
Trusted Paths for Browser s

Zishuang(Eileen)Ye SeanSmith�
eileen,sws� @cs.dartmouth.edu

Departmentof ComputerScience
DartmouthCollege

www.cs.dartmouth.edu/˜pkilab/demos/spoofing/

June12,2002

Abstract

Computersecurityprotocolsusuallyterminatein a com-
puter; however, the human-basedservicesthey support
usuallyterminatein ahuman.Thegapbetweenthehuman
andthecomputercreatespotentialfor securityproblems.
This paperexaminesthis gap, asit is manifestedin “se-
cure” Webservices.Feltenet al demonstratedthepoten-
tial, in 1996,for maliciousserversto impersonatehonest
servers.Our recentfollow-up work explicitly shows how
maliciousserverscanstill do this—andcanalsoforgethe
existenceof an SSL sessionand the contentsof the al-
legedserver certificate. This paperreportsthe resultsof
our ongoingexperimentalwork to systematicallydefend
againstWebspoofing,by creatinga trustedpath from the
browserto thehumanuser.

1 Intr oduction

In therealworld, computersecurityprotocolsusuallydo
not exist for their own sake,but ratherin supportof some
broaderhumanprocess,suchasshopping,filing govern-
ment forms, or accessingmedical services. However,
the computersciencecommunity, perhapsbecauseof its
training,tendsto focusonthecomputersinvolvedin these
social systems. If, by exchangingbits and performing
cryptographicoperations,theclientmachinecancorrectly
authenticatea trustedserver machineandcorrectlyreject
anuntrustedone,thenwe tendto concludethesystemis
secure.

This tendency overlooksthefact that, in suchsystems,
the client machinemay receive the information,but the
humanuser typically makes the trust decision. Simply
ensuringthat the machinedraws the correctconclusion
doesnot suffice, if the adversarycancraft materialthat
neverthelessfools thehuman.

In this paper, we examinetheseissuesasthey relateto
theWeb. Thesecurityof theWebrelieson Secure Socket

Layer (SSL)—a protocol that usespublic-key cryptogra-
phy to achieve confidentialityandintegrity of messages,
andoptionallyauthenticationof parties.In a typical “se-
cure” Web session,the client machineauthenticatesthe
serverandestablishesanencrypted,MAC’dchannelusing
SSL. However, it is not the human user but the Web
browserthat carriesout this protocol. After establishing
theSSLchannel,theWebbrowserdisplayscorresponding
signalson its userinterface,suchaslocking theSSLpad-
lock, changingtheprotocolheaderto https, andpopping
up warningwindows to indicatethat an SSL sessionhas
beensetup. The humanusesthesesignalsto make his
or hertrust judgmentabouttheserver. Theadversarycan
thus subvert the secureWeb sessionsimply by creating
theillusion thatthebrowserhasdisplayedthesesignals.

The term Web spoofingdenotesthis kind of “smoke
andmirrors” attackon theWebuserinterface.To defend
againstWebspoofing,weneedto createa trustedpathbe-
tweentheWebbrowserandits humanuser. Throughthis
trustedpath,thebrowsercancommunicaterelevant trust
signalsthatthehumancaneasilydistinguishfrom thead-
versary’s attemptsat spoofandillusion.

1.1 Backgr ound: Effective PKI

Theresearchthat this paperreportshadrootsin our con-
siderationof public key infrastructure (PKI).

In theory, public-key cryptography enableseffective
trust judgmentson electronic communicationbetween
partieswho have never met. The bulk of PKI work fo-
cuseson distribution of certificates. We startedinstead
with abroaderdefinitionof “infrastructure”as“thatwhich
is necessaryto achieve this vision in practice”, and fo-
cusedon server-sideSSLPKI asperhapsthemostacces-
sible(ande-commercecritical) instantiationof PKI in our
society.

Looselyspeaking,thePKI in SSLestablishesa trusted
channelbetweenthebrowserandserver. Our initial setof
projects[12,21, 22, 23] examinedtheserverend,andhow

Appeared at the 11th USENIX Security Symposium, Aug 2002. 1

to extendthetrustfrom thechannelitself into datastorage
andcomputationat theserver. Our immediatemotivation
wasthat,for our server-hardeningtechniquesto beeffec-
tive, the humanneedsto determineif the server is using
them;however, this issuehasmuchbroaderimplications
(asSection7.2will discuss).

