphs without having to go all the way back to the input graphs.

Formally, amodel M with domain D induces anatural partitiononaset G C D : just take the
collection of sets M~1(M(G)). If two models M; and M, on the same domain have the property
that, for any set, the M, partitionis strictly coarser, then specifying the computation graph M («)
also determines the specific computation graph M;(«). In some sense, the actual value of « is
irrelevant.

53

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Definition 7.9 Suppose models M; and M, on the domain D have the property
that, foral a, o’ € D:

Ml(Oé) = Ml(o/) — Mz(Oé) = Mz(o/)

Then we say that M refinesto M,, and we write M; > Mo.

Clearly, refinement is transitive.

The relation M > M induces afunction from M;(D) to M(D)): we write 51 b 3, when
B: € My(D)and M7 (1) € M3 (32). (Thisfunction doesnot extend to be amodel itself because
of the lack of any kind of representation. We have no well-defined correspondence between the
atoms of a particular graph that M, produces and the atoms of the graph that M; produces on the
same input.)

Figure 7.4 illustrates these rel ationships.

Transitive Closure Taking the transitive closure will not cause refinement to stop holding:

Proposition 7.10 For models M, M3:

M, >M, — W1 > W2
Proof Thisfollowsdirectly from Definition 7.9. [
Abstraction Hierarchies Refinement allows us to put models into “abstraction hierarchies’:
chains of models on a given domain that monotonically lose information—aor gain abstraction.

Proposition 7.11 For any p ¢ PROC-NAMES:
LINEAR > POT > TIMELINES > TIMELINE,

LINEAR > LINLINES > LINLINE,

Proof These assertions follow directly from the definitions of the models. [

7.3. Components

Suppose M; C My, with shared domain D. Then for any a € D, Mj(a) shows up in Ma(a).
However, thisisstill not sufficient to talk about the M1 component of agraph 5 € M(D): suppose

54

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

M (D) P2

M, (D) Blz 1 r 1

M (B,)

A4
M3 (B,)

Figure 7.4 This diagram illustrates refinement: M; > M,. The dashed arrows
indicate the action of M4; the solid arrows indicate the action of M,. We see
that when M, identifies two graphs (for example, o« and «’) by taking them to the
same image, then M, also identifies those two graphs. We see that the M; value
determines the M, value: for example, knowing that M; takes a graph to 3; is
sufficient to conclude that M, takes that graph to 5,. We write 3; > 3, to describe
this relationship.

55

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

A
=
Y
™
<2
)
O
Y

Figure 7.5 Containment does not guarantee well-defined components. Although
M1 C M, model M; may be isomorphic to different subgraphs depending on the
original graph. Here, v = My(«a) = My(a’) but 3, the subgraph isomorphic to M («)
differs from ', the subgraph isomorphic to M1(o’).

7 isthe M, image of both « and o’ in D (that is, Ma(a) = My(a') =), but M(«) # My(o).
Figure 7.5 illustrates this counterexample.

Talking unambiguously about the M; component of a graph generated by M, requires both
containment and refinement:

Definition 7.12 Suppose M; and M, act on the same domain. M is acomponent
of M>

M; & M,

when M, &/ M, and M, > M;.

Each specia case of containment (from Definition 7.2) gives rise to a corresponding special case
of components.

Definition 7.13 Suppose M; and M act on the same domain.
o If M;CM;,and M, > Mj, then M; isadirect component of M5:

M; T M;

o If M; C M, and M, 1> M, then M, is astrong component of M:

IR

M M,

56

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

o If My C M, and M, > M;, then M isastrong direct component of M:

M;

Im

M,

Each of these relationsistransitive.

Informally, M T M, when the containment i somorphism takes the M ; graph to awell-defined
subgraph of M,. One can take any graph produced by M, and unambiguoudy select the M;
component.

Transitive Closure Aswith containment, taking thetransitiveclosurewill not cause non-strong
containment to stop holding.

Proposition 7.14 For models M, M:

M]_EMZ —
M]_EMZ —

= 5
e
& &

Proof Thisfollowsdirectly from Proposition 7.7 and Proposition 7.10. [

Examples Our family of models provides some examples of components.

Proposition 7.15 For each p € PROC-NAMES:

TIMELINE,
LINLINE,

POT

C
C LINEAR

Proof Proposition 7.8 gives containment; Proposition 7.11 givesrefinement. [

7.4. Decomposition

We have seen in Chapter 6 that our two more complex time models, LINEAR and POT, each have
afairly significant straight-line substructure. The LINEAR model has LINLINES; the POT model
has TIMELINES.

Informally, we want to be ableto talk about temporal orderingsboth in such higher-level models
and in their substructures. The LINEAR model easily grantsthis ability. Not only isLINLINES a
component of LINEAR; the “factorization”

LINEAR = SYNC o LINLINES

57

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

gives us a straightforward way to talk about the LINLINES graph of a computation as an interme-
diate step on the way to the LINEAR graph.

Performing the same task with the POT model is chalenging. It cannot be the case that
TIMELINEST POT because TIMELINEST POT cannot hold: since the global extrema of POT
graphs bind together the local extrema of TIMELINES graphs, a bijection cannot exist. However,
the POT model does contain the individual TIMELINE, models. Further, the collection of these
individual component models refines to the POT model.

Suppose we defined amodel MSG' that takes graphs with send and receive events and adds the
MSG edges:
MSG'(a) = oUMSG(a)
Then we could factor POT aswell:
POT = (MSG o EXTREMA) o TIMELINES

Inthispaper, welay thefoundationsfor work with modelsmoregeneral than POT and LINEAR.
Hence, we want to isolate the general rule at work in this factorization. This section carries out
thistask. In Section 7.4.1 we explore the relationship between a model M and a single M, © M.
In Section 7.4.2 we demonstrate that a sufficiently rich set of components {Mjy, ..., M } will form
adecomposition of amodel M: a substructure that we can factor out.

7.4.1. Model and Component

Suppose M; is a submodel of M. For any « in the shared domain, the containment map
({M, Mj, «)) takesthe atoms of the M graph back to the atoms of the M graph. Suppose, for
al «, some further properties hold:

e M; > M
e The containment map ((M, M;, «)) is defined on all non-ghostsin the M graph.

e Whenever an atom of the M graph represents anything, it represents the same thing its
({M, Mj, o)) imageinthe M; graph.

Thefirst property impliesthat each M graph determinesan M graph, and the second and third
imply that the atoms of the M ; graph determine (through the containment map) the constituencies
of the atoms of the M graph.

Hence we can obtain amodel M, satisfying M = M, o M.

Such an induced model would be practically the identity—we're just taking the M; graph,
relabeling the nodes, and possibly adding ghosts. However, if we had a set of components {M, }
satisfying a few convenient properties, rather than just the single submodel M3, then we can
induce amodel that isnot so trivial. Thisinsight yields the technique of decomposing modelsinto
components.

58

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

7.4.2. Decomposing Models into Components

When acollection of modelsM;, M5, ..., M, are each components of amodel M, then each atom
in M(«a) maps to a set (possibly empty) of atoms in the collection of graphs M;(«). If this set
determines the o representation of the M atom, and the digoint union of the collection refinesto
M, then we can do some fun things.

Definition 7.16 SupposeM isamodel ondomain D, {Mjy, ..., M, } isafinite set of
models on the same domain, and M’ = Ug{M3i, ..., M, }. Then M’ isadecomposition
of M, with decomposition set {M, ..., M }, when:
e M, M foreach:
e M > M
e For al graphsa € D and for all atoms » € M(«)
(M, a)(z) = U ((Mi, a)o((M, M, a)) (z))

Figure 7.6 illustrates the representation condition (the third bullet).

Proposition 7.17 If M’ is a decomposition of M, then M’ is a decomposition of
M.

Proof Thisassertion follows from Proposition 7.10, Proposition 7.14 and Definition 7.16. [

Proposition 7.18 Thefollowing hold:

1. TIMELINES isadecomposition of POT.
2. LINLINES isadecomposition of LINEAR.

Proof Both statements assert that a model decomposes to a digoint union of a set of models.
Proposition 7.15 gives that each element in the set is a component of the model. Proposition 7.11
gives refinement; and the definitions of the models gives the representation condition. [

Model Your Own Decomposition Whenacollection of components{M, } isadecomposition
set for model M, then we can determine whatever any M atom represents from what its {M, }
atoms represent. Hence we can perform the desired factorization and insert {M,} between the
input graphsand M.

59

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

M (o)

-,

(M0}

-
s

-

~

-~

~

Figure 7.6 For a set of components to form a decomposition of a model, the
constituencies of the set should determine the constituencies of the model.
this example, we consider the model M and the set of components {M,}. We
have two routes from an atom in M («) back to «. We can go directly through the
representation map (M, «) (solid arrow); or we can go to each M;(«) through the
containment maps ((M, M;, «)), and from there to « through the representation
maps (M;, «) (dashed arrows). For the modelM’ = U,{M,} to be a decomposition,

these routes must always yield the same set of atoms in «.

60

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Definition 7.19 Suppose M on domain D has decomposition M’, with decompo-
stionset {Mjy, ..., M }. Definethe factoring model M /M’ on thedomain M'(D) as
follows.

Let 3 = M'(«), for @« € D. Then M/M’ takes /5 to the v from M(D) satisfying
B ~. The representation map applies each containment map to an atom and collects
the results:

(M/M', 8)(x) = {(M, M, a))(z) : 1<i<k}
Figure 7.7 sketches the structures from Definition 7.19.

Theorem 7.20 (Factorization) Suppose model M has decomposition M’. Then
M = M/M oM

Proof Thisassertion follows directly from Definition 7.16 and Definition 7.19: the composition
on the right gives the same transformation action and representation map as the model M. [

The observations from the beginning of this section are special cases of the Factorization
Theorem:

LINEAR/LINLINES = SYNC
POT/TIMELINES = MSG' o EXTREMA

Proposition 7.21 Suppose model M has decomposition M’, with decomposition
set {My,...,M;}. Under M/M’ | for any ¢, an atom = from M represents either
nothing at M; or an image of itself at M.

Proof By Definition 7.16, M; © M, hence M; C M. Thus M;(«) isisomorphic to a subgraph
of M(«), and thisrelationship determines the representationsin M/M’. [

61

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

A

MM oy

]
']
']
' '.
.. r
. . v A 1
s 1
.]
: 1
: B M
.
: "
[]
... (]
]
’ []
1]
I]
1]
] f I}
v (Uy M) '
] ’
[} 4
Y R
. L’
A -
S -
il R s = =
a

Figure 7.7 Model M with decomposition M’ induces a factoringmodel M /M’. The
decomposition M’ = U,{M,} takes « (bottom) to 5 (middle) ; the model M takes «
to v (top). The factoring model M /M’ takes 3 to ~; in the new model, an atom of
~ represents the union of its images in each M,; component. (Solid arrows indicate
both the action and the representation of the new model. Dashed arrows indicate
the action of M, M’, and the containment maps.)

62

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Part |l

Simultaneity

The desire to distinguish between genuine real time and the temporal relations that processes
themselves perceive motivated the development of the model family in Chapter 6. The LINEAR
model expresses the former; the POT model expresses the latter.

A natural concept from traditional linear time is smultaneity: at any given moment, a single
photograph describes the state of the system. However, smultaneity is one of the first casualties
of asynchrony in a distributed system. We can still talk about “consistent” global states, but
these states may never have physically occurred. Time ceases to be a nicely behaved sequence of
individual moments.

Part 111 explores these issues, and extends the previous work of Mattern [Ma89] and Johnson
[Jo89, JoZw9Q].

Section 7.4 observed that the goal hereisto lay a foundation for more general work with more
general modelsthan POT and LINEAR; hence Part 111 beginsin Chapter 8 by characterizing these
models.

Chapter 9 explores logical simultaneity—global states, in terms of the semantics of time
models—and shows how these can form a lattice structure. Chapter 10 discusses two convenient
vector structures that arise from logical smultaneity. We then relate logical smultaneity to the
simultaneity of real time: Chapter 11 explores the basic structures; Chapter 12 examines why
models such as POT fail to givethe desired ssmultaneity properties; and Chapter 13 proposes some
solutions.

Finally, Chapter 14 makes some deeper observations about the structure of logical global states.

63

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

64

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

(Part 1II)

Chapter 8
Parallel Models

This chapter characterizes the models to which the machinery of of Part 111 applies. computation
that takes place at different processes in parallel. Section 8.1 introduces the structure of the
multiprocess pair: a model describing the local process computation, along with one describing
the global system computation. Section 8.2 presents sometoolsfor models from this structure, and
Section 8.3 isolates some interesting subsets of multiprocess pairs—including the subset parallel
pairs, describing parallel computation.

8.1. Multiple Processes

We want atwo-level perspective on system behavior: things happen locally at processes, but these
things also happen globally in the system. We define amechanism to providethis dual perspective:

Definition 8.1 Suppose models M and M’ on ground-level computation graphs
satisfy the following:

1. M’ isadecomposition of M, with decomposition set { M, }

2. Each M, describes events at a unique process.*

3. Thefactoring model M/M’ has no ghost events.

Then we say that (M, M’) isamultiprocess pair. Model M is a multiprocess model,
with multicomponent M’.

