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Abstract. The SEM approach to PKI (by Boneh et al [4]) offers many advan-
tages, such as instant revocation and compatibility with standard RSA tools.
However, it has some disadvantages with regard to trust and scalabidlith: e
user depends on a mediator that may go down or become compromised.

In this paper, we present a design that addresses this problem. Véease
coprocessors linked with peer-to-peer networks, to create a netwintksowor-

thy mediators, to improve availability. We use threshold cryptography to luild
back-up and migration technique, to provide recovery from a mediaashing
while also avoiding having all mediators share all secrets. We then usegstro
forward secrecy with this migration, to mitigate the damage should a cras&ed
diator actually be compromised. We also discuss a prototype implementétion o
this design.

1 Introduction

In this paper, we apply tools including peer-to-peer conmguand secure coproces-
sors to distribute the SEM approach to PKI, and thus presisvadvantages while
overcoming its scalability, reliability, and trust probis. Sect. 2 reviews the SEM ap-
proach, and discusses its advantages and disadvantages3 8iscusses the tools we
apply to this problem. Sect. 4 discusses the design we build these tools. Sect. 5
discusses our prototype. Sect. 6 discusses some relatesbapps. Sect. 7 discusses
some conclusions and future work.

2 SEM

Motivation In PKI, a certificateis a signed assertion binding a public key to certain
properties. The correctness of the trust decisions a iglyamty makes depends on the
assumption that the entity knowing the matching privatepassesses those properties.
When this binding ceases to hold, this certificate needs te\mked and this revoca-
tion information needs to propagate to relying parties, fleey make incorrect trust
judgments regarding that public key.

* This work was supported in part by the Mellon Foundation, by the NSF (C20®144),
by Internet2/AT&T, and by the Office for Domestic Preparedness, Dept of Homeland
Security (2000-DT-CX-K001). The views and conclusions do notssarily represent those
of the sponsors.
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Consequently, fast and scalable certificate revocatiorbkas area of active re-
search in recent years (e.g.,[21, 23]). In ti®8curity Mediator (SEM)approach, Boneh
et al [4] proposed a system that revokes the ability of thén&tkger to use a private key,
instead of (or in addition to) revoking the certificate aitegto the corresponding pub-
lic key.

Architecture The SEM approach is based orediated RSA (MRSAJ variant of RSA
which splits the private key of a user into two parts. As imdiard RSA, each user has
a public key(n,,, e,,) and a private key,,, wheren is the product of two large primes,
ged(ey, p(ny)) = 1,andd, e, =1  (mod ¢(n,)). The public key of a uset is the
same as in standard RSA, as is the public-key operation Wihparts of a user’s secret
key aredsem, anddysery,, Whered,, is the standard secret key adigl = dsemy + duseru
(mod ¢(ny,)). duserw, 1S the part held by the user adekm,, is the part held by the SEM.
(We note thatlsem, anddyser,, are each statistically unique for each uggr

This division of the secret key requires changes to the sta@SA key setup be-
cause a SEM must not knawyse;,, and a user must not knotem,,. So, a trusted party
(e.g., a CA) performs key setup by generating a statisyicalique{p,,, qu, v, du, dsemu }
for a useru. The private keyl,, is generated in the standard manner, but is communi-
cated to neither the SEM nor the user. Insteg,,, is chosen as a random integer in
[0,n, — 1], anddyser,, is then calculated adsery, = dy, — dsemy,  (mod @(ny,)).

Because the private kel is split into two “halves,” private key operations require
the participation of both the user and the SEM: e.g., eacty paises the message to
its half-exponent, modula, and the results are then multiplied, also moduldSee
Fig. 1.) Thus the full private key never needs to be recontttu
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Combine SEM resultsSend results of partial computation

with user results

Fig. 1. The general SEM algorithm.

AdvantagesThe SEM approach provides several advantages. Since thssstially
are standard RSA operations, a SEM PKI is compatible withtrdegmcy public-key
cryptography tools. Since a full private-key operation oaour only if the SEM be-
lieves the user’s key pair is valid, then the system can reweokey pair by having the
SEM refuse to carry out its half of the operation. This apphoean reduce or even
eliminate (in the case of revocation due to administratisioa, such as a user ceas-
ing employment) the need for certificate revocation listsaesia private-key operation
(such as signature or decryption) cannot occur after reéiwota

1 Also referred to as “semi-trusted mediator.”
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Furthermore, the SEM itself gains no useful informationénvicing users. When
decrypting, the SEM receives the ciphertext but is only ablpartially decrypt it, so
no useful information could be gained by a malicious SEM.g$tgnature generation, a
user sends the SEM a hash of the message which the SEM usestatgd¢he signature.
This also contains no information about the cleartext ofrttessage itself, so a user’s
data is kept confidential.