1.2 Prior Work

In theirseminalwork,Feltenetal [10] introducedtheterm
“Web spoofing”andshowed how a malicioussite could
forgemany of thebrowseruserinterfacesignalsthathu-
mansuseto decidethe server identity. Subsequentre-
searchers[5] alsoexploredthis area.(In Section2.2,we
discussourwork in this space.)

In relatedwork on security issuesof user interfaces,
Tygar andWhitten examinedboth the spoofingpotential
of hostileJavaapplets[25] aswell astheroleof userinter-
facesin thesecurityof emailcryptography systems[27].
Work in makingcryptographicprotocolsmoretenableto
thehuman—includingvisualhashes[18] andpersonalen-
tropy [9]—alsofits into this space.

The world of multi-level security[6] hasalsoconsid-
eredissuesof human-readablelabelson information.The
compartmentedmodeworkstation(CMW) [19] is an OS
that attemptsto realize this security goal (and others)
within a modernwindowing system. However, a Web
browserrunningontopof CMW is notasolutionfor Web
spoofing. CMW labelsfiles accordingto their security
levels. Sincethe browserwould run within onesecurity
level, all of its windows would have thesamelabel. The
usersstill could not distinguishthe materialfrom server
andthematerialfrom thebrowser.

AlthoughCMW itself is not a solutionfor Webspoof-
ing, theapproachCMW usedfor labelingis a goodstart-
ing point for further exploration—whichwe considerin
Section4.1.

1.3 This Paper

In this paper, we discussour experiencein designing,
building, and evaluatingtrustedpathsbetweenthe Web
browserandthehumanusers.

Section2 discussesthe problem. Section3 develops
criteria for systematic,effective solutions.Section4 dis-
cussessomesolution strategies we consideredand the
onewe settledon, synchronizedrandomdynamic(SRD)
boundaries.Section5 discusseshow weimplementedthis
solution and the statusof our prototype. Section6 dis-
cusseshow wevalidatedourapproacheswith userstudies.
Section7 offerssomeconclusions,anddiscussesavenues
for futurework.

2 Web Spoofing

2.1 Overview

To make an effective trust judgmentabouta server, per-
hapsthefirst thing a usermight wantto know is the iden-
tity of theserver. Canthehumanaccuratelydeterminethe
identityof theserverwith which theirbrowseris interact-
ing?

On a basiclevel, a maliciousserver canoffer realistic
contentfrom a URL that disguisesthe server’s identity.
Suchimpersonationattacksoccurin thewild:

� by offeringspoofedmaterialvia aURL in which the
spoofer’s hostnameis replacedwith an IP address
(theHoke case[15, 20] is agoodexample)

� by typejacking—e.g.,registeringa hostnamedecep-
tively similar to a realhostname,offering malicious
contentthere,andtricking usersinto connecting(the
“PayPai” case[24] is agoodexample)

Furthermore,as is often pointed out [2], RFC 1738
permits the hostnameportion of a URL to begin with
a usernameand password. Hoke [20] could have
made his spoof of a Bloomberg press releaseeven
more effective by prependinghis IP-hostnamewith a
“bloomberg.com”username.MostWebbrowsers(includ-
ing the IE andNetscapefamilies,but not Opera)would
successfullyparseURL http://www.bloomberg.
com@1234567/ and fetch a page from the server
whoseIP address,expressedasa decimalnumeral,was
1234567 .

However, we expectedthatmany Webusersmight use
more sophisticatedidentification techniquesthat would
exposetheseattacks. Usersmight examinethe location
bar for the preciseURL they areexpecting;or examine
theSSLiconandwarningwindows to determineif anau-
thenticatedSSLsessionis takingplace;or evenmake full
useof theserverPKI by examiningtheserver’scertificate
andvalidation information. Cana maliciousserver fool
eventheseusers?

2.2 Our Initial Stud y

Feltenet al [10] showed that, in 1996, a malicioussite
could forge many of the browser’s UI signalsthat hu-
mansuseto decideserver identity, except the SSL lock
icon for anSSLsession.Instead,Feltenet al useda real
SSL sessionfrom the attacker server to trick the user—
which might exposethe adversaryto issuesin obtaining
anappropriatecertificate,andmight exposethehoax,de-
pendingonhow thebrowserhandlescertificatevalidation.
Sincesubsequentresearchers[5] reporteddifficulty repro-
ducingthis work andsinceWeb techniquesandbrowser
user interface implementationhave evolved a lot since

Appeared at the 11th USENIX Security Symposium, Aug 2002. 2

1996,we beganour work by examining[29] whetherand
to whatdegreeWebspoofingwasstill possible,with cur-
renttechnology.