The family of models from Chapter 6 provides some natural (and intentional) examples: both
(LINEAR, LINLINES) and (POT, TIMELINES) are multiprocess pairs.

LActually, there’ s no reason why the*“process’ for this decomposition should be the same asthe “process’ for the basic
system model of Chapter 2. Thiswork should easily extend to handle such wrinkles as process migration and virtual
processes.

65

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Suppose multiprocesspair (M, M’) actson graph «.. Themulticomponent M’ transformsgraph
« into a set of local process descriptions; the model M transforms graph « to the global system
description. The factoring model M /M’ takesthe local process descriptionsto the global system
descriptions; events from different processes may merge, but no new events are added.

Multiple Perspectives Thetwo modelsinamultiprocess pair provide two views of a compu-
tation: as independent local threads, and as a unified global whole. Frequently we want to make
another kind of distinction: between basic transitions and full transitive precedence. For example,
in the (POT, TIMELINES) we may want to distinguish between immediate precedence

A— B in TIMELINES
and transitive precedence

A— B in TIMELINES

Proposition 7.17 tellsusthat if (M, M) isamultiprocess pair, then sois (M, M’). So suppose
we want to build transitive temporal relations arising from some notion of “basic transition steps.”
If we build (M, M') so that edges express basic steps, then (M, M) is a parallel pair giving the
full transitive steps. Thus the multiprocess pair (M, M) provides four views of an underlying
computation «. Figure 8.1 illustrates the multiple perspectives.

8.2. Tools

We now introduce some tools to facilitate using the multiprocess pair machinery.

8.2.1. Projection

Working with multiprocess pairs will frequently require constructing objects with the structure
“one thing per each process component.” We use standard notation to move between each object
and the individual entries:

Definition 8.2 When a set has the property that each p € PROC-NAMES is un-
ambiguoudly associated with a unique element of the set, we use projection to select
these elements. For example, M’ isthe digjoint union of process models; =, M refers
to the model for process p.

66

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

local global
full ’ = MM -
u : :
transitive i C R (A EEEERE > y
precedence: ;
’ A
TRAN TRAN
basic MM
transition ; B ________ Do - y
steps: ; :

Figure 8.1 A multiprocess pair provides four views of a computation, according to
two independent choices: whether we use the model or the multicomponent, and
whether or not we take the transitive closure. Here, pair (M, M’) acts on graph «,
with 3 = M’(«) and v = M(«). Graph j provides the basic transition step version
of the local computation; graph /3 provides the full transitive closure. Graphs ~ and
7 provide the global system descriptions.

67

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

8.2.2. Events in Models and Multicomponents

Multiple Roles Suppose graph o liesin the shared domain of multiprocesspair (M, M’). Each
atom that M produces hasits originsin the process components from M'. In this sense, an atom «
from M(«) has multiple roles:
e asitsalf: » € M(«)
e astheatom (if any) it represents at a particular process component of M':
(M, 7 M, a))()

An atom « from M(«) has two more roles:

e asits M’ congtituency: (M/M’, M/(«))(x)

o astheatom (if any) it represents at a particular process component of M’
(M, 7 M/, a))(x)

To smplify discussing these multiple roles, we introduce some notational shortcuts:
Definition 8.3 When multiprocess pair (M, M') acting on graph « are understood,
define these operators on atoms = from M(«):

o« Zl = (M/M, M/(0))(z)

e 2|, = (M, r,M a))(z), forp e PROC-NAMES
For atoms z in M(«) define two more operators:

o zlyy = (M/M', M'(a))(x)

e 2|z = ((M, M, a))(x), for p € PROC-NAMES
Extend each operator to act on sets of atoms by applying it to each element of the set
and collecting the results.

The operators from Definition 8.3 possess simple mnemonics. x|, takes atom = to whatever it
representsin foo. These operations also satisfy some easy identities:

Proposition 8.4 For multiprocess pair (M, M’), let = be an atom in a graph gen-
erated by M. Then:

e = {z|, : p€ PROC-NAMES}
If 2 isan atom in a graph generated by M, then
iz = {zlz : p € PROC-NAMES}

If x isanode, then for any p € PROC-NAMES:

68

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Proof These assertions followsdirectly from Definition 8.3 and Definition 7.16, and the fact that
transitive closure only adds edges. [

From “Nodes” to “Events” Time models produce computation graphs. However, in prac-
tice these graphs describe computations, nodes in a graph represent correspond to events in the
computation.

Until now, we' vetalked about computation graphs as graphs; hence we' ve referred to nodes as
nodes. But now we want to begin using graphs as descriptions of computations; hence we shift
terminology from “node” (the objectin the graph) to “event” (the reality presumably
behind this object).

8.2.3. Temporal Relations in Models and Multicomponents.

Localizations Sincetheindividual process modelsare in fact components of the global model,
a path between two events in the multicomponent induces an edge between those events in a
multiprocess model. It will be useful to talk about these edges without having to move down to
the multicomponent and back up. We can perform this by trimming down the M graph to include
only those edges arising out of M. These will be the non-ghostsin the factoring model.

Definition 8.5 The localization of multiprocess pair (M, M’) is the model L that
takes the event set from M and draws the edges induced by M.

For example, the model EXTREMA o TIMELINES is the localization of multiprocess pair
(POT, TIMELINES).

Proposition 8.6 Suppose multiprocess pair (M, M') with localization L acts on
graph a.. Lety = M(«), v = L(a) and 5 = M(a).

Events A, B € ~ satisfy A — Bin~;, iff some A’ € Al and B’ € Bl satisfy
A'— B'inj.

Proof This follows from the definitions. If A’ — B’ in some transitive process component,
then A — B in7 by an edge representing an edgein 5. [

Corollary 8.7 Let (M,M’) be a multiprocess pair. If M’ is acyclic, then the
localization has no self-loops: no edge connects anode to itself.

While the localization is not transitive, it does possess a“local trangtivity.” Suppose when we
construct the localization, we label each edge with the process model from whence it came. Then

69

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

the localization has the property that if a path exists whose edges are al labelled with process p,
then an equivalent edge exists, aso labeled with p.

Localization adds an intermediate perspective between the local M’ and the global M: we use
the events from M but retain only the edges from M'. Since taking the transitive closure of the
localization would ruin Proposition 8.6, the localization perspective is intermediate on that axis
too. Figure 8.2 illustrates the revised view.

Local Closures Another useful operation is collecting the events that locally precede some set
of system events.

local global
full Q M/M’ v
transitive S GEEt CEECEE = Y
precedence:
A
TRAN TRAN
__ A
basic M/M'
transition CJ R R - Yy
steps:
a
Figure 8.2 The localization of a a multiprocess pair provides a intermediate per-
spective between the local and the global, and between the transitive and the
non-transitive. With localization, we now have five views: the localization is cen-
tral. Here, pair (M,M’) with localization L acts on graph «, with 5 = M'(«a),
v = L(a)and v = M(«).

70

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Definition 8.8 Suppose multiprocesspair (M, M’) withlocalization L actson graph
a. Lety = M(a), f = M'(a), and v, = L(«).

For a set of events X from ~, define its local past-closure [X'| to be the set of event
that precede or equal X in ;.

[X] = {A :forsomeB € X, A — Biny.}
Define the local future-closure | X | similarly.
Local closures select events from an M graph on the basis of the relations of their pre-imagesin

M’. Hence, if aset X consists of POT events at different processes, [X| contains only copy of 1,
rather than a copy for each process.

8.3. Variations

8.3.1. Concurrent Pairs

The definition of multiprocess pair says very little about how the global model glues together
the individual process components. For example, we could take multicomponent LINLINES and
merge one process s maximum with another’s minimum.

To describe the situation when the activity at different processes takes place concurrently, we
introduce a specia term:
Definition 8.9 Suppose multiprocess pair (M, M’) has domain D. We say that
(M, M) is concurrent when for any « € D,
1. If A and B are maximafrom different process componentsin M/, then
(M/M') (A) > (M/M)(B)
2. If A and B are minimafrom different process componentsin M/, then

(M/M) (A) = (M/M')(B)

Both (LINEAR, LINLINES) and (POT, TIMELINES) are concurrent.

If the model is transitively bounded as well, then the extremahave a simple structure:

Proposition 8.10 If aconcurrent model is transitively bounded, then the unique
global maximum represents the individual process maxima (and similarly for the min-
ima).

71

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Proof Let M be the concurrent model. Fix an input graph «, and let A be the global maximum
in M(a). By Definition 8.1, event A has to represent some event A’ at some process p. Event
A’ must be a p maximum, for otherwise A could not be maximal. Let B’ # A’ be a maximum at
process ¢ (not necessarily distinct from p) and let B beitsimagein M. If B # A,then B — A
(because A is maximal) and hence the model could not be concurrent. [

8.3.2. Multilinear Pairs

The definition of multiprocess pair aso says very little about the individual process components.
We introduce a special term to describe when these components look like timelines:

Definition 8.11 A multiprocess pair (M, M’) is multilinear when the individual
process components produce only straight-line graphs.

8.3.3. Parallel Models

Definition 8.9 ensures that the local process components happen in “parallel.” Definition 8.11
ensures that process components are timelines. Together, these conditions describe what we
usually regard as “parallel computation.” Figure 8.3 illustrates this taxonomy.

Definition 8.12 Suppose multiprocess pair (M, M) is concurrent, and each M’
component always produces straight-line graphs. We say that M is parallel and that
(M, M’) isaparallel pair.

Both (LINEAR, LINLINES) and (POT, TIMELINES) are parallel pairs.

Other Directions Part |11 explores properties of parallel pairs. However, more advanced
work may require dealing with more general varieties; for example, rollback may require allowing
process componentsto betreesrather than straight-linegraphs. Hence, future research may involve
dightly generalizing our parallel pair machinery.

72

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Parallel

Multiprocess

Figure 8.3 A parallé pair is a multiprocess pair that is concurrent, and
where each process component is a straight-line graph.

73

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

74

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

(Part 1II)

Chapter 9
Logical Simultaneity

A time model M on ground-level computation graphs imposes a web of ordering on the eventsin
an unfolding computation. A maximal set of mutually concurrent events representsalogical dice
of time across this computation—"logical” in the sense that in the semantics of the time model,
this set describes a possible moment of simultaneity.

Section 9.1 considers a number of approaches to describing logical globa states in parallel
pairs, and shows how they all arise from timeslices: sets of events forming logical dices of time.!
Section 9.2 presents some natural operations on event sets; Section 9.3 uses these operations to
establish the set of timedices formsa lattice.

The literature diverges on the exact definitions of many of the terms that arise here (e.g.,
“congistent cut”); to avoid any ambiguity, we take pains to indicate clearly the definitions we use.

9.1. Timeslices

9.1.1. Vectors and Cuts

We want an object to express a system-wide “system state.” Informally, this should be a tuple of
events, one per process. However, the fact that events can occur at multiple processes complicates
matters.

Thus, in general this “one-per-process’ rule has two possible formal characterizations. We
introduce termsfor both:

Definition 9.1 Suppose (M, M') isan multiprocess pair, and ~ is agraph from M.

1. Anevent vector isan array of events from ~ with the constraint that the process
p entry occurs at process p.

1[Sp89] usestheterm “timeslice” (and [Ma89] uses “time slice”); thetimeslices there are special cases of thetimeslice
here.

75

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

2. An event cut is a set of events from ~ such that for each process p, exactly one
event occurs at p.

Vectorsarearrays, rather than sets or multisets, because eventsmay occur at multiple processes.
Indexing allows the entries in a vector to carry a banner indicating their origin. Suppose distinct
events A and B both occur at processes p and ¢, and a vector V' contains both A and B. Without
indexing, we could not tell which was the process p entry of vector V.

Every cut is the event set from a unique vector: the cut provides exactly one event for each
vector entry. However, not every vector has an event set that isa cut: suppose events A # B both
occur at both p and ¢; vector IV may contain both.

In graph theory, a cut is a set of nodes whose removal leaves the graph disconnected. In our
usage, acut isaset of events that cuts each timelinein aparallel pair.

9.1.2. Timeslices

So far, we've just used the fact that each process's component describes a concurrent part of the
computation. A computation graph specifies temporal ordering on events, and hence on the events
inaset.

Definition 9.2 A set of events X in a computation graph is mutually concurrent
when no events A, B in X (not necessarily distinct) satisfy A — B.

When a set of eventsis mutually concurrent, then—in the semantics of the model—no event
in this set happened before another event. If the set is maximal, then any other event in the
computation must have happened either before or after some event inthis set. Thusin termsof the
model, this set describes a possible s multaneous moment.

Definition 9.3 A timedicefrom acomputation graph o isamaximal set of mutually
concurrent events. An a-timedice is a timedice in graph «. An M-timedice is a
timedlice in agraph that model M generates.

Suppose M1 T M,. Applying Proposition 7.5 tells us how timeslices from M relate to time-
dices from M;:

e Timeslicesfrom M; map into sets of eventsin M (since we might gain edgesin My).

e Conversely, timedlicesfrom M, map to subsets of timedlicesin M; (Sncewe may lose edges
and even events going back to M;).