Additionally, the compromise of a single SEM does not compise the secret keys
of any users. Instead, the attacker is able to revoke theigecapabilities for users
connected to the SEM. Although Boneh et al state that attackelld unrevoke revoked
certificates, this can be prevented by having honest SEMugrently deletelsenm,,
upon revocation.

DisadvantagesHowever, the initial SEM approach has scalability disadages. In
a large-scale distributed system, we must allow for probleunch as mobile users,
network partitioning, crashing of machines, and occagdioompromise of servers. To
accommodate a large population, we could add multiple SEMdsvever, if a user’s
dsemy, lives on exactly one SEM, then we have many problems: tempalenial of
service if the network is partitioned; permanent deniale¥ike if the SEM suffers a
serious failure; inability to revoke the key pair if an acsay compromises a SEM and
learns its secrets.

In their original paper, Boneh et al did propose one way ttritiste the SEM archi-
tecture by using a stateless model in which a user can cotmaay SEM. However,
this approach required that the entire SEM network have@esRSA key pair, so that
any node can access the encryptkgh,,, bundled with each request. This network-
wide key pair could either be stored on each island througlicegion or shared se-
curely among islands using threshold cryptography. In tfs¢ ase, compromise of a
single island is potentially easier (due to replication)l mauses damage to the entire
network. In the latter case, each user request requirashdigtd computation among
islands which hurts performance. In either case, the usarrisk if she connects to a
compromised SEM.

3 Tools

To address the problem of distributing SEM, we use seveodd to

We need to be able to trust a SEM to use and delete each dggf.swhen appro-
priate, and not transmit it further. However, the more werittiste the SEMs through-
out a network, the less foundation we have for such trust.dfivess this problem, we
usesecure coprocessarsuch as the IBM 4758 [26]. This gives us a general-purpose
computing environment and cryptographic protections,pteh with high-assurance
protection against physical attacks, andoaitbound authenticatioscheme which lets
software applications running on the coprocessor auttetetithemselves to remote
parties [25]. This platform thus gives us a safe and confidestvironment in remote
environments. If a user trusts our software is not flawedj the user can also trust
that software executed cannot be altered by adversariethander may also remotely
authenticate instances of this software. (In Sect. 7, wesiden using newer trusted
computing platforms as well.)
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We'd like to make it easy for users to find SEMs (and for SEMsrtd &ach other),
and we'd like this functionality to persist despite failsrand (potentially) malicious
attacks.Peer-to-peer networking (P2Rgmbodied by technology such as Gnutella) is
an attractive choice here. With P2P, communication doesatypbn a central entity to
forward requests or messages. Rather, each entity eitbetdrsatisfy a request itself,
or forwards it to its neighbors, in the spirit of the oldertdizuted concept ofliffusing
computatior{2].

This decentralization is a key benefit of the peer-to-pedwark, as it removes
any central entity necessary for the system to functionh@Vit a central controlling
server, the network’s survivability increases by causiagial of service attacks to be
much more difficult (as the RIAA has found to its dismay). Adutally, the damaging
effects of network partitions are potentially alleviatgddtandard P2P communication
algorithms, as a new path to a destination may be found.

We will also need to distribute critical secrets across ipldtSEMSs, for resilience
against attack. Here, we can use the standard technigbeeshold cryptographf24].
Given a secret and parameters < k, we construct a degreepolynomial that goes
through the point0, ), and choosé points on this polynomial asharesof y. Any ¢
shares suffices to reconstruct the polynomial and hgnbat fewer thart shares give
no information.

We need to accommodate the fact that machines may be congenand the
secrets they store may become exposed to the adversary.tifatsithe damage of
such potential exposure, we can use the techniqustrofg forward security5]. We
divide time into a sequence of clock periods, and use a cgyaphic system such that
even if the private key for a given period is exposed, use @ftfivate key in previous
or future sessions is still secure. Burmester et al give teorgples of strong forward
secure schemes, one for any public key cryptosystem antexrfot use in an El Gamal
key escrow system.