Ourexperimentwasmoresuccessfulthanweexpected.
To summarizeour experiment,for Netscape4 on Linux
andInternetExplorer5.5onWindows98,usingunsigned
JavaScriptandDHTML:

� We canproducean entry link that, by mouse-over,
appearsto go to anarbitrarysite � .

� If theuserclicks on this link, andeitherhis browser
hasJavaScriptdisabledor he is usinga browser/OS
combinationthat we do not support,thenhe really
will go to site � .

� Otherwise, the user’s browser opensa new win-
dow thatappearsto bea functionalbrowserwindow
which containsthe contentfrom site � . Buttons,
bars,location information,andmostbrowser func-
tionality canbemadeto appearcorrectlyin thiswin-
dow. However, the useris not visiting site � at all;
heis visiting ours.Thewholewindow is aWebpage
deliveredby oursite.

� Furthermore,if the user clicks on a “secure” link
from this window, we can make convincing SSL
warningwindow appearand thendisplaysthe SSL
lock icon and the expectedhttps URL. Should
the userclick on the buttons for security informa-
tion, he or shewill seethe expectedSSL certificate
information—exceptno SSL connectionexists, and
all the sensitive information that the userentersis
beingsentin plain text to us.

A demonstrationis availableatourWebsite.

2.3 Overview of Techniques

Whenwedescribeourspoofingwork, listenerssometimes
counterwith theobjectionthat it is impossiblefor there-
moteserver to causethebrowserto displaya certaintype
of signal. Thecrux of our spoofingwork restsin thefact
that this objectionis not a contradiction.For this project,
we assumedthat the browserhasa setof propersignals
it displaysasa functionof server properties.Ratherthan
trying to causethebrowserto breaktheserules,wesimply
usetherich graphicalspacetheWebparadigmprovidesto
generateharmlessgraphicalcontentthat,to theuser, looks
just like thesesignals.

In our initial attemptsat spoofing,we tried to addour
own graphicalmaterialover official browsersignalssuch
asthe locationbar andthe SSL lock icon. This wasnot
successful. We then tried openinga new window with
someof theseelementsturnedoff, andthatdid not work
either. Finally, we tried openinga new window with all

of theelementsdisabled—andthatworked.Wethenwent
througha carefulprocessof filling this window with ma-
terial that looked just like the official browserelements,
andcorrelatingthis displaywith theexpecteddisplayfor
thesessionbeingspoofed.

This work was characterizedby the patternof trying
to achieve someparticulareffect, finding that the obvi-
ous techniquesdid not work, but then finding that the
paradigmprovided somealternatetechniquesthat were
just aseffective. For oneexample,whenever it seemed
difficult to pop up a window with a certainproperty, we
could achieve the sameeffect by displayingan image of
suchawindow, andusingpre-cachingto gettheseimages
to theuser’smachinebeforethey’reneeded.

Thispatternmadeuscautiousabouttheeffectivenessof
simplisticdefensesthateliminatesomechannelof graph-
ical display.

For eachclient platform we targeted,we carefully ex-
aminedhow to provide server content that, when ren-
dered,would appearto betheexpectedwindow element.
Sincetheuser’sbrowserkindly tells theserver its OSand
browserfamily to which it belongs,wecancustomizethe
responseappropriately.

Our prior technicalreport [29] containsfull technical
details.

2.4 Other Factor s

However, our goal wasenablingusersto make effective
trust judgmentsaboutWeb contentandinteraction. The
above spoofingtechniquesfocusedon server identity. As
someresearchers[7] observe, identity is just onecompo-
nent for sucha judgment—usuallynot a sufficient com-
ponent,andperhapsnotevenanecessarycomponent.

Arguably, issuesincludingdelegation,attributes,more
complex pathvalidation,andpropertiesof thepagesource
shouldall play a role in usertrust judgment;arguably, a
browserthatenableseffectivetrustjudgmentsshouldhan-
dle theseissuesanddisplaytheappropriatematerial.The
existenceof password-protectedpersonalcertificateand
key pair storesin currentbrowsersis oneexampleof this
extendedtrust interface;Bugnosis[1] is an entertaining
exampleof somepotentialfuturedirections.

The issueof how thehumancancorrectlyidentify the
trust-relevant userinterfaceelementsof the browserwill
only becomemore critical as this set of elementsin-
creases. Spoofingcan attack not just perceived server
identity, but anyelementof thecurrentandfuturebrowser
interfaces.