76

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

9.1.3. Timeslices in Parallel Pairs

If we'reusing aparallel pair to describe temporal precedence on global events, then we have three
perspectives: the transitive local model, the localization, and the transitive global model. We've
already seen timeslices from two of these structures.

Timeslices in the Local Model Timedicesfrom the transitivelocal model are isomorphicto
vectors.

Proposition 9.4 Let (M,M’) be a parallel pair. Then V' is a vector in M iff
{(7,V)|5 : p€ PROC-NAMES} isatimeslicein M'.

Proof M’ produces a collection of total orders, one from each process. [

Timeslices in the Localization Timedicesin thelocalization are cuts.

Proposition 9.5 Let (M, M’') be aparalel pair, with localization L. A set X isa
cutin M iff X isatimedicein L.

Proof Suppose X isa L-timedice. If process p is not represented, then any A touching p is
mutually concurrent with any element of X. If process p is represented twice, then X cannot
be mutually concurrent. Conversely, no distinct A, B in a cut X can precede each other (by
Proposition 8.6), and no A can be a self-loop (by Corollary 8.7). But any other event in the graph
must touch some process p and hence be ordered with =, X, so X ismaximal. [

Timeslices in the Global Model Thisthird caseistricky: timedlicesin the transitive global
model are at least partia cuts.

Proposition 9.6 Let (M, M’) beaparalle pair. If X isatimesicein M then X is
apartial cut.

Proof Since precedencein thelocalization impliesprecedenceinthetransitivemodel, atimeslice
in the latter is at least a partial timedicein the former. Apply Proposition9.5. [

In general, timedlices from the global model may not be full cuts. We follow the literature in
introducing a term to describe when they are.

Definition 9.7 Let (M, M’') beaparale pair. A consistent cut isacut that is also
an M-timeslice.

77

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Chapter 12 will consider the properties of a parallel pair necessary to ensure that all timeslices are
consistent cuts.

Definition 9.7 differs from the order-theoretic meaning of the term “consistent cut.” In order
theory, a consistent cut is a graph-theoretic cut whose members share a common upper bound (i.e.,
a common descendant).

9.2. Set Precedence and Operations

Precedence The edgesinacomputation graph specify precedence on events. We can use these
edges to induce a precedence relation on sets of events.

Definition 9.8 Suppose X and YV are sets of eventsin agraph v. We say that X
precedes Y in~

X <, Y
when an X event precedesal eventin~,andal A, B € X U Y satisfy

A— Biny = AeX A BeY

To determine the ~-precedence of two sets X and Y, we build a subgraph of ~ by taking the
events from these sets and drawing any relevant ~ edges. Set X precedes set Y when all edges go
froman X eventtoal event, and at least one edge exists.

Relative Minima and Relative Maxima We can aso use edges to transform sets of events.

Definition 9.9 Suppose X isaset of eventsin some graph ~. Define min (X) to
be the set of relative minima:

min(X) = {A€eX : BeX = B/ Ainy}

Define max, (X)) to be the set of relative maxima.

We omit the subscript when the graph is understood.

Precedence and Relative Min/Max Clearly, therelativeminimaof X UY canfollow neither
X norY'; smilarly therelativemaximacan precede neither X nor Y. With somestronger conditions
on X and Y, we can establish that the relative minimaand rel ative maximaare actually the tightest
boundson X and Y. A lattice structure emerges.

78

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

9.3. Lattices

In this section, we show that the set of timedices in a transitive graph forms a lattice. The
precedence relation and minima and maxima operations from Section 9.2 give the appropriate
structure.

Section 9.3.1 gives some basic definitions. Section 9.3.2 proves the main result. Section 9.3.3
considers the implications for vectors, cuts, and consistent cuts.

9.3.1. Definitions

First, we recall some standard definitions.

Definition 9.10 Suppose W is a nonempty ordered set, and y, » are two elements
of W. Element + € W isan upper bound of y and = if, in the order, = follows both
y and z. Element = is aleast upper bound of y and =z if « precedes any other upper
bound =’ of 4 and ~. Define lower bound and greatest lower bound symmetrically.

A lattice is a nonempty ordered set such that any two elements in the set have both a
least upper bound and a greatest lower bound in the set.

The standard term for “least upper bound” in alattice is join; the standard term for “greatest
lower bound” is meet.

9.3.2. Timeslices

Proving that timedlices from a transitive graph form a lattice is tricky. Intuition suggests that
Section 9.2 should provide the tools: < precedence provides the order, min(.X U Y') should be
XY and max(X U Y') should be XL1Y'.

Intuition fails, because not all timedices are consistent cuts. While <~ establishes a partial
order on7-timedlices, therel ative minimaand rel ative maximaoperationsmay only produce proper
subsets of timedlices. These mutually concurrent sets extend to timeslices—but showing that there
exists unique extremain the set of these extensionsis not trivial.

We prepare for the main result with a series of lemmas.

Comparing Timeslices If two timedices are different, then some pair of entries must be
ordered:

Lemma 9.11 Let X and Y betimedlicesinagraph. If X # Y thensome A € X
and B ¢ Y satisfy A — Bor B — A.

79

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Proof

Since X # Y and timedices are maximal, we can choose A € (X \ Y). If A were

concurrent with everyonein Y, then A would bein Y—hence such a B must exist. [

Since timeslices are mutually concurrent sets, we can strengthen the < property:

Proof

Lemma 9.12 If timedices X and Y inagraph satisfy X < Y/, then for any A and
BfromX UY,

A—B = Aec(X\Y) AN Be(Y\X)

Timedlices cannot contain events that precede each other. [

Partial Order Inatrangtive graph, the < relation formsapartial order on timeslices:

Proof

1.

Lemma 9.13 The < relationisapartial order on the set of timedicesin atransitive
graph.

We establish the three properties.

The < relation is antisymmetric. Let X and Y be timedices. If X < Y then there exists
AeXadBeYwithA— B. IfY < X aswell, then A, B € X NnY. Hence neither
could be timesdlices.

. The < relationisirreflexive. If X < X thensome A, B € X satisfy A — B.

The < relation is tranditive. Let timedices X,Y, 7 satisfy X < Y < Z. Suppose
A, B € (X U Z) satisfy

A — B

but A ¢ X and B ¢ Z. Since X and Z are timedlices, the events cannot lie together, so
AeZandB e X.IfC — AforsomeC € Y,thenC — B, contradicting X < Y. But
A — Cforsome(C € Y violatesY < Z. If A —— A then A could not be part of timedlice
7. Hence {A} U Y ismutually concurrent, so Y could not be atimedlice. Thusall 7 U X
edges go from X to Z.

Supposeno A € X and B € 7 satisfty A — B. Then every A € X either appearsin Z or
is mutually concurrent with everyone in Z/—in which case it appearsin Z. Hence X = 7.
Apply the antisymmetry case.

80

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

The Maxima and Minima Operations For timedicesin atransitive graph, the relative max-
imaand relative minima operations produce mutually concurrent sets:

Lemma9.14 If X andY aretimedicesin atransitive graph, then min(.X U Y") and
max(X U Y') are partial timedlices.

Proof LetZ =min(XUY). If Zisnotapartia timedice thensome A, B € 7 satisfy A — B.
Without loss of generality, assume A € X and B € Y. However, B € Y N Z implies B — C for
some ' € X, hence A — (', s0 X could not be atimedice.

The casefor max issmilar. O
These sets characterize the set of timedlice bounds:

Lemma 9.15 Suppose X and Y are timedlices in atransitive graph. Timedlice 7
is alower bound of X and Y iff no event in min(.X U Y') precedes any event in Z;
timedlice 7 is an upper bound of X and Y iff no event in Z precedes any event in
max(X UY).

Proof Let M = min(X UY). Suppose A € M precedes B € Z. Without loss of generality,
assume A € X. Then Z can neither precede nor equal X. Suppose no A € M precedes anyone
in Z. Thennoonein X U Y can precedeanyonein 7. If Z7 # X, then Lemma 9.11 implies that
someone in Z must precede someonein X. Hence 7 isalower bound of X and Y. The case for
max is symmetric. [

Extremal Extensions Timedlices by definition contain only acyclic events. Hence the set of
timedlices that a given mutually concurrent set extends to has a unique maximum and a unique
minimum—Dbecause directed acyclic graphs have maximaand minima.

Lemma 9.16 Suppose X isapartial timedicein atransitive graph. There exists a
unique minimum timeslice and a unique maximum timeslice containing X .

Proof Let W bethe set of all acyclic eventsthat are concurrent with every member of X. Since
these events are acyclic, our transitive graph induces atransitive acyclic subgraph v on W. Define
X' = min,(W). Define W to be the set of timeslices from ~. We make some assertions:

e X' € W. By définition, the v minima set is maximal and mutually concurrent.

e {XUZ : Z e W}isthesetof timedicescontaining X. A set X U Z ismutually concurrent
and cannot be extended; the non-X elements of atimedlice containing X must be atimedice

in~.

81

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

o Forany Z e W, if Z # X' then (X U X') < (X U Z). Otherwise, X’ could not have been
the minima.

Thus aunique minimum X U X’ exists, and similarly aunique maximum exists. [

The Timeslice Lattice Hence, timedices from a transitive graph form a lattice. The < rela
tion gives a partial order, and max and min give partia timedlices that extend to the appropriate
timedlices.

Theorem 9.17 (Timedlice Lattice) If nonempty, the set of timedicesin atransitive
graph formsa lattice.

Proof By Lemma9.13, the < relation forms a partial order.

Let X andY betimedlices. By Lemma9.14, min(.X UY") isapartial timedice. By Lemma9.16,
there exists a unique maximumtimeslice Z containing min(.X UY’). By Lemma9.15, Z isalower
bound of X and Y. Suppose timedlice 7’ is a different lower bound that is not dominated by
7. Then some A € 7 precedes some B € 7Z'. By Lemma 9.15, B cannot follow anyone in
min(X U Y'). Butif B precedes someonein min(_.X U Y'), then Z is not atimedice. Hence B is
concurrent with min(.X U Y'), and by Lemma 9.16 must precede or equal someonein 7.

Thus timedice 7 isthe greatest lower bound of X and Y; similarly max(.X U Y') extendsto a
least upper bound. [

9.3.3. Vectors, Cuts, and Consistent Cuts

Vectors A direct consequence of Section 9.3.2 isthat vectorsform alattice.

Theorem 9.18 Suppose parallel pair (M, M') actson graph . Lety = M(«) and
= M'(«). The set of vectorsin ~, if nonempty, forms a lattice.

Proof By the Timedlice Lattice Theorem (Theorem 9.17), the B-timesdlices form a lattice; by
Proposition 9.4, the v-vectors are a bijective image of the 3-timedices. [

In fact, thisis easily established without Section 9.3.2—in particular, meet and join coincide
exactly with the relative minimaand maxima.

XY = mins(XUY)
XY = maxz(XUY)

We will informally identify vectors with their multicomponent images, and will consequently
apply <z, M, and LI directly to vectors.

82

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Cuts The set of cuts does not always form a lattice. Since the localization is not transitive, the
Timedlice Lattice Theorem (Theorem 9.17) does not apply. Figure 9.1 sketches a counterexample.

If the only multiple-process events were extrema, (such asin POT and LINEAR), then the case
of cuts would reduceto that of vectors.

Consistent Cuts However, the set of consistent cuts does form a lattice. When applied to
consistent cuts, the cut operationsyield consistent cuts. (Mutual concurrency is easy to establish;
maximality would be easy if events only occurred at single processes.)

Lemma 9.19 Suppose multiprocess pair (M, M') with localization L acts on graph
a. and vy, = L(a).

If X, Y areconsistent cuts, then both min,, (X UY’) and max,, (X UY) are consistent
cuts.

Figure 9.1 Cuts in a parallel pair may not form a lattice. Suppose that the
process events linked with bold lines are merged in the global model. Then cuts
X = {Az, B3, (C2D1)} and Y = {Az, B>, (C1D2)} have only a partial cut { A3, B3} as
their relative maxima. This partial cut extends to two different dominating cuts—add
(CaD3) or (C3D4). Each of these extensions is concurrent in the set-precedence
order. Hence cuts X and Y have no cut as a least upper bound.

83

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Proof Lety = M(a).

Suppose 7, X — 7, Yiny, and 7, Y — 7, X in~;. Then 7, X - 7, Y in7, for oth-
erwise X is not consistent. Similarly 7, Y —/~ 7, X in%. Hence min, (X U Y) is mutualy
concurrent.

Sinceadl eventsin X and Y areacyclicin v, they must be acyclicin~;, soany eventin X UY
follows or equals someone in the relative minima. Suppose some process p were not represented
inmin, (X UY). If distinct, the p entriesof X and Y are ordered by ~;,; hence without loss of
generdity suppose that 7, X — =, Y in~z. Since r, X isnot a minima, some A from X U Y
must satisfy A — =, X in~z. But thisevent A precedes both =, X and 7, Y in ¥—hence at |east
oneof X, Y must not have been a consistent cuit.