4 Design

Architecture In our basic architecture, we envision SEMs as trustwoigtandsdis-
tributed throughout the network. We use a secure coprocés$muse each SEM and
thus give it a foundation for this trustworthiness. As nagedier, this technology also
lets each island have a key pair and certificate chain thabksties the entity who
knows the private key is an instantiation of our island safevon an untampered de-
vice. Thus, users can authenticate islands, and islandsuthanticate each other.

Each island will house resources that enable it carry owticees. When a user
requests such a service, we use P2P techniques to carrythestéo the proper island,
and carry the response back to the user. (As we discuss haltividual islands will
also house resources other islands need; we can use P2Rgiveed.)

Despite physical protections, an individual island maill beBcome compromised
and reveal its data to the adversary. An individual islangt alao become unavailable,
due to crash or partition. To handle these scenarios, we auiligrationscheme based
on threshold cryptography and strong forward security.
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When we initially create a secretand transmit it to an island,, we also split
into k£ shares using threshold cryptography. We securely trareswit share af to a
different island. (Additionally, the shares may be proati updated using the tech-
niques described in [11,12, 14, 15] so that an attacker maglaaly acquire enough
shares to reconstruet) After those steps are complete, the secret is stored motiheo
primary islandZ and onk other islands, so an attacker must either comprorise
compromisé of thek islands in order to get.

When islandL is unavailable to fulfill a request that requiresthen the requester
will have to be redirected to another island, and the shareholders will need to par-
ticipate in reconstructing there. However, since the original islafdmay have been
compromisedg must be updated using strong forward security so that theerkion
on L is rendered useless.

The general migration scheme is executed as follows:

=

The user tries to connect to the assigned islanlt fails.

2. The user then connects to another islafidhstead M may be chosen either pseu-
dorandomly, using a load balancing algorithm or anotheeswh(e.g., based on
network proximity to the user).

3. The islands that hold shares ofare contacted and, and thisis updated using
strong forward security. As discussed below, this updatg ananay not involve
reconstruction of, depending on the method chosen. Generally, the strongfdrw
security scheme will vary depending on the how the secigigenerated.

4. Strong forward security results i storing the updated secret.

5. Migration is complete and/ can then fulfill the user’s request.

SEM OperationsTo use this architecture for SEM, each island acts as a SEMamed
tor, holdingdsem,, for a number of clients. We distribute load across the isany at
key generation, assigning users to different SEMs. (Wedcaldo distribute load via
migration.) As with the original SEM architecture, a useksn,, is stored in full only
on one island.

In the original SEM scheme [4], a CA generates key pairs fersiand splits]
into two halves. In our variant, the CA must additionally h#&enm,, to & islands in the
network using threshold cryptography. (See Fig. 2 Alsoestavith those shares is the
user’s identity and the revocation status of the user’s legy(mitialized to “false,” not
revoked). For key generation, the CA must be able to provielétstity to the islands;
otherwise, the islands will ignore its request. If we desbia@ escrow service to allow
authorized decryption of data after revocation (or if we @b decide to use the CA
during migration, as discussed below), we also distribhtees of the full secret key
dy,-

If the island that holdglsem,, and revocation information for a usergoes down,
then the other islands must be able to determine whethersiesikey pair has been
revoked. We accomplish this by, during revocation, havirgshareholders as well as
original island update the revocation status for that kdy jra our initial vision, we
delete the shares dfenm,, that are stored oh other islands.

Assume that a usergsem,, is stored on island.. The network is notified that a
user’s key pair is to be revoked, and a P2P request is gedeaaleto revoke the user’s
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Fig. 2. Key set-up in our proposed system

key pair. If L is operational, ther. notifies all of the other islands that hold shares
of dsem,, t0 delete them and store the fact thiaty,,, has been revoked; also deletes
dsem,, and adds the user’s serial number to its CRL. Eldeif not operational, then the

k islands holding the shares @fen.,, are notified and told to delete their shares. (Note
that in this case, migration—see below—has not yet occurrethfe user or else an
island would have been contacted.)