In Section7.2,we revisit someof theseissues.

Appeared at the 11th USENIX Security Symposium, Aug 2002. 3

3 Towards a Solution

Previous work, including our own, suggestedsomesim-
plistic solutions.To addressthis fundamentaltrustprob-
lem in this broadly-deployedandservice-criticalPKI, we
needto designa moreeffective solution—andto seethat
this solutionis implementedin usabletechnology.

3.1 Basic Framework

Wewill startwith aslightly simplifiedmodel.
The browser displaysgraphicalelementsto the user.

Whenauserrequestsapage� from aserver � , theuser’s
browserdisplaysboth the contentof � aswell asstatus
informationabout � , � , and the channelover which �
wasobtained.(For simplicity, we’re ignoring thingslike
thefactthatmultipleserversmaybeinvolved.)

Wecanthink of thebrowserasexecutingtwo functions
from this input spaceof Webpagecontentandcontext:

� displayingsetsof graphicalelementsin this window
andothersascontentfrom theserver

� displayingsetsof graphicalelementsin this window
andothersasstatusaboutthis servercontent.

Web spoofingattackscan work becauseno cleardiffer-
enceexists betweenthegraphicalelementsof statusand
the graphical elementsof content. There exist pages���	�
��� from servers ���

 (respectively) such that the
overlapbetweencontent������� andstatus��������
�� is sub-
stantial. Such overlap permits a malicious server to
craft contentwhosedisplaytricks usersinto believing the
browseris reportingstatus.

To make thingsevenharder, whatmattersis not theac-
tual displayof the graphicalelements,but the displayas
processedby humanperception. As long as the human
perceptionof statusandcontenthaveoverlap,thenspoof-
ing is possible.

(Building a more formal and completemodel of this
problemis anareafor futurework.)

3.2 Trusted Path

Fromtheaboveanalysis,wecanseethekey to systemati-
cally stoppingWebspoofingwouldbetwofold:

� to clearly distinguishthe rangesof the contentand
statusfunctions,even whenfiltered by humanper-
ception,sothatmaliciouscollisionsarenotpossible

� to make it impossiblefor statusto have emptyout-
put, even when filtered by human perception,so
thatuserscanalwaysrecognizea server’s attemptto
forgestatusinformation.

In somesense,this is theclassictrustedpathproblem.
Thebrowsersoftwarebecomesa TrustedComputerBase
(TCB); andwe needto establisha trustedpathbetween
usersandthestatuscomponent,thatcannotbeimperson-
atedby contentcomponent.

3.3 Design Criteria

Weconsidersomecriteriaasolutionshouldsatisfy.
First, thesolutionshouldwork:

� Inclusiveness. We needto ensurethat userscan
correctly recognizeas large a subsetof the status
data as possible. Browsing is a rich experience;
many parametersplay into usertrust judgmentand,
asSection7.2discusses,thecurrentparametersmay
not evenbesufficient. A piecemealsolutionwill be
insufficient; we needa trustedpath for asmuchof
this dataaspossible.

� Effectiveness. We needto ensurethat the status
informationis providedin awaythattheusercanef-
fectively recognizeandutilize. For oneexample,the
informationdeliveredby imagesmaybemoreeffec-
tive for humanusersthan informationdeliveredby
text. For anotherexample,if thestatusinformationis
separated(in time or in space)from thecorrespond-
ing content,thenthe usermay alreadyhave madea
trustjudgmentaboutthecontentbeforeevenperceiv-
ing thestatusdata.

Secondly, thesolutionshouldbe low-impact:

� Minimizing user work. A solutionshouldnot re-
quire the user to participatetoo much. This con-
straint eliminatesthe naive cryptographicapproach
of having thebrowserdigitally signeachstatuscom-
ponent, to authenticateit and bind it to the con-
tent. This constraintalso eliminatesthe approach
that usersset up customized,unguessablebrowser
themes.To doso,theuserswouldneedto know what
themesare,andto configurethe browser for a new
oneinsteadof just takingthedefault one.

� Minimizing intrusiveness. The paradigmfor
Web browsing and interactionis fairly well estab-
lished,andexploitedby a large legacy bodyof sites
and expertise. A trustedpath solution should not
breakthewholenessof thebrowsingexperience.We
must minimize our intrusion on the contentcom-
ponent: on how documentsfrom servers and the
browseraredisplayed.Thisconstrainteliminatesthe
simplisticsolutionof turningoff JavaandJavaScript.