The case for max,, issimilar. [

On consistent cuts, the cut operations (minima and maximain the localization) coincide with
the timedlice operations (minimaand maximain the transitive global graph):

Lemma 9.20 Suppose paralel pair (M, M') with localization L acts on graph «.
Let v = M(a)andand v;, = L(«). If X and Y are consistent cuts, then

min(XUY) = min (XUY)
max;(XUY) = max, (XUY)

Proof Since~; C 7 and removing edges cannot cause an event to stop being minimal:
min(XUY) C min, (XUY)

max(XUY) C max, (XUY)

Suppose A € (min, (X UY))but A ¢ (min(XUY)). Thenthereexistsa B € (X UY)
suchthat B — A in7. Without loss of generality, suppose A € X and B € Y, and A7 exists. If
7, Y — Ain~z, then A could not have been minimal in~;. Hence A — =, Y in~; and hence
in¥—in which case Y could not be mutually concurrent. The case for joinissmilar. [

Hence consistent cutsform alattice.

Theorem 9.21 Suppose(M, M') isaparallel pair. If nonempty, the set of consistent
cutsin an M graph formsa lattice.

Proof By the Timedlice Lattice Theorem (Theorem 9.17), the set of timedices form a lattice.
Consistent cuts are a nonempty subset. By Lemma 9.19 and Lemma 9.20, this subset is closed
under meet and join. [

84

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

As with vectors, the minimaand maxima operations here are exactly meet and join. This only
makes sense, as on consistent cuts, the operations coincide not only with the timeslice operations,
but also with the vector operations. Precedence coincides as well.

Meets and joins also preserve event membership. Hence the set of consistent cuts containing
some specified event set is alattice.

Theorem 9.22 Suppose (M, M) isaparallel pair, and a set of events X from an
M graphiscontained in at least one consistent cut. Then the set of all consistent cuts
containing X formsalattice.

Proof Thisfollowsdirectly from Theorem 9.21, and the above observation. [

85

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

86

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

(Part 1II)

Chapter 10

Timestamp Vectors and Rollback
Vectors

As much previous research has noted, vectors play a fundamental role in representing distributed
time structures. This chapter exploresthisrolein termsof our time theory.

For each event from a graph from a parallel model, we introduce two specia structures. the
timestamp vector, containing the maximal events at each process that precede or equal the event,
and the rollback vector containing the minimal.

Section 10.1 devel opsthe definitions of these vectors, and Section 10.2 and Section 10.3 explore
some properties of them (including their use as clocks).

10.1. The Definition

10.1.1. The Attempt

First, we present the definitions.

Definition 10.1 Suppose parallel pair (M, M’) acts on graph . Let v = M(«)
and 5 = M'(«). For event A in~, define its timestamp vector V (v, M, M’, A) to be
the vector whose process p entry isthe event B such that:

e B— Ain¥y
o Bl exidts
o If C — Ainyand C|; exists, then C'|; — B|; in 3.

Defineitsrollback vector R(y, M, M’, A) symmetrically: the vector whose process p
entry isthe event B such that:

e A— Bin¥y

87

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

o B|; exidts
o If A— Cinyand C|; exists, then Bl — (|5 in 3.

Usually the graph and the parallel pair are understood when we deal with these vectors. In
these situations, we will condense the awkward parameter list and write smply V(A) and R(A),
respectively.

An easy consequence of this definition is that an event precedes or equals everything in its
rollback vector, and follows or equals everything in its timestamp vector.

Proposition 10.2 Suppose paralel pair (M, M’) acts on graph «. Let A be an
event from v = M(«) and let p € PROC-NAMES. If 7, V(A) is defined, then
m, V(A) — Ain7. Similarly if =, R(A) isdefined, then A — =, R(A) in7.

Proof Thisassertion followsdirectly from Definition 10.1. [

10.1.2. Unique Entries

Because the process components in a parallel pair are total orders, the process image of a vector
entry isunique. That is, for event A from an M graph and process p € PROC-NAMES, not more
than one event from process p meetsthe criteriafor the process p entry of V(A) and R(A). Because
the process components areindeed components of M, the vector entry itself—asan eventin M—is
also unigue.

10.1.3. Missing Entries

However, a problem with Definition 10.1 isthat not all entries of these vectors are always defined.
The number of qualifying eventsis never more than one—but it might be zero.

For parallel pair (M, M’), theprocess p entry of theV (A) vector isdefined iff some B satisfying
B — Ain M represents something at process p. A simple condition guarantees this property:

Proposition 10.3 Let (M, M’) be aparallel pair. If M is transitively bounded,
then al entriesin all timestamp and rollback vectors are defined.

Proof From Proposition 8.10, the global extrema represent the local extrema; hence the past of
any event A touches each process component in at least one spot, as does the future. [

Conveniently, the POT model is transitively bounded.

88

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

10.2. Properties Despite Missing Entries

We can prove a number of properties about timestamp and rollback vectors, even if we allow for
vectors with undefined entries.

First, timestamp vectors and rollback vectors mark the influence horizons of events:
Theorem 10.4 Suppose parallel pair (M, M') acts on graph . Let A and B be
eventsfrom~ = M(«). Then

A— Biny < A€ [V(B)] < Be< |RA)]
Proof Let L bethelocalization of (M, M'); let 5 = M'(«) and vz, = L(«). Let V = V(B) and
let R = R(A).

Suppose A — B € 7. A must represent at least one process, so let that process be p. Then
B has an ancestor representing part of the p component of 3. Hence by Definition 10.1, (7, V)|5
exists, and Al; = (=, V)| in 3. Hence, by Definition 8.8, A ¢ [V].

A € [V] implies there exists some p such that Al; and (7, V)|; both exist and satisfy
Alz; = (7, V)|z in3. Hence A — =, V in7, and by Proposition 10.2 and transitivity, A — B
in7.

The case for the rollback vector issymmetric. [

The relation of an event at process p to the process p entries of its vectors satisfies a smple
identity—an identity that istrivial for acyclic models.

Lemma 10.5 Suppose paralel pair (M, M’) acts on graph «. Let A be an event
from~y = M(«a); let 5 = M'(«) and p € PROC-NAMES. If Al existsin j, then
the process p entries of R(A) and V(A) exist in ¥, and their images in 3 bracket the
image of A:

(mp R(A) [= Al = (7, V(A))p

Proof A precedes or equalsitself, so it must precede or equal its maximal improper ancestor at
p. Similarly A must follow or equal its minimal improper descendant. [

Timestamp and rollback vectors are unique, up to M cycles:

Lemma 10.6 Supposeparallel pair (M, M') actsongraph«. Let A and B beevents
from graph v = M(«), andlet 5 = M'(«). Then

Ae= B <= V(A) = V(B) « R(4)=R(B)

89

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Proof Clearly if A<= B thenthe other two statements hold.

Suppose V(A) = V(B). If Al exists, then the p entry of the A vector exists. Hence so does
the p entry of the B vector, and these entries satisfy:

WpV(A) = WpV(B)
Lemma 10.5 establishes that
Ay = (mV(A))l

Hence A — =, V(A). But Proposition 10.2 gives =, V(B) — B. Hence A — B, and simi-
larly B — A.

The case for rollback vectorsis symmetric. [

10.3. Vector Clocks

Timestamp vectors have a natural use as M-clocks for the transitive global model. If a process
timestamps each event with its timestamp vector, then a sSimple comparison determines the M
relation of two events! (Doing this comparison requires having all entries defined—which we
havefrom Proposition 10.3.) Further, for well-behaved modelslike POT, cal cul ating thetimestamp
vector for each event isvery simple.

Rollback vectors describe the spread of influence of an event in a system. If A were instan-
taneoudly rolled back, the vector R(A) indicates the frontier of what needs to be undone. (But
rollback vectors aso function as clocks, athough not necessarily very practical ones.)

The key result isthat vector precedence (from Theorem 9.18) follows event precedence.

Theorem 10.7 (Vector Clocks) Supposetransitively bounded parallel pair (M, M)
actson graph . Let y = M(«).

For any two events A, B:
V(A) < V(B) <= R(A) <R(B)
<~ (A— Biny A B+ Ain7)
Proof Suppose A— B but B —/~ A. Then Proposition 10.2 and transitivity give each
7, V(A) — B. The definition of timestamp vector then gives

T, V(A) = 7, V(B)

1The vector clocks in the literature [StYe85, Fi88, Jo89, Ma89, JoZw90, SiKs90, Sm91, PeKe93, ReG093, SmTy93]
are specia cases of thisresult.

90

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

for each p. HenceV(A) < V(B); B -/~ A and Lemma 10.6 make this inequality strict.

Conversely, suppose V(A) < V(B) and Al; exists. Then Lemma10.5gives A — 7, V(A).
By hypothesis r, V(A) — =, V(B). Proposition 10.2 and transitivity then give A — B. But
Lemma 10.6 and the inequality of the vectorsforces A # B and B —~ A.

The case for rollback vectorsis symmetric. [

Like much of the work here, thistheorem appliesto more general models than POT. For example,
the theorem does not require that M be acyclic.

91

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

92

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

(Part 1II)

Chapter 11
Real Simultaneity

A timedlice from a computation graph is a set of logically concurrent events. Does thislogical si-
multaneity imply real ssimultaneity? That is, how do timeslices correspond to the real instantaneous
system states in the underlying physical computation? Clearly, a necessary condition is that the
graph be produced by a concrete, grounding generator M. This way, the underlying computation
really exists and the components of atimedlice really do correspond to parts of this computation.

In this section we begin exploring this relationship for the parallel models we' ve constructed.

Section 11.1 forrmally defines our usage of the term global state: in physical computations,
the system state at some instant; in computation graphs, the representation of aglobal state in some
computation mapping to that graph.

Section 11.2 explores the relationship between timeslices and global states for the LINEAR
model. However, Section 11.3 demonstrates how the partial order model POT fails to give the
desired relationships.

11.1. Global States

Global States in Computations Theterm “global state” admits two interpretations. a static
one (what's the local state everywhere right now?) and a dynamic one (what’'s everyone doing
right now?).

Our work allows both interpretations. “Right now” presumably denotes some instant of real
time—for computation 7' = ((%o, so), .-, (t, sx)), Some instant ¢ in the closed interval [to, x]. In
terms of computation graphs, the most accurate picture we can obtain of the system at time¢ isthe
set of atomsfor timet in the ground-level graph.

Definition 11.1 A global stateinatracel’ = ((to, so), --., (tx, %)) istheset of atoms
in the ground-level graph of 7" representing system activity at sometimet € [to, ¢].

93

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

For example, in Figure 11.1, the highlighted node and edge in the ground-level computation
graph « constitute aglobal state, corresponding to real time.

Global States in Modeled Computations A set G together with a grounding generator
induces amap from atomsin G back to atoms in ground-level graphs. Thisinduced map gives an
easy way to define when sets of G atoms describe a true simultaneous moment in an underlying
trace.

Definition 11.2 Let M beagrounding generator of set G andlet 5 € G. A set S of
atomsin 3 represents a global state when for some o € M~1(3):

e (M, «a)(S5) containsaglobal statein «
e but no proper subset of S does.

For example, in Figure 11.1, the highlighted nodesinthe LINEAR graph 5 minimally represent
the highlighted global state in the ground-level graph «.

Definition 11.2 includes two subtleties deserving special emphasis.
Global states do not necessarily occur A global state in a computation graph corresponds

to areal globa state in some physical computation that maps to that graph—not necessarily
the physical computation really in progress.

Global states depend on the model Taking about how an event set in a graph corresponds
to reality requires talking about how the graph corresponds to reality. Thus talking about
global states requires specifying (at least implicitly) agrounding generator for that graph.

Whether we allow static global states or dynamic global states depends on whether our model
allows passive eventslike idle, and whether we are exploring states as sets of atoms or strictly sets
of events.

A Schema for Examining Models If timedicesaredoing their job, then they should describe
exactly the interesting global states in the graphs a model produces. Considering thisissue yields
some questions:

e What aretheinteresting global states?
e Do timedices minimally represent these states?
e Do any other event sets minimally represent these states?

e Arethere any of these states that cannot be minimally represented by event sets?

94

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

real time —

Figure 11.1 Global states arise from real simultaneity; event sets that minimally
represent global states arise from the representational aspect of time models. The
space-time region on the bottom describes some computation, whose ground level
computation graphis «. Graph /3 is the image of o under the model LINEAR. Set 7
is the region of space-time corresponding to the real time ¢; the edge and event of
Y comprise the global state in « corresponding to /Z. We follow the representation
lines (dashed) to obtain X, the event set in 5 that minimally represents this global
state.

95

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

If the model in question happens to be parallel, we have yet another question:
e |Iseach timedlice a consistent cut?

A global state is a ssimultaneous moment in a computation, perceived through the granularity
of a ground-level computation graph. In this paper, we use the crude criteriathat a global stateis
“interesting” when any part of itsaction is part of a*“thing that happens’ in amodel. That is, if a
model creates an event that represents part of the global state X, then X isrelevant to that model.
So the model should be be able to talk about it.

This criteria answers the first question from the above list. We can easily answer the last
guestion: if atimedice is not a consistent cut, then it represents no activity at some process
p—nhence it cannot represent a global state.

In Section 11.2 and Section 11.3 we explore whether the timedlices from LINEAR and POT
describe exactly these interesting global states. The remaining questions from the above list form
aschemafor this exploration.