SEM Migration If a useru issues a request but the islahdholding dsem,, is not avail-
able, then we select another islailand request migration. As with other selections,
M may be chosen in a number of ways (although a random or pszEudimn way, so
that an attacker cannot predict it, would help in some séesarwe plan to add this in
future work). See Fig. 3.

After that initial step is performed, we have two differeppaoaches, depending
on whether a CA exists that can know the full private kky Any communication
between the islands is authenticated using the outbourstitation of the secure
coprocessors and it is assumed that the online CA also has swde of outbound
authentication to prove the source of its messages.

For added resilience, we can have shareholder islands rimiijpate in migration if
they can still ping the original islang.

é Distributed SEM Network )
Island L down k random
P 4 islands
_-17 with
-7 shares

User Island M 4/)|:| of dsemu

- J

Y

Fig. 3. Migration in our proposed system
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If we have an online CA, the new island contacts it and tells it that migration
is to occur. (If we constrain the choice of the nedt, then the CA must verify that
M is a satisfactory candidately sends a request for any islands in the network that
have shares afsem,, t0 send those securely to the CA using standard RSA encryptio
The CA can then reconstrudtem,,. If the CA stores the full private key fat,, then
it can use that. Otherwise, the shareholdersifomust also send those, so the CA can
reconstruct it as well. The CA generates a random numliethe intervall0, n,, — 1]
such thatr # dsemw, and calculatey = d, — z (mod ¢(n,)). The CA securely
distributes shares af to thek shareholder islands using threshold cryptography; the
shareholder islands delete the old shared{ay.,. The CA securely sendsto the user
by encrypting it with the user’s public key and then panialecrypting with the old
dsemy- The user deletes the olfise;, and setslyse;, = y. The CA securely sends the
x to M, who deletes the oldsen,, and setslsem, = .

Once the user receives it reconnects to the network and performs the operation
again, using its new valué,se,,. At this point, M can complete the request and the
migration is complete.

If no CA exists, then we need to generate a 1k, duser,, Pair without recon-
structingd,, or ¢(n,,), since we do not have a safe place to store them.

For now, we borrow the trick of [16] and havi& generate & in a rangg—r, r], and
changingdsem., t0 dsem« — 0, Wherer is big enough to keep the key halves changing
unpredictably, but small enough to be smaller thiagqy,,, anddyse;., for a practically
indefinite number of rounds\/ sends to the user (encrypted witl's public key and
then partially decrypted with the oléiem,); the user replacedse;, With dyser, + 9.
(We could also use the [16] trick of havirdg andu together pick, to reduce risk from
a compromised/.)

This way, neitherM nor v need to knowg(n,,), but the newdyser,, and dsemu
remain positive and still sum i@,. M splitsr into k£ shares and sends each tdsgn,,
shareholder; each shareholder uses its piece to to upsatesite.

It is tempting to havelM pick a newdsem,, directly and distribute shares to the
shareholders of,,, who then calculate the nedse,, in @ nicely distributed fashion.
However, as of this writing, we can cannot see how to redijce dsem, t0 dy, — dsemu
(mod ¢(n,,)) without reconstructing(n,,).

Once the user receives the néwe..,, it can compute its half of the normal computa-
tion using the newi,se(,,. At this point, A/ can also complete its half of the computation
because it has generated a néay,, and the migration is complete.

As an area of future work, we are also considering incorjpugattrong forward
secrecy into regeneration of the user’s private key duregeneration oflser,. We
already have trusted hardware, one of the components of S&#Beschemes in the
literature (e.g., [32, 9]). Furthermore, this would pratagainst compromise af by
the usen, in order to obtainlsen, and reconstructing,.

When an island goes down (or is compromised and subsequéntiydewn and
restarted from a clean state), it has a few options upon teboo

The island could delete all of the key halves it has stored,thareby force users
to migrate back to it. New users would also be assigned tbatsb deletes all of the
shares of that it stored and requests new shares of thoseyenbeated.
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Alternatively, the island could poll the other islands taeteine whichdsem,
halves have migrated away from it. It then deletes the infdiom for the users that
migrated away and continues serving the other users. Tdredislan continue using the
shares it has stored, but it must determine whether any aof tre out of date. Since
the dsem,, Shares must be updated during migration,dhg,,, shares could be invalid
and the network must be polled to determine whether thisdstise. If so, then the
outdated shares must be updated.