Appeared at the 11th USENIX Security Symposium, Aug 2002. 4

4 Solution Strategies

Having establishedtheproblemandcriteria for consider-
ing solutions,wenow proceedto examinepotentialstrate-
gies.Section4.1presentssomeapproachesweconsidered
but rejected;Section4.2 presentsthe strategy we chose
for our implementation.Table1 summarizeshow these
strategiesmeasureaccordingto theabove criteria.

4.1 Considered Appr oaches

No turn-off . As discussedabove, one way to defend
againstWeb spoofingis make it impossiblefor statusto
be empty. Onepossibleapproachis to prevent elements
suchasthelocationandstatusbarsfrom beingturnedoff
in any window. However, this approachwould overly
constrictthe displayof server pages(many sitesdepend
on pop-upswith server-controlledcontent)andstill does
notcoverabroadenoughrangeof browser-userchannels.
Furthermore,the attacker can still use imagesto spoof
pop-upwindows of hisown choosing.

Customiz ed content. Another set of approaches
consistsof trying to clearly labelthestatusmaterial.One
strategy herewould draw from Tygar and Whitten [25]
anduseuser-customizedbackgroundsonstatuswindows.
This approachhasa potentialdisadvantageof beingtoo
intrusiveon thebrowser’s displayof server content.

A lessintrusiveversionwouldhavetheuserenteranar-
bitrary “MA C phrase”at thestart-uptime of thebrowser.
Thebrowsercouldtheninsertthis MAC phraseinto each
statuselement(e.g.,thecertificatewindow, SSLwarning
boxes,etc.) to authenticateit. However, this approach,
beingtext-based,hadtoo stronga dangerof beingover-
lookedby theuser.

Overall, we decidedagainst this whole family of ap-
proaches,becausewe felt that requiring the userto par-
ticipatein the customizationwould violate the “minimal
userwork” constraint.

Meta-data titles. We consideredhaving somemeta-
data, such as pageURL, displayedon the window ti-
tle. Sincethe browsersendsthe title information to the
machinewindow system,the browser can enforcethat
the true URL always is displayedon the window title.
However, we did not really believe that userswould pay
attentionto this title bar text; furthermore,a malicious
server couldstill spoofsucha window by offering anim-
ageof onewithin theregularcontent.

Meta-data windo ws. We considered having the
browsercreateandalwayskeepopenanextrawindow just

for meta-data.Thebrowsercouldlabelthiswindow to au-
thenticateit, andthenuseit to displayinformationsuchas
URL, servercertificate,etc.

Initially, we felt that this approachwould not beeffec-
tive, sinceseparatingthe datafrom the contentwindow
would make it too easyfor usersto ignorethemeta-data.
Furthermore,this approachwould requirea way to corre-
late thedisplayedmeta-datawith thebrowserelementin
question.If theuserappearsto have two server windows
and a local certificatewindow open,he or sheneedsto
figureout to whichwindow themeta-datais referring.

As wewill discussshortly, CMW usesameta-datawin-
dow anda side-effect of Mozilla codestructureforcedus
to introduceoneinto ourdesign.

Boundaries. In an attempt to fix the window title
scheme,we decidedto use thick color insteadof tiny
text. Windows containingpure statusinformation from
thebrowserwouldhaveathick borderwith acolorthatin-
dicatedtrusted; windows containingat leastsomeserver-
provided content would have a thick border with an-
other color that indicateduntrusted. Becauseits con-
tent would alwaysbe renderedwithin an untrustedwin-
dow, a maliciousserver would not be able to spoofsta-
tus information—orso we thought. Unfortunately, this
approachsuffers from the samevulnerability as above:
a maliciousserver could still offer an image of a nested
trustedwindow.

CMW-Style Appr oach. CMW broughtthe boundary
andmeta-datawindow approachestogether.

We notedearlier that CMW itself will not solve the
spoofing problem. However, CMW needsto defend
against a similar spoofingproblem: how to ensurethat
a programcannotsubvert the security labeling rules by
openingan imagethatappearsto bea nestedwindow of
a differentsecuritylevel. To addressthis problem,CMW
addsa separatemeta-datawindow at the bottomof the
screen,putscolor-codedboundarieson thewindows and
a color (not text) in themeta-datawindow, andsolvesthe
correlationproblemby having thecolor in themeta-data
window changeaccordingto thesecuritylevel of thewin-
dow currentlyin focus.

The CMW approachinspired us to try merging the
boundaryandmeta-datawindow scheme:we keepa sep-
aratewindow alwaysopen,andthis window displaysthe
color matchingthesecuritylevel of thewindow currently
in focus. If the userfocuseson a spoofedwindow, the
meta-datawindow color would not beconsistentwith the
apparentwindow boundarycolor.