11.2. Timeslices and Global States in Linear Time

The case for LINEAR is extremely straightforward.

Theorem 11.3 Suppose LINEAR generates graph ~. If aset of events X in~ isa
timedicein#, then X minimally represents a global state.

Proof Consider aground-level graphthat isapre-imageof ~. Timeslices exactly represent either
the initial global state, the final global state, or the global state between photos when something
happens. (The definition of trace ensures that when two actions happen between photos, they
happen smultaneoudly). [

Theorem 11.4 Suppose LINEAR generates graph ~. If a set of events X from ~
minimally represents aglobal state, then X isatimedicein.

Proof This follows from two facts. First, a strict subset of a timeslice cannot describe all
processes. Second, if A — B in LINEAR then the space-time regions of A and B have digoint
time ranges. So, such an X must touch all processes and be mutually concurrent. [

Theorem 11.5 Let X be a global state from ground-level graph «. If an event
in LINEAR(«) represents any part of X, then atimesice in LINEAR(«) minimally
represents X'.

96

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Proof Thisfactisclear from the construction of LINEAR graphs. We create eventsin rows, one
for each process, in accordance with the time periods. The timedicesare therows. [

Theorem 11.6 In any graph produced by LINEAR, each timedlice is a consistent
Ccut.

Proof Thisfollowsdirectly from the proof of Theorem 11.5 above. [

11.3. Timeslices and Global States in Partial Order Time

Section 11.1 providesa schemato establish that timeslices express ssimultaneity in parallel models.
This schemafailsfor POT.

Failure Consider an execution where process p sends a message to process ¢. Process ¢ receives
this message and returns aresponse to process p, who then receivesthe response. Inthe POT graph
of this execution (see Figure 11.2), the singleton consisting of process ¢’s send isatimeslice. But
this timeslice cannot represent a global state because it says nothing about process p; no event set
minimally represents the global state containing process ¢’s send.

Limited Success We can establish some limited results. Mutually concurrent events in POT
represent part of a global state: in some underlying computation, mutually concurrent events are
simultaneous.

Lemma 11.7 Let~ bethe POT image of aground-level graph. If set of events X
ismutually concurrent in % then X minimally represents a subset of aglobal state.

Figure 11.2 The shaded eventis a timeslice in POT; however, this timeslice does
not represent a global state, as it says nothing about activity at process p.

97

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Proof Obtain a ground-level graph in POT~*() asfollows. First, assign integers to the nodes
in v by setting each element of X to 0, setting each A following X to be one greater than the
maximum values of itsancestorsin POT, and each A before X to oneless than the minimum value
of itssuccessors. Since POT isacyclic, thisoperation is well-defined. Secondly, add ;5 to thevalue
of the nodes, where —j isthe valueon L. Let & be the resulting value on T. By Axiom 3.1,
a computation exists with 1. photosat ¢ = O, T photosast¢ = %, and (for remaining nodes foo,
marked with integer v) the appropriate foo actions occurring in thetimeinterval (v, v + 1).

Construct the ground-level graph for this computation. The eventsin X represent a subset of
the ground-level graph eventsfor (5,7 +1). O

Thus, the timedlices that are consistent cuts in fact represent global states:
Theorem 11.8 Consistent cutsin POT minimally represent global states.

Proof Let~ beaPOT graph, and let X be a consistent cut from 7. By definition, X describes
activity at every process. By Lemma11.7, there exists aground-level graphin POT~1(~) inwhich
X minimally represents a set of simultaneous events. Sincethis set must span all of space, it must
beaglobal state. [

98

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

(Part 1II)

Chapter 12
View-Completeness

In Section 11.3, we saw that avery smpleparallel pair will produce timeslicesthat neither represent
global states nor derive from consistent cuts.

Consider again the POT graph from Figure 11.2. The graph fails because process p goes
directly from the send event to the receive event. The p-send precedes the receive at process ¢; the
p-receivefollowsit. Henceno event at p can be concurrent with the ¢-receive—even though process
p actually “experienced” a moment of concurrency: the edge from the p-send to the p-receive.

In this section, we explore the deeper issues at work here. We develop the concept of view-
completeness. if an atom at a process affords an external temporal view, then an event at that
process affords the same view. In Section 12.1 we develop tools for dealing with ordering edges,
in Section 12.2 we define view-completeness; and in Section 12.3 we explore the implications of
view-completeness for timeslices.

12.1. Tools for Edges

Isolating Transition Edges We begin by introducing a tool to move from one event to its
successor and to its predecessor:

Definition 12.1 Let A be an event from graph «. Suppose there exists aunique B
in a such that A — B: we will denote thisevent by next(A).
Define prev(A) similarly.

If an event has unique neighbors, then these neighbors must lie on al precedence paths:

Proposition 12.2 Let A be an event from graph «.
1. If next(A) exists, then for any B in the transitive closure @:

A— B = next(A) — B

99

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

2. If prev(A) exists, then for any B in the transitive closure @:

B— A = B — prev(4)

Proof All outgoing paths from A in o must start with the edge A — next(A); similarly all
incoming paths must end with prev(A) — A. O

In a parale pair, only non-maximain the multicomponent are guaranteed to have successors,
since the general model may add cross-process edges. Nevertheless, since a non-maximain the
global model isthe image of anonempty set of non-maximain the local model, we can till obtain
successors by specifying which process component to consider.

Definition 12.3 Suppose (M, M’) is an parallel pair. Let A be an event from a
graph that M generates, and let p € PROC-NAMES. If A|, exists, define

next,(A) = (M/M') (next(Al,))
prev,(A) = (M/M’) (prev((A],)))

Ordering on Edges We defined precedence only for the events in a computation graph. But
the definition extends to the edges as well, if we pretend that adummy event lies inside the edge.

Definition 12.4 Suppose £ is an edge connecting node F ;, to node £, in graph
«. For node A:

o DefineA — FwhendA — F ...
e Define £ — Awhen £, — A.

12.2. View-Complete Models

We now use thetools of Section 12.1 to develop view-completeness. when every edge has an event
with the same view.

External Equivalence First, we define what it means for two atoms to have the same view.

Definition 12.5 Suppose (M, M’) is a multiprocess pair. Suppose A and B are
atoms in an M graph, such that for some p € PROC-NAMES, both A|, and B|,
exist. Then A and B are externally equivalent at p, written

A X B
when

100

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

1. InM, Aiscycliciff Biscyclic

2. Forany ¢ # p and any event C' such that C'|; exists:
A—CinM <= B-—(CinM
C— AINM <= (C— BinM

Informally, A £ B when both are cyclic (never part of atimeslice) or acyclic, and both divide
the atoms from other processes into the same “past” and “future” sets.

View-Complete Models View-completeness is smply the property of every edge having an
externally equivalent event:

Definition 12.6 Suppose paralel pair (M, M) acts on graph «. Graph v = M(«)
is view-complete when for any edge £ € v and p € PROC-NAMES, if F|, exists,
then thereexistsanode A € v with A £ F.

If M produces only view-complete graphs, then we say that parallel pair (M, M’) is
view-compl ete.

Usually an Endpoint It would be convenient if in aview-complete model, the event externally
equivalent to a given edge were always one of the endpoints of the edge. We can establish that for
models meeting afairly reasonable property, this will be the case.

We start by defining the property: when the model draws no back-edges or self-loops along
process components.
Definition 12.7 A multiprocess pair (M, M) with localization L islocally acyclic
when for any A, B:
A— BinL, = B-/AinM

We call this property “locally acyclic” because cycles in such models must touch more than one
process.

Lemma 12.8 Suppose locally acyclic multiprocess pair (M, M') acts on graph «.
If event A from~y = M(«) satisfies

e A—— Ain¥y
e A|, exists, for somep € PROC-NAMES

then there exists event B in ~ satisfying:
e A—— Bin¥y

101

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

o B, exists, for someq # p

Proof If v provides a path from A to A that does not touch such a B, v must have an edge that
contradicts Definition 12.7. [

As promised, if the model islocally acyclic, then the event for an edge must be an endpoint.

Proposition 12.9 Suppose parallel pair (M,M’) is localy acyclic and view-
complete. If edge £ connects £, to F,, in an M graph and FE|, exists, then
EX E,orE X E.

Proof If £ iscyclicin M, then the conclusion easily holds. So, assume £ is acyclic.

Since (M, M) is view-complete, a node A must exist with £ ~ A. Since the transitive p
component istotally ordered, in M’(«) we haveeither Al; — F |5 or E |z = Al5.

Consider the case when Al; — F,,|z. Assume atom C' occurs at a different process. for
some g # p, C', exists,

o IfC — EthenC — AandhenceC — FE ..

o If C — I/, then C — FE by Definition 12.4.

o If ¥ — Ctheneasily £,,— C.

o If ¥\, — CthenA — C andhence £ — C.

If I/, iscyclic, then Lemma 12.8 gives us a I at another process with B «—— F ,; such
a B precedes I and also follows E (since B follows A, and A ~ FE. This violates our
assumption that £ isacyclic, thus £ ,, must be acyclic.

Thus £ £ F,,.

Similarly, if E |z = Alp then 8 & E |5, O

12.3. Timeslices in View-Complete Models

View-compl eteness suffices to provide avery nice characterization of timeslices.

Preparation First, we establish that edges following an entry in the timestamp vector of an
event cannot precede that event:

102

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Lemma 12.10 Suppose parallel pair (M, M’) actson graph «.. Let v = M(«) and
s =M/(a).

Let A be an event in v, let p € PROC-NAMES, and let edge £ from v have F|,
nonempty. If =, V(A) isdefined, then

(mpV(A)ly — Elz in = E—»Ainy
If 7, R(A) is defined, then
Bl — (mR(A) Inf = A-Einy
Proof Let B=x,V(A),let £ connect BtoC, andlet B, ' and C’ be their process p images

inp. If ©E — Athen C — A (by Definition 12.4), but B’ — C" in the transitive p component.
Hence B could not have been the p entry of the timestamp vector. Therollback caseissimilar. [

The Main Result With view-completeness, timedlices are exactly the consistent cuts.

Theorem 12.11 (Mew-Completeness) Suppose (M, M) is a transitively-bounded
view-complete parallel pair. Then M-timeslices are consistent cuts.
Proof Let (M, M’) act on graph o, withy = M(«) and 5 = M/'(«).

Clearly the bounding singletons are timedlices, and no other timeslice can contain a bounding
node. So let X be atimedice different from the bounding singletons. Since X isapartia cut, if
X isnot aconsistent cut then some process p must not be represented.

We will now demonstrate that this can never be the case, by showing that if process p is not
represented, then X could not have been atimedlice.

Assume process p is not represented in X. Define events A and B asfollows:

A = 7, (UoexV(C))
B = m, MNcexR(C))

If B — A, then X cannot be a timeslice. So it must be the case that A|; properly precedes
B|z in the transitive p component. Hence A cannot be the maximum, so let £ be the edge in 7
connecting A to next,(A). Theedge F|, existsand satisfies

A|z7 - E|p - B|Z7

in 3. By Lemma12.10, £ can neither precede nor follow any eventin X.

Further, if £ were cyclic, then next,(A) — A (by Definition 12.4), hence next,(A) would
appear in the relevant timestamp vector rather than A. Thus £ is not cyclic.

103

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

b

Since (M, M) is view-complete, an acyclic event D must exist in v with D ~ F, hence
X U {D} is mutualy concurrent. Since D touches p (by definition of external equivaence),
D ¢ X. Thus X could not have been atimedice. [J

Chapter 13 repairs POT by forcing it to be view-complete. Chapter 14 considers more deeply
the implications of the View-Completeness Theorem (Theorem 12.11).

104

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

(Part 1II)

Chapter 13

Real Simultaneity and
View-Complete Partial Order Time

This chapter uses the results of Chapter 12 to revise the POT model so that it exhibits the correct
timedice behavior. We offer two approaches, both of which hinge on forcing POT to be view-
complete. In Section 13.1, werestrict the input graphs so that only well-behaved graphs come out;
in Section 13.2 we explicitly insert place-holder events. In Section 13.3, we demonstrate that these
fixes work.

13.1. One Fix: Restrict the Domain

One approach is simply to restrict the domain of graphs to which POT applies.

Definition 13.1 Define the restricted partial order time model RPOT to be the
model POT, restricted to ground-level graphs whose images are view-complete. That
is, RPOT = POT, on the domain

D = {a : POT(«)isview-complete}

13.2. Another Fix: Insert the Necessary Events

A more general technigue to see that any transitively-bounded parallel model is view-completeis
to insert place-holder eventsinto the the edges between consecutive events at a process.

For paralel pair (M, M’), we need to do this insertion both in the M graph and in the M’
graph. But since M’, M’ istrivially aparalée pair, we can use the same operator for both.

Definition 13.2 Suppose parallel pair (M, M') acts on graph . Let v = M(«)
and 3 = M'(«).