Analysis First, we consider compromise of specific entities.

If the CA has been compromised, then we have a serious prokiege the CA
generates the users’ initial key pairs, and in the CA-migratase, learns the new key
pairs as well.

Alternatively, supposé has been compromised. The islabtioldsdsem,, for some
number of users. Additionally, stores shares for some other users in the distributed
SEM network. We must assume that the attacker has accedsofdtlase values, so
now we analyze what privileges are granted by illicit acdeshem.

— If the attacker acquiregsem,, for another user, then migration effectively disables
this dsem., because it causes a neler,, to be issued to the user. (Also, note that
the newd,se;,, is Not sent back td..) Since the newlse;,, does not mesh with the
old dsem,, due to the mMRSA protocols, the algen., is rendered useless.

— If the attacker acquiredsem, and colludes with that user, then the attacker will
be able to computd,, from dyser,, and dsem,, SO Migration fails to achieve full
security in this case (unless, as discussed earlier, wenfrieimenting SFS here as
well).

— If the attacker colludes with a user whose key-half is nottat tsland, then the
user and attacker might trick the SEM network to migratingt thser’s data td,
and thus reconstruekenm,,. The user will then be able to reconstrugf, the full
private key. This problem can be mitigated by using pingstated in section 4.3)
to ensure that the user’s main island is unavailable, amdusisig a non-predictable
way to generate the next island for migration (to reduce ttaace thafl/ is a valid
candidate). However, such problems may be the inevitaldeatdigher availabil-
ity in the distributed SEM network.

— If the attacker acquires shares ofqn,,, the attacker effectively acquires no valu-
able information, unless the attacker also gains accessdogh other shares of
either in order to reconstruct them. However, this can beengadiremely difficult
using proactive share updating, as described in [11, 12514,

Clearly, there is a period between the time of compromise tithen that compro-
mise is discovered. However, the use of secure coprocesmasss any physical attacks
to be detected immediately (with high assurance) and stbpp¢he zeroization of co-
processor data.

If M is compromised, then the attacker gets access to thedggw, so the mi-
gration is unsuccessful. However, as long as another nogr&d an uncompromised
island can be performed, tllgen, acquired by the attacker can be rendered useless as
described above. Additionally, in this case the attackatdceend the user fake data for
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the newdyse,,, But any resulting inconsistencies with decryption or aigre genera-
tion would just flagM as compromised. As stated above, with secure coprocessors t
window of time before this compromise is discovered shogldimall.

Network Trust ModelThe primary parties that require use of the network are thads
that comprise the network itself. Each island must haveusie access to certain ser-
vices in order to provide fast revocation of security calids. However, the CA (and
users and islands) must also be able to gain access to therke@vvices in a restricted
way. Clearly, the requests of each party will differ and éheust be a clear delineation
of capabilities between them. For example, during migmaiislands will have to search
the network to find other islands that hold the shares of duggs,,. Although this
operation can be executed by the CA as well (when CAs cannperfugration), users
should not be able to (easily) determine the location of quae shares.

Islandsjoin the network normally and become full members of it. ieach island
in the network has a secure coprocessor with outbound dit¢hton/attestation, each
member in the peer-to-peer network can prove that it is ddduisland with certain
privileges. This creates a trust network in which each @lisrknown to be executing
unmolested as long as our software is not flawed (and the cegsor’s physical se-
curity protection works). Once an island has authenticasadf to the system, it can
search the network, advertise services, and perform argy ottmmand allowed by the
peer-to-peer software.

Certificate Authoritiegan interact with the network in one of two ways: (1) they can
connect to an island server that provides an interface toetsteof the network; or (2)
they can connect directly to the P2P network, but with lichiéapabilities (registration
and, if implemented using a CA, then migration). For examiiie CA must be able
to somehow query the network during key generation to deterto which island to
assign the user.

Usersdo not connect directly to the P2P network, but instead comicate with
an island that provides indirect access to the servicesat@ion the network. For
example, during normal operation, users connect direatijeir assigned island, but if
that fails, then the user must notify the P2P network thatatign is necessary. Users
do so by connecting to another island (available in a pulii} &nd requesting the
migration service. The user is then assigned to an islandatiter communication
occurs directly between that island and the user.