105

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Define the place-holding model PH on such ~ as follows. First, create a copy of ~,
with each atom representing itself. Then, for each edge £ in~y with E|y nonempty:

e Delete edge F from the copy.

e Add tothe copy anew intermediate node (A || B) representing the deleted edge,
where A and B arethe nodesthat £ connectsin ~.

e Add to the copy two ghost edges: A — (A || B)and (A | B) — B

The place-holding model acts exactly as desired:

Theorem 13.3 If (M, M’) isapardlel pair, then
(PHo M), (PHo M)

isaview-complete paralel pair.
Proof This result follows directly from the definitions. The PH model just adds intermediate
nodes and the appropriate edges, and does the same things both to M and to M’. Any edge from

M’ now is split into two edges surrounding an intermediate node, and this new node is externally
equivalent to these edges. [

Figure 13.1 illustrates this behavior.

(Strictly speaking, to make POT view-complete, we only need to insert intermediate nodesinto
TIMELINES edges from send events to receive events. Further, these insertions are sufficient but
still not necessary—consider messages that carry no new ordering information.)

Applying PH also preserves transitive bounding.
Proposition 13.4 PH o M istransitively bounded iff M istransitively bounded.

Proof Inserting intermediate events does not change the extrema. [

13.3. These Fixes Work

Once modified to be view-complete, the POT model exhibits the desired timeslice behavior.
Definition 13.5 Define the model PPOT to be the composition PH o POT.

Theorem 13.6 Suppose PPOT or RPOT generate graph ~. If aset of events X in
~isatimedicein¥, then X minimally represents aglobal state.

106

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

D——() —— D—@—)

(M/M") (PH o M)/(PH o M")

O (&) — (W=

Figure 13.1 We apply PH to a parallel pair (M, M’). This action preserves the
parallelism: PHo M is still parallel, with multicomponent PHo M’. Further, the action
ensures view-completeness—each edge now has a place-holder edge.

Proof This fact follows directly from Theorem 11.8 and the View-Completeness Theorem
(Theorem 12.11). 0O

Theorem 13.7 Suppose PPOT or RPOT generates graph ~. If a set of events X
from minimally represents a global state, then X isatimedlicein.

Proof A (nontrivial) global state mapsto afull cut X in PPOT (or RPOT, respectively). Since
MSG edges and PH o TIMELINE edges go strictly forward in time, X must be consistent. [

Theorem 13.8 Let X be aglobal state from ground-level graph «. If an eventin
PPOT («) representsany part of X, then atimeslicein PPOT («) minimally represents
X; similarly for RPOT («).

Proof Thistheorem follows directly from the proof for Theorem 13.7. [

107

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

108

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

(Part 1II)

Chapter 14
Timeslices and View-Completeness

This chapter explores the structure of timeslices in view-complete parallel pairs.

Section 14.1 introduces terms for two more varieties of multiprocess pairs. Section 14.2
presents a convenient extendibility property that follows from the View-Completeness Theorem
(Theorem 12.11). Section 14.3 introduces an alternate form of timestamp and rollback vectors,
Section 14.4 uses these alternate formsto characterize timeslices.

14.1. Two New Types of Models

Sincethis chapter will build on the View-Compl eteness Theorem (Theorem 12.11), we now define
a short term summing up the conditions of that theorem:

Definition 14.1 If two models (M, M’) are a view-complete parallel pair, and M
istransitively bounded, then we say that (M, M) is a consistent pair.

The View-Completeness Theorem (Theorem 12.11) inspires this term: timeslices are consistent
cuts.

Section 14.4 uses an additional property: that the process components appear independently in
the global model.

Definition 14.2 A multiprocess pair (M, M) is independent when, in any graph
generated by M, any atom (except a bounding node) represents exactly one atom in
exactly one component model in M’.

14.2. Extendibility

The View-Completeness Theorem (Theorem 12.11) yields the following as an easy consequence.

109

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Theorem 14.3 (Extendibility) Suppose consistent parallel pair (M, M’) generates
graph~. Any set X of mutually concurrent events from 7 extends to a consistent cut:
that is, aconsistent cut X’ existswith X C X".

Proof Such aset X extends to a maximal concurrent set X’. From the View-Completeness
Theorem (Theorem 12.11), X’ must aconsistent cut. [

Hence any acyclic event is part of a consistent cut, and we can find timeslices using a greedy
algorithm: just keep appending mutually concurrent events.

14.3. Extremal Timeslices

From the Extendibility Theorem (Theorem 14.3), we know that any acyclic event naturally extends
to a timedice. From the the View-Completeness Theorem (Theorem 12.11) we know that this
timedicewill beaconsistent cut. From Theorem 9.21 we know these consistent cutsform alattice.
Since things are finite, this set has a unigue maximum and a unique minimum.

Section 14.3.1 constructs these extremal consistent cuts. they are the timestamp and rollback
vectors, dightly adjusted. Section 14.3.2 proves that the event sets of these adjusted vectors are
indeed the extremal cuts. (Section 14.4 will use these adjusted vectors to characterize arbitrary
timedlices.)

14.3.1. Adjusted Timestamp Vectors and Adjusted Rollback Vectors

The timestamp vector of an event consists of the maximal event from each process that precedes
or equals that event. Suppose acyclic event A occurs at exactly one place: process p. Then the p
entry fromV(A) equals A. We obtain the adjusted timestamp vector by, for each ¢ # p, replacing
the process ¢ entry of V(A) with the minimal event equivalent toits local successor edge. Barring
local cycles, we just take the 7, V(A) entry and adjust it one event forward. In the more genera
casethat A occursat multiple processes, then we only slide forward the events at the processes that
A does not touch.

We define adjusted rollback vectors symmetrically by adjusting backward the entries from the
rollback vector. For each ¢ # p, we replace the process ¢ entry of R(A) with the maximal event
equivalent to itslocal predecessor edge.

Definition 14.4 Suppose consistent parallel pair (M, M’) acts on graph «. Let A
be an acyclic non-bounding event from~y = M(«); let 5 = M/(«).

Construct the adjusted timestamp vector V*(v, M, M’, A) fromV(A) asfollows. For
each p € PROC-NAMES such that A|, doesnot exist:

110

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

e Let £ betheedgefromr,V(A)to next,((m, V(A))).
e Replace 7, V(A) by the p-minimum from

{C:C X FE}

Define the adjusted rollback vector R* similarly, using prev(p) (7, R(A)) and the
p-maximum. As with ordinary timestamp vectors, we will truncate the cumbersome
parameter list whenever possible.

Definition 14.4 works. the entries of the adjusted timestamp vectors and adjusted rollback
vectors exist.

Proposition 14.5 Suppose consistent parallel pair (M, M’) acts on graph «. Let
A be an acyclic non-bounding event from v = M(«); let 5 = M'(«). All entries of
V*(A) and R*(A) are defined.

Proof If V(A) contains thes maximum, then A must be the maximum. From this observation
and from Proposition 8.10, if A is non-bounding, then no (7, V(A))|; is the p-maximum in 3.
Hence such an edge £ exists, and because (M, M’) is view-complete, the set must be nonempty.
By definition of &, each event in the set must touch the p component. The rollback case is
smilar. O

Figure 14.1 distinguishes between timestamp vectors and adjusted timestamp vectors.

Adjusting vectors only iscomplicated when events can occur at multiple processes or the view-
complete event for an edge isnot an endpoint. Since neither of these factsapply to PPOT or RPOT,
adjusting vectorsin these modelsisfairly smple.

14.3.2. The Extremal Timeslice Theorem

If event A is acyclic, then at every process where A does not occur, the timestamp vector entry
must precede the rollback vector entry.

Let p be such aprocess. At p, the first edge after the timestamp entry and the last one before
the rollback entry must both be concurrent with A. We select the V* and R* entries by finding the
minimal and maximal externally equivalent events (respectively)—hencethe V* and R* entriesare
respectively the minimal and maximal p events concurrent with A.

Consequently, the adjusted vectors give the bounds of the lattice of consistent cuts containing
an event:

Theorem 14.6 (Extremal Timedlices) Suppose consistent parallel pair (M, M’) acts
ongraph a. Let v = M(a).

111

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

-

Figure 14.1 For an event A, the timestamp vector V(A) is its information horizon:
the latest event, at each process, that A may have heard about. The adjusted time-
stamp vector V*(A) is just the timestamp vector, advanced one position everywhere
except global event A.

112

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

If A isan acyclic non-bounding event, then

{BeV*(A)} = M{X:Xisaconsistent cut containing A}
{BeR*(A)} = U{X:Xisaconsistent cut containing A}

Proof If A touchesevery process, thenV*(A) = R*(A)andevery entry is A. Thissetismutually
concurrent because A is acyclic. Because the process components are totally ordered, this can be
the only timedlice.

So, assume that there exists a process p € PROC-NAMES such that A|, doesnot exist. Let
B=mn,V(A)and C = 7, R(A). From Theorem 10.4, no event D touching p and concurrent with
Acanhave D — Bor C — D. If C — B, then A cannot be acyclic. So it must be the case
that B|; properly precedes C'|; in the transitive p component. Let £z be the edge connecting B
to next,(B) in+~, and E¢ bethe edge connecting prev,(C') to C'. Edge L isconcurrent with A
and and acyclic:

e Concurrent. If Ep precedes A, then the out node of E|, in /5 would bethep V(A) entry,
rather than the in node. But £z follows A, then by Definition 12.4 B — A, which would
givethat A +—— B and hence A iscyclic.

e Acyclic. If Eg werecyclic, then next,(B) — B and thus B would not be the p entry in
V(A).

Hence {r, V*(A), A} isamutually concurrent set in7, and so can be expanded to a consistent cut,
but no event preceding =, V*(A) in the p component can be part of atimedice with A.

The casefor 7, R"(A) issimilar. O

Definition 14.4 defined adjusted timestamp vectors and adjusted rollback vectors as vectors:
arrays of events. The Extremal Timeslice Theorem (Theorem 14.6) establishes that these vectors
possess even more structure: their event sets are both cuts and timeslices.

Corollary 14.7 Theevent sets of V*(A) and R™(A) are consistent cuts.

Proof Them and LI operations preserve consistent cuts. [

Consequently, we can now regard V*(A) and R*(A) as simply event sets—since projection
will never be ambiguous.

14.4. Characterizing Timeslices

The Extremal Timedice Theorem (Theorem 14.6) tells us that the adjusted timestamp vector for
an event gives us the minimal timedlice containing that event. One might conjecture that any

113

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

timeslice can be obtained this way, but this conjecture is false. Figure 14.2 sketches a simple
counter-example.

If this conjecture were to hold in general, then every timedice X would have to possess some
event A that forces of each remaining B € X to be part of X—where event A forcesan event B
when B # Aand B € V*(A).

The conjecture fails because acyclic events can be mutually concurrent without forcing each
other. However, we can express this forcing relation with a time model. If our consistent parallel
pair is acyclic and independent, then the forcing model will form an acyclic independent parallel
pair.

Thisinsight yields two results:

Unique Signatures Suppose X isatimedice. It isnot truein genera that X is the adjusted
timestamp vector of one entry. However, it is trivialy true that X equals the join of the
adjusted timestamp vectors, over al elements of X.

X = U{ViA4) : AeY)

If we removed elementsfrom Y one by one, when would this relation stop holding? We can
establish that thereisaunique Y C X such that the relation holds for Y, but does not hold
for any proper subset of Y.

Meta-Timeslices A setof eventsissucha“timedice’ signatureiff itisamutually concurrent set
in the forcing model. Consequently, a timeslice of £ events in the forcing model expresses
2" timedlicesin the origina model.

In Section 14.4.1, we define the FORCE model, to capture when an event forces another. In
Section 14.4.2 we establish a series of lemmas about the FORCE model and the parallel pairs it
induces. We use these lemmas to establish our main result in Section 14.4.3.

""I,' E sss“s
N
P
g
& = %,
N = “
V*(A) X V*(B)

Figure 14.2 Timeslice X = {A, B} equals neither V*(A) nor V*(B). This
example disproves the conjecture that the Extremal Timeslice Theorem
(Theorem 14.6) might characterize all timeslices.

114

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

14.4.1. A Model to Express Forcing

We define a model that copies each cross-process edge in the single-step global model and dlides
the in-node one event forward.

Definition 14.8 Suppose independent parallel pair (M, M’) acts on graph «. Let
v =M(a)and g = M'(«a).

Define the model FORCE on ~ asfollows:

e Copy ~; let each atom here represent itself.
e for each pair of non-bounding nodes A, B such that:
- A— Bin~y
— A occurs at process p but 5 does not.
add aghost edge from next,(A) to B in the copy.

For example, to construct FORCE o POT we copy the POT graph, and then for each send whose
receiveis at adifferent process, we draw an edge from the successor of the send to the receive.

The remainder of Section 14.4 establishes that FORCE captures the forcing discussed earlier.
Figure 14.2 illustrated this fact: the counter-example timedlice X remains atimedice even if we
apply FORCE—indicating that neither event forces the other.

14.4.2. Preparation

First, we show that applying FORCE preserves independence and parallelism.

Lemma 14.9 Suppose (M, M’) is an independent consistent parallel pair. Then
((FORCE o M), M) is an independent transitively-bounded parallel pair.

Proof Thisis clear from the definitions. The only tricky part is showing that FORCE o M is
bounded.

Suppose FORCE adds edge next,(A) — B. and next,(A) was the global maximum. Let
F bethe edge from A to next,(A). E isconcurrent with B, but no node at p is. Hence (M, M’)
could not be view-complete. [

The FORCE model does not preserve consistency because the resulting model may not be
view-complete. Consider the PPOT model. If only an intermediate event keeps a send from
immediately preceding a receive, then FORCE will dide the in-node of the message edge up to
the intermediate event. The edge from the intermediate event to the receive will then have no
externally equivalent event.

115

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

We can use view-compl eteness to show that apath in 5 can always be extended on the end with
FORCE(~) edges:

Lemma 14.10 Supposeindependent consistent parallel pair (M, M) actson graph

a. Lety = M(a)and 5 = M/(«).

Suppose A — BinFand B — C in FORCE(y). Then A — C' in7.
Proof We establish the result assuming B — €' in FORCE(y) but not v. The more general
result follows easily—just use this special result to have the 7 path absorb each edge in the ~ path.

Let event 13 occur at process p. Then ¢’ must occur somewhere else, and prev, (B) — C'in
~. Thus any event D at process p satisfies

D—Ciny VvV A—Din¥
If A -/~ Cinythen A -/~ prev, (B) and B -/~ C'. Let E bethe edge connecting prev, (5)

to B. Then A -~ F and £ —/ C. Since (M, M’) is view-complete, there exists an event D at
process p with A —~ D and D —~ C. Thisviolatesthe above condition. [

However, a path starting with a new FORCE edge only induces a % path starting from the
immediate predecessor of the path’sfirst event.

Lemma 14.11 Supposeindependent consistent parallel pair (M, M) acts on graph
a,and v = M(a).

Suppose non-bounding 7 event A occurs at process p € PROC-NAMES. For any
event B:

A— BIinFORCE(y) = prev,(4) — Bin¥y
Proof If B isbounding, the result istrivial. So assume B is not bounding. Let ¢ be the process
of B. Suppose A — B in FORCE(~y). Consider the path from A to B in FORCE(~):
A— B — ...— B, =B

If A— Bjin~,then we easily have the result:

prev,(A) — B1 €7
Otherwise, Definition 14.8 givesthe fact:

prev,(A) — Biiny
In either case, Lemma 14.10 givesthe fact:

prev,(A) — Bin¥y

116

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Consequently, FORCE preservesthe acyclic property.

Lemma 14.12 Suppose consistent parallel pair (M, M) is independent. If M is
acyclic then FORCE o M is acyclic.

Proof Let~ bean M graph. If FORCE(~) has acycle, this must have come from a FORCE(~)
edge, which all cross processes. So there exists A at processp and B at ¢ # p with A «—— B in
FORCE(y). Lemma 14.11 gives prev, (A) — B and prev, (B) — A in7. Hence any event
a p either precedes 5 or follows prev, (5) in7. But the edge from prev (A) to A does neither,
and the fact that (M, M’) is view-complete gives a contradiction. [

For events concurrent in the original model, FORCE precedence is equivalent to V™ forcing.

Lemma 14.13 Supposeindependent consistent parallel pair (M, M) acts on graph
a, M isacyclic, and v = M(a).

If Aand B satisfy A </~ B in#, then
A€V (B) < A— BIinFORCE(y)

Proof Let B occur at process p.

From Proposition 12.9 and Definition 14.4, we know that the p entry of V*(B) is B, but for
every ¢ # p, the g entry is next,((x, V(B))) .

Let A occura g # p. If A € V*(B), then A -/~ B in¥ but prev, (A) — B in7, hence
A — BinFORCE(7).

If A— BinFORCE(y), Lemma14.11 give prev,(4A) — B in7. Since A -/~ Bin7, we
have prev,(A) = 7, V(B). Hence A € V*(B). O

14.4.3. The Main Result

We now establish the main result: the FORCE maxima of a timeslice form the unique forcing
subset of that timedlice.

Theorem 14.14 Suppose independent consistent parallel pair (M, M’) acts on
graph o, and M isacyclic. Let v = M(«) and 8 = M'(«).
Any F-timedlice X has a unique minimal subset Y such that

X = W{vi(4) : AeY}
Further, event set Y is a such a minimal subset iff it is a mutually concurrent set in
graph FORCE(~).

117

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Proof Let X beatimedicefrom7. Since FORCE(~) isacyclic (from Lemma14.12), let Y be
the set of FORCE sinksin X.
Y = mingsreg.,(X)

For somep € PROC-NAMES, let B = 7, X and
B = 7, (U{V(A) : AeY})
Consider the two cases:
1. If B € Y, then for any other C' € Y, we have B «/— C' in FORCE(y). Lemma 14.13 and
thefact that B </~ C' in7 aso givesthat B ¢ [V*(C)]. Hence B’ = B.

2. If B ¢ Y, then by construction of Y thereexistsaC' € Y with B — (' in FORCE(~). By
Lemmal14.13, B € V*(C). If D # C fromY has x, V*(D) dominating B, then B — D
in¥ and X could not be atimedice. Hence B’ = B.

Thus we establish the first part of theorem.

One direction of the second part is easy: by construction of Y, no two events can precede
each other in FORCE(~). For the other direction, observe that Y will be the set of sinksin the ¥
timediceLI{V*(A) : AeY}. O

Thistheorem has another interesting aspect: it givesusour first example of auseful time model
different from the standard LINEAR, POT collection.

Useful Applying FORCE to a view-complete version of POT yields a model whose timedlices
represent large sets of timedicesin POT.

Different The LINEAR model follows real time. The POT model departs from real time, but
still expresses a chronologically “reasonable” tempora order. However, the FORCE model
explicitly expresses orderings not found in real time.

118

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Chapter 15
Conclusion

Chapter 1 asserted that distributed systems with distributed information require a distributed notion
of time. Chapter 2 through Chapter 14 then develop mechanismsfor atheory of distributed time.

This paper concludes by returning focus to the original assertions. Section 15.1 summarizes
the mechanisms we developed and the motivations behind them. Section 15.2 outlines future
research directions: to demonstrate the power of thistheory by using it as aframework for secure
applications.

15.1. Summary

Distributed Time for Distributed Systems Natura intuition suggeststhat timeislinear, and
thus that we should organi ze experience into anicely behaved linear sequence of moments. Recent
thought suggests that this intuition fails for asynchronous distributed systems, where information
is distributed but perception is delayed. Such distributed environments require a more distributed
theory of time.

¢ Distributed time provides the best perceivable approximation of the underlying linear de-
scription, which asynchrony renders unknowable.

¢ Distributed time provides a more appropriate language for distributed systems concepts not
expressible in the language of real time.

Abstracting away irrelevant physical details to some convenient notion of discrete event is a
commontool. Distributedtimeformalizesthe notion of abstracting away irrelevant temporal details
as well. The tools extend further: to abstracting away irrelevant or inconvenient computational
detail.

¢ Distributed time expressesthe conceit that the computation that “really happens’ differsfrom
the computation that physically occurred.

119

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Laying the Groundwork Our ultimate claim is that distributed time clarifies problems and
solutions in distributed environments. This paper lays the groundwork for establishing that claim
by building the formal mechanisms for atheory of distributed time.

e We built a standard computation graph format to talk about events and temporal precedence,
and trandated physical descriptions of computation into ground-level computation graphs.

e We developed a time model formalism to express abstraction: a time model transforms a
computation graph to a more abstract one whose individual events and edges may represent
events and edges in the original graph.

¢ We explored some properties of time models, and in particular how their functional nature
allows us to compose them to build hierarchies of abstraction, and multiple routes to the
same graph.

e We developed parallel pairs of time models, to provide two levels of description of parallel
computation.

¢ We explored the structure of timedlices—event sets representing points of logical ssimultane-
ity. In particular, we showed how timeslices relate to global states in real computations,
how timedlices form alattice, and how to construct time models to provide certain timeslice
properties.

15.2. Future Work

Establishing that distributed time is the appropriate framework for distributed systems requires
formalizing distributed time; this paper provides that foundation. This section discusses how
future work will round out the claim: Section 15.2.1 discusses the benefits of using distributed
time, Section 15.2.2 quickly sketches some examples, and Section 15.2.3 outlines further research.

15.2.1. Using Distributed Time

Distributed time provides a general framework to think about problems (and solutions) relating to
time in distributed systems. We highlight some of the advantages:

Orthogonality Distributed time introduces orthogonality between the clocks tracking temporal
relations and the protocols using these relations. We can change clock implementations,
perhaps due to security or efficiency requirements, without changing protocols.

Flexibility Framing protocolsexplicitly intermsof distributed time allowsinsight and extensions
to the protocols.

120

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Expressiveness Freed from realistically describing computation, distributed time models can
express more convenient abstractions. The orthogonality between clocks and protocols
extends to an orthogonality between clocks and temporal relations—we can change models
without changing the way clocks are called and used.

Abstraction Hierarchies By providing for hierarchies of related time models, distributed time
allowsfor using protocols with multiple models even within a single computation.

Encapsulation and Unification The orthogonality between clocks and protocols gains some
additional advantages. we can solve once and for all the clock issues we otherwise need to
solve separately for each protocol, and we can unify in a single framework protocols that
separately affect distributed time.

15.2.2. Quick Sketches

Asapreview of future publications, we quickly sketch some examples supporting how distributed
time might achieve the benefits we catalog above.

For these sketches, we consider two application problems that lend themselves to distributed
time.

Snapshots AsChandy and Lamport [ChLa85] point out, the problem of one process assembling
adistributed snapshot of the global state at oneinstant is difficult when asynchrony prevents
identifying an instant, but a consistent global state suffices. Consistent global states are just
the timedlices from a view-compl ete version of POT.

Rollback If aprocesswantsto undo an event A and execute A’ instead, all events that depend on
A need to be undone. Distributed timeisrelevant on two levels: determining what needs to
be undone reduces to detecting temporal precedence in a partial order model; establishing a
computation where A" happened instead of A requiresabstracting from aPOT graph showing
the rollback to one showing the “ correct” computation.

Considering the problems of snapshots and rollback provides some simple examples of the
advantages of distributed time.

Orthogonality If we obtain snapshots by using POT-clock primitivesto determine concurrency,
then we can change from vector clocksto logging sites (to avoid the n entriesin each vector)
or to signed vectors (to gain some degree of security) without changing the protocol.

Flexibility Almost without exception, current snapshot protocols use marker-pushing and thus
are limited to taking a single, roughly current snapshot. Phrasing the problem in terms of
POT relations allows a protocol using POT-clocks, which immediately gives variations for
more general versions of the problem, such as off-line snapshots, multiple snapshots, and
using snapshots to detect unstable properties.

121

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Expressiveness Suppose we wanted to pretend that the only instantaneous global states were
those where no messages were in transit. A simple extension of POT expresses this conceit:
timeslices here are exactly the desired global states. A process can capture such a global
state ssimply by using its favorite snapshot protocol with the new clock primitives.

Abstraction Hierarchies Processes might want to use multiple clock suites even within the
same computation. A snapshot with POT clocks provides a global state; a snapshot with
FORCE o POT clocks provides an exponential number of global states.

Encapsulation and Unification Rollback with modified replay changes history. The orthog-
onality of clocks and protocols along with the single time framework alows us to still take
off-line snapshots using the same snapshot protocols. The hierarchy of models give further
flexibility: a snapshot from the original graph traps for potential globa states in the rea
physical computation; a snapshot from the revised graph trapsfor global statesin the virtual
physical computation.

15.2.3. Research Plan

Current research consists of formalizing the pointsraised in the quick sketches. Thiswork explores
three principal topics:

Distributed Time as a Framework for Applications We need to formally express applica-
tion problems (such as snapshots and rollback) in terms of the distributed time framework.

Clocks for General Time Models Specifyingclock behavior bringsup some additional issues,
such as what a process can know about the underlying computation (knowability) and how
guerying about temporal relations should affect the temporal relations (observation effects).

Security in Clocks and Protocols By departing from real time, we sacrifice the potential for
easy hardwareverification of clock values. Encapsulation and orthogonality arguments apply
here too: distributed time raises security risks, and protocolsthat depend on distributed time
(even tacitly) are liable to these risks.

Accuracy Do distributed time clocks accurately report tempora precedence? What hap-
pensif networks or processes fail—or act maliciousy?

Confinement Distributed time involves distributing private information. Can malicious
agents exploit thisinformation?