5 Prototype

We are currently building a prototype of our Distributed SEpproach; at the time of
this writing, our current code (2000 lines of Java) deal$hit peer-to-peer aspects of
key generation and execution of migration (See Fig. 4.)

Thelsland Server Codperforms migration and the island’s part of decryption and
key and signature generation usidgn,. This part also introduces the networking
support for the islands. It is a combination of both the orddjiSEM server code, along
with our server-related migration code.

The code on each island is divided into two parts. P2€® network codeonsists
of the peer-to-peer access layer and the protocols negdssasland communication.
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Fig. 4. Architecture of our system

We use the Project JXTA open source framework [29] to accmmphis. Each island
runs a server that accepts connections from only the SEMservthe same machine.
The server application is built on top of JXTA and uses thapegeer protocols, such
as searching and pinging, available. It executes the loig&d aspects of key generation
(distribution of shares afsem,,) and migration.

Specifically, during the distributed SEM operations we Us€Ak discovery ser-
vice to find islands with the information needed (e.g. shafegsen,). We plan to
leverage the security features of the IXTA framework to sethe P2P activities of the
distributed SEM network. These include secure P2P grougestdct access to the net-
work and secure pipes to allow safe distribution of sharestisland during migration.
Furthermore, we envision the use of outbound authenticataia of secure coproces-
sors [25] in IXTA XML messages to validate the source of mgssagenerated in the
migration and revocation algorithms. The capabilitieshaf secure coprocessors will
be exposed in the Java code using the Java Native Interfidteg27].

TheSEM server codaccepts requests from users and handles most of those tithou
using the P2P layer. When a migration or key registrationestjs received, however,
the server code forwards the request to the internal sameing JXTA and the internal
server completes the request.

This is a modular approach that allows us to change the pegedr implemen-
tation in the future. In the current prototype, we have imated our network code
in a simplified version. (Integration with the SEM server epdtilization of security
features in the P2P layer, and porting on to the 4758 remdie tione.)

The Certificate Authority Codeparticipates in key generation, as in the original
SEM architecture. With our additions it is necessary for@#eto connect to an island
and initiate a P2P registration request. We have implerdaht code to perform reg-
istration in the network. (However, it is not yet integrateiih the original SEM key
generation code.)

TheClient User Codeeombines the functionality of the original SEM architeetur
which consisted of the user’s half of signature generatiuth decryption, along with
with the additional steps required to request migration pireatess the migration re-
sponse. (This remains a task for the future.)
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Our code will be available for public download. Since the@oral SEM code is cov-
ered under the GPL, our changes—for migration and supporsitiited functionality—
are as well.

6 Related Work

Trusted Hardware and P2RMarchesini and Smith [18] built bardened Gnutell&®2P
communication system within secure coprocessors; Bonah [@8] also considered
the potential of combining trusted computing with P2P.

Strong Forward Secrecf¥zeng and Tzeng [32] considered strong forward securitly wit
threshold cryptography for El Gamal signatures.

Standard Revocation Techniques Certificate Revocatiois aied variations on this
method (e.g.A-CRLs) are one of the most common methods of certificate eti@mt
To revoke a certificate, the CA adds the serial number of thekesl certificate to the
CRL and then publishes that CRL to a directory. Since thisnlg done periodically,
CRLs are not a guarantee that a certificate is still validoAténce CRLs may be very
large, users will generally not want to have to download thvemy often. In order to
check whether a certificate is revoked, a user must potsndi@vnload a long CRL. To
mitigate this problemA-CRLs only distribute a list of the certificates revoked sitite
last CRL was distributed. Additionally, Cooper notes théiew a new CRL is issued
there will be a peak time in which many requests are made tomkbas the CRL from
the directory (because everyone wants to make sure thiftazdes aren’t revoked and
a CRL expires at the same time for everyone). He suggestadipgeout the requests
for CRLs over time by “over-issuing” CRLs such that a new CRIpublished before
the old one expires [7].

Another similar technique /indowed Key Revocatipwhich uses CRLs but with
a twist that certificates are assumed to be valid for a ceftaindow” of time and
that CRLs have a reduced size due to the revocation windojvA2fdlitionally, in this
scheme verifiers can control the allowed “window” time anaheck if a certificate is
revoked, the verifier checks the windowed CRL issued or gaabaw certificate from
the CA.