This research project started with the first identification of these security issues [Sm91], and
will culminate in athorough exploration of security and distributed time. [Sm94]

122

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

Index of Notation

Notation

S R A

C

Up

12

[12

Description

the precedence relation on event sets induced
by the graph ~
precedes

precedes or equals

does not precede

mutually precedes

mutually precedes or equals
concurrent

externally equivalent at p
maximum or final event
minimal or initial event

meet: the greatest lower bound, usually used
as abinary operation

join: the least upper bound, usually used as a
binary operation

union of graphsrelative to pairing P
union of models

digoint union

graph identity

graph identity, enumerated by pairing P
graph isomorphism

graph isomorphism, enumerated by pairing
P
graph containment

model containment

123

Page

78

27
27
27
27
27
27
100
32
32
79

79

39
41
39, 42
23
23
23
23

22
48

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

v [N IMe Nl

e

e

$|M/

M, M| a))

M /M’

direct model containment: C, except the
graphs areidentical

strong model containment: ¢, except the
constituencies are equal

strong and direct model containment: < and
C simultaneoudly.

refinement

model component: © and >
simultaneously

direct model component: £ with C

strong model component; £ with C

strong and direct model component: © with
C and C

what x represents in the multicomponent M’

what x represents in the nontransitive
process p component

what x representsin the transitive closure
M of the multicomponent

what = represents in the transitive process p
component

local past closure: the events that precede or
equal these guys in the multicomponent

local future closure: the events that follow or
equal these guys in the multicomponent

the event following A

the event preceding A

the following event at process p

the preceding event at process p

the intermediate event between A and B
representation map from M(«) to «

the containment map from M («) onto
M'(«), when M’ &M

the factoring model from M’ graphsto M
graphs

124

49

49

56

56
56
56

68
68

68

68

71

99
99
100
100
105
29
49

61

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

a, 3,y

M o 9

acyclic

adjusted rollback vector

adjusted timestamp vector

arrive
atoms
bounded

component

computation graph

compute

CONFIGS
concrete generator

concurrent

strings of items from W

generic symbolsfor computation graphs;
usually « transformsto 5 and /3 transforms
to~y

transitive closure of graph «
transition function
finite binary strings

the p element of set W

when anodeis not on a cycle, or agraph has
no cycles, or amodel produces only graphs
with no cycles

the rollback vector for an event, with with
the entries for the other processes replaced
by the last acyclic concurrent event—usually
the predecessor

the timestamp vector for an event, with with
the entries for the other processes replaced
by thefirst acyclic concurrent
event—usually the successor

event type: message arrives at receive queue
the nodes and edges of a graph

possessing a unique minimum event and a
unigue maximum event

amodel that produces a well-defined
subgraph of another model

alabeled directed graph, describing some
given computation

event type: change state; leave message
gueues untouched

process configurations
agenerator that produces no ghost events

when two events are incomparablein a
temporal relation; also, when a multiprocess
pair has the property that extremafrom
different processes are concurrent

125

11

22

35
11
11
66

37

110

110

24
22
36

56

21

12

11
38
27,71

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

DEV-CONFIGS

consistent cut

consistent parallel pair

constituency

contain

containment map

cut

cyclic

D

decomposition

decomposition set

direct containment

direct component

domain of a model

depart
DEV-NAMES

event

externally equivalent

EXTREMA

factoring model

device configurations

acut that isalso atimedice

aparallel pair that istransitively bounded
and view-complete

the atomsin o that some atom in M(«)
represents

arelation between models, indicating
containment of graphs viaisomorphism, and
containment of constituencies

the bijection between a subgraph and its
isomorphic image

aset of events such that each processis
touched exactly once

when anode lies on a cycle or when agraph
contains cycles

generic symbol for domain of a model

amodel consisting of adigoint union of
components of another model, with some
additional properties

the set of components that comprises a
decomposition

model containment, when the isomorphic
graphs are actually identical

the component relation, when model
containment is actually direct containment

the computation graphs on which amodel is
defined

event type: message departs send queue

I/O device names

adiscrete “thing that happens,” signified by a
node in a computation graph

when two atoms at the same process appear
the same to a different process

amodel to collapse extrema

the new model taking graphs generated by a
decomposition to graphs generation by a
model

126

14
77
109

29, 29

48

49

75

37

29
59

59

49

56

29

24
11
21, 27

100

37

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

FORCE

g
generator of G
ghost
global state

ground-level computation graph

grounding generator

identical

idle
independent

isomorphism

L
LINEAR

linear time order

LINLINE
LINLINES

localization

locally acyclic

model to dide in-nodes of cross-process
edges forward one position, thus expressing
when one event in atimeslices forces the
membership of another

generic symbol for set of computation graphs

amodel taking a set of graphsto G
an atom that represents nothing

the part of the ground-level computation
graph representing system activity at some
instant in real time

the computation graph version of a system
trace

agenerator that generates a set of graphs
from a set of ground-level graphs

two computation graphs that completely
match: edges, nodes, labels

event type: nothing happens

when, in amultiprocess model, each
non-bounding atom represents a single atom
at a single process component

two computation graphs that match, when
weignore labels

generic symbol for localization
the linear order model

a“total” order that allows simultaneous
events

local timeline model from LINEAR
digoint union of process LINLINE models

model obtained by retaining only the edges
coming from the transitive multicomponent

when any cycle must leave involve at least
two processes

generic symbol for time model
transitive closure of model M

generic symbol for adecomposition of a
model M

the graph produced by M given «

127

115

22

28
93

23

32
109

23

69
32
28

43
45
69

101

29
36
59

29

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

M(G)

max

~y

MESSAGES
MSG

min

by

model
multicomponent
multilinear model
multiprocess model
multiprocess pair

NAMES
NONIDLE

pairing between «; and a»
parallel model
parallel pair

PH
photo

POT
P(W)
PPOT
PROC-NAMES
Q
(oev
4o

apply M toeach guy in G

operation on an event set from ~ that retains
only the relative maxima

possible messages

model that makes receives follow sends

operation on an event set from ~ that retains
only the relative minima

time model: arepresentational
transformation on computation graphs

the set of process component modelsfor a
multiprocess model

amultiprocess model where each process
component islinear

amodel consisting of aset of process models
glued together

amultiprocess model together with a
transitive reduction of its multicomponent

process and I/O device names
model that removesidle events

asubset of «; x «, pairing asubgraph of the
one with a subgraph of the other

a concurrent multiprocess model with
straight-line process graphs

aparallel model together with its
multicomponent

model inserting place-holder events

event type: photo event in ground-level
computation graph

model for partial order time
set of all subsets of W

POT with intermediate events
process names

state set for processes

state set for 1/0O devices

initial state

128

30
78

11
45
78

29

65

72

65

65

11
43
23

72

72

105
25

46
14
106
11
11
14
11

R*(A)

receive

representative

representation map
rollback vector
RPOT

S
send

strong containment

strong component
strong direct containment
strong direct component

SYNC

system trace

TIMELINE
TIMELINES

time model

timedice

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

receive queue

the rollback vector of event A in graph ~
from parallel pair (M, M)

the rollback vector for event A, when the
graph and models are understood

the adjusted rollback vector of event A in
graph ~ from parallel pair (M, M)

the adjusted rollback vector for event A,
when the graph and models are understood

event type: receive a message

the atom in M(«) that represents an atom in
o

function taking atoms in one graph to what
they represent in another

cut containing the minimal event from each
process that follows or equal a given event

restricted POT: restrict the domain so that all
graphs produced are view-complete

send queue
event type: send amessage

model containment, when the constituencies
are actually equal

the component relation, when model
containment is actually strong containment

strong containment and direct containment
simultaneously

strong component and direct component
simultaneously

model synchronizing equal length total
orders

exhaustive physical description of a
computation

local timeline with no idle events
digoint union of process TIMELINE models

arepresentational transformation on
computation graphs

maximal set of mutually concurrent events

129

11
87

87

110

110

12
29, 29

29, 29

87

105

11
12
49

56

49

56

46

18

45
45
29

76

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

timestamp vector

TRANS
transitively bounded
V(v,M,M' A)

Vi(4)
vector

view-complete

cut containing the maximal event from each
process that precedes or equals a given event

transitive closure model
when the transitive closure is bounded

the timestamp vector of event A in graph ~
from parallel pair (M, M)

the timestamp vector for event A, when the
graph and models are understood

the adjusted timestamp vector of event A in
graph ~ from parallel pair (M, M)

the adjusted timestamp vector for event A,
when the graph and models are understood

an indexed set of events, one from each
process

when for every transition edge at a process,
an event has the same external view

130

36
36
87

87

110

110

75

101

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

References

[AmJao3] Amman, P. and S. Jgjodia. “Distributed Timestamp Generation in Planar Lattice
Networks.” ACM Transactions on Computer Systems. To appear.

[BiJo87] Birman, K.P. and T.A. Joseph. “Reliable Communication in the Presence of
Failures.” ACM Transactions on Computer Systems, 5: 47-76. February 1987.

[Ch89] Chandy, K.M. The Essence of Distributed Shapshots. Computer Science Technical
Report CS TR 89-5, Caltech. March 1989.

[ChLa85] Chandy, K.M. and L. Lamport. “Distributed Snapshots: Determining Global
States of Distributed Systems.” ACM Transactions on Computer Systems. 3:
63-75. February 1985.

[DaPro0] Davey, B.A. and H.A. Priestley. Introduction to Lattices and Order. Cambridge:
Cambridge University Press, 1990.

[Fi8g] Fidge, C.J. “Timestamps in Message-Passing Systems That Preserve the Partial
Ordering.” 11th Australian Computer Science Conference. 56-67. February 1988.

[Fi89] Fidge, C.J. “Partial Ordersfor Paralel Debugging.” ACM SIGPLAN Notices. 24:
183-194. January 1989.

[Fi91] Fidge, C.J. “Logical Timein Distributed Computing Systems.” |EEE Compuiter.
24 (8):28-33. August 1991.

[Gr75] Gref, 1.G. Semantics of Communicating Parallel Processes. Ph.D. thesis,
Massachusetts I nstitute of Technology. 1975.

[HLMW87] Herlihy, M.P,, N. Lynch, M. Merritt and W. Weihl. On the Correctness of Orphan
Elimination Algorithms. Computer Science Technical Report MIT LCS TM-329,
Massachusetts I nstitute of Technology. 1987.

[Je85] Jefferson, D.R. “Virtual Time.” ACM Transactions on Programming Languages
and Systems. 7: 404-425. July 1985.

[Jo89] Johnson, D.B. Distributed System Fault Tolerance Using Message Logging and
Checkpointing. Ph.D. thesis, Rice University, 1989.

[JoZw9O0] Johnson, D.B. and W. Zwaenepoel. “Recovery in Distributed Systems Using
Optimistic Message Logging and Checkpointing.” Journal of Algorithms. 11:
462-491. September 1990.

[La78] Lamport, L. “Time, Clocks, and the Ordering of Events in a Distributed System.”
Communications of the ACM. 21: 558-565. July 1978.

[Ma87] Mattern, F. “Algorithmsfor Distributed Termination Detection.” Distributed

Computing. 2: 161-175. 1987.

131

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.

[Mas9]

[Ma93]

[PBS8Y]

[PeK e93]
[Prg6]

[ReG093]

[SiKs90]

[SmO1]

[SmO4]

[SMTy91]

[SmTy93]

[Sp8g]

[StYess]

[TaLo91]

Mattern, F. “Virtual Time and Global States of Distributed Systems.” In Cosnard,
et a, ed., Parallel and Distributed Algorithms. Amsterdam: North-Holland, 1989.
215-226.

Mattern, F. “Efficient Algorithmsfor Distributed Snapshots and Global Virtual
Time Approximation.” Journal of Parallel and Distributed Computing. 18:
423-434. August 1993.

Peterson, L.L., N.C. Bucholz and R.D. Schlichting. “Preserving and Using
Context Information in Interprocess Communication.” ACM Transactions on
Computer Systems. 7: 217-246. August 1989.

Peterson, S.L. and P. Kearns. “Rollback Based on Vector Time.” 12th Symposium
on Reliable Distributed Systems. 1EEE, October 1993.

Pratt, V.R. “Modeling Concurrency with Partial Orders.” International Journal of
Parallel Programming. 15 (1): 33-71. 1986.

Reiter, M. and L. Gong. “Preventing Denia and Forgery of Causal Relationships
in Distributed Systems.” 1993 IEEE Symposium on Research in Security and
Privacy.

Singhal, M. and A.D. Kshemkalyani. An Efficient |mplementation of \Vector
Clocks. Computer Science Technical Report TR OSU-CISRC-11/90-TR34, Ohio
State University. November 1990.

Smith, SW. Secure Clocks for Partial Order Time. Thesis proposal, School of
Computer Science, Carnegie Mellon University. October 30, 1991. (See
[SmTy91].)

Smith, SW. Distributed Time: Mechanisms, Protocols and Security. Ph.D. thes's,
School of Computer Science, Carnegie Mellon University. (In preparation, to
appear in Summer 1994.)

Smith, SW. and J.D. Tygar. Sgned Vector Timestamps. A Secure Protocol for
Partial Order Time. Computer Science Technical Report CMU-CS-93-116,
Carnegie Mdllon University. October 1991; version of February 1993. (The
majority of [SmTy91] is drawn verbatim from [Sm91].)

Smith, SW. and J.D. Tygar. Sealed Vector Timestamps. Privacy and Integrity for
Partial Order Time. Submitted for publication. November 15, 1993.

Spezidletti, M. A Generalized Approach to Monitoring Distributed Computations
for Event Occurrences. Ph.D. thesis, University of Pittsburgh, 1989.

Strom, R. and S. Yemini. “Optimistic Recovery in Distributed Systems.” ACM
Transactions on Computer Systems. 3: 204-226. August 1985.

Tay, Y.C. and W.T. Loke. A Theory for Deadlocks. Computer Science Technical
Report CS-TR-344-91, Princeton University. August 1991.

132