The Online Certificate Status Protocol (OCSpPYovides online verification that a
certificate is still valid. This requires a CA to generate gitdi signature for each re-
guest because the response from the CA must be signed [HTAlstores an internal
log of the status of all certificates or possibly just a CRLt tha@oesn’t publish. So,
addition of revoked certificates is quick and the certificdégus is updated instantly. A
user must be online and must connect to the CA and check tius stiza certificate.

Certificate status verification is a computationally expengperation, as the re-
sponse from the CA must be digitally signed. If a single \atiioh server performs
OCSP, then all requests must be routed to it, potentiallyloading the server. Secu-
rity may be weakened by a distributed environment becausmayitkeys of any OCSP
servers are compromised, then the entire system is comgedmi

With Certificate Revocation Treesistead of keeping entire list of revoked serial
numbers, we keep a list of ranges of serial numbers that avé gobad. This saves
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space (better than standard CRLs), but adding a serial ®atvéina good amount of
computation as it can require the entire tree to be recordp@®#l, revocation status
can be quickly determined by a fast search through the tree.

Newer Revocation Techniqués[4], Boneh et al give a discussion of the benefits of the
original SEM architecture with regards to other currentisohs. Since the publication
of that paper, a few other techniques for certificate revondtave been developed. Mi-
cali's NOVOMODOapproach [23] uses one-way hashing and hash chains to skow th
validity or revocation status of certificates. CentraliZ¢@VOMODO—in which the
central secure server responds to all validity requests-reisepto performance issues
and denial of service attacks as it is the central sourcedtificate validity proofs.
Micali also presented a distributed version: having ondreétrusted server send out
an array of the current validity proofs for all users to eagtver in the network. Micali
does not discuss solutions to many potential problems thdti@ccur during a distri-
bution, such as bandwidth problems, network partition drusted server corruption.
Micali states that it should be very difficult to attack thentral server, as it does not
accept incoming requests, but an attacker could insteackatie network surrounding
the server, preventing it from distributing the array. lhetwords, distributed NOVO-
MODO still has a central “head” that can be severed (albedt imore difficult way) in
order to shutdown the system.

Ding et al introduceServer-Aided Signatures (SAfB)] a technique based on medi-
ated cryptography similar to the SEM architecture with theus on minimizing client
computation load. While Distributed SEM works with both siture generation and
decryption, SAS only deals with signature generation. li@es a performance boost
for the user by only requiring the user to compute a hash ahaing setup, in a similar
fashion to NOVOMODO, but differing in that the user keeps thain secret. In SAS,
the server must be stateful and, for each user, must savecthéficate,i, and all of
the signatures already generated for that user. This anafstate makes migration
infeasible as every signature would have to be distributedtber islands using thresh-
old cryptography. Additionally, in SAS the corruption oferger allows the attacker to
produce user sighatures because all of the prior signateesaved on the server.

SEM Tsudik [31] and Boneh et al [3] have also followed up on theigioal SEM
work. [16] explores adding proactive updates to the keydmlv

7 Conclusions and Future Work

In this paper we have introduced a method to distribute SEMdigg a network that
combines the benefits of secure coprocessors and peeeitogtevorking, and provides
providing efficient and uninterrupted access to private ddbred on a trusted third
party, even in the event of occasional server compromisis. dpjproach avoids repli-
cation of data across the network while also avoiding thermomuse of distributed
computation in order to access the secrets stored.

Once the implementation is completed, an area of greateisttaiill be performance
testing and tuning. The performance of both migrationfitset the entire application
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running on the full P2P network (using secure coprocessdtidhe reveal much infor-
mation about our approach to distributed SEM—and the fdagibf this P2P/trusted
hardware network.

Also, the IBM 4758 is a relatively expensive special-pugpdgvice. Recent ad-
vances intrusted computing-both with COTS hardware (e.g., [10, 19, 30]) as well
with experimental CPUs (e.qg., [6,17, 22, 28])—explore theeptial of achieving simi-
lar functionality (albeit a lower level of physical secyjitn standard desktop platforms.
We plan to explore the potential (and relative performaontéjstributed SEM on these
platforms as well. We also plan to use our framework of P2Rwusted hardware to ex-
plore other applications as well. Finally, general Byzamtattacks must be considered
in the Distributed SEM network and extra steps (e.g., [1]sthe taken to ensure the
correct completion of all operations.
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