We were concernedabout how this CMW-style ap-
proachwould separate(in time and space)the window
statuscomponentfrom thecontentcomponent.Thissepa-

Appeared at the 11th USENIX Security Symposium, Aug 2002. 5

rationwouldappearto fail theeffectivenessanduser-work
criteria:

� Thesecuritylevel informationappearslater, andin a
differentpartof thescreen.

� Theusermustexplicitly click on thewindow to get
it to focus,andthenconfirmthestatusinformation.

Whatusersarereputedto dowhen“certificateexpiration”
warningspop up suggeststhat by the time a userclicks,
it’s too late.

Becauseof thesedrawbacks,we decidedagainst this
approach. Our user study of a CMW-style simulation
(Section6) supportedtheseconcerns.

4.2 Prototyped Appr oach

We likedthecoloredboundaryapproach,sincecolorsare
moreeffective thantext, andcoloringboundariesaccord-
ing to trust level easily binds the boundaryto the con-
tent. Theusercannotperceive theonewithout theother.
Furthermore,eachbrowserelement—includingpassword
windows andotherfutureelements—canbemarked,and
theuserneednotwonderwhich labelmatcheswhichwin-
dow.

However, the coloredboundaryapproachhad a sub-
stantialdisadvantage:unlesstheusercustomizesthecol-
ors in eachsessionor actively interrogatesthe window
(which would violate the “minimize work” criteria), the
adversarycanstill createspoofsof nestedwindows of ar-
bitrarysecuritylevel.

This situationleft us with a conundrum:the browser
needsto marktrustedstatuscontent,but any deterministic
approachto markingtrustedcontentwould bevulnerable
to this imagespoof. So, we needan automaticmarking
schemethat serverscould not predict,but would still be
easyandnon-intrusive for usersto verify.

Initial Vision. What we settledon was synchronized
randomdynamic(SRD)boundaries.In addition to hav-
ing trustedanduntrustedcolors,thethick window borders
would have two styles(e.g.,insetandoutset, asshown in
Figure1). At randomintervals,thebrowserwouldchange
thestyleson all its windows. Figure2 sketchesthis over-
all architecture.

TheSRDsolutionwouldsatisfythedesigncriteria:

� Inclusiveness. All windows would beunambigu-
ously labeledasto whetherthey containedstatusor
contentdata.

� Effectiveness. Like staticcoloredboundaries,the
SRD approachshows an easy-to-recognizesecurity
labelat thesametime asthecontent.Sincea mali-
ciousservercannotpredicttherandomness,it cannot

Inset Outset

Figure 1 Insetandoutsetborderstyles.

provide spoofedstatusthat meetsthe synchroniza-
tion.

� Minimizing user work. To authenticateawindow,
all auserwouldneedtodois observewhetherits bor-
deris changingin synchronizationwith theothers.

� Minimizing intrusiveness. By changingthewin-
dow boundarybut not internals,the server content,
asdisplayed,is largelyunaffected.

In theSRDboundaryapproach,we do not try to focus
somuchon communicatingstatusinformationason dis-
tinguishingbrowser-providedstatusfrom server-provided
content. The SRD boundaryapproachtries to build a
trustedpath that the statusinformationpresentedby the
browser can be correctly and effectively understoodby
thehumanuser. In theory, this approachshouldcontinue
to work asnew formsof statusinformationemerge.

Reality Inter venes. As onemight expect,the reality
of prototypingoursolutionrequiredmodifying this initial
vision.

We prototyped the SRD-boundary solution using
Mozilla open sourceon Linux. We noticed that when
our build of Mozilla popsup certainwarning windows,
all otherbrowserthreadsareblocked. As a consequence,
all otherwindows stoprespondingandbecomeinactive.
This is becausesomemodulesare singletonservicesin
Mozilla (that is, servicesthat oneglobal objectprovides
to all threadsin Mozilla). Whenonethreadaccessessuch
a service,all other threadsareblocked. The Enter-SSL
warningwindow usesthensPromptservicewhich is one
of thesingletonservices.

Whenthe threadsblock, the SRD borderson all win-
dows but theactive onefreeze.This freezingmaygener-
ate securityholes. A server might raisean imagewith
a spoofedSRD boundary, whose lack of synchroniza-
tion is not noticeablebecausethe server also submitted
sometime-consumingcontentthat slows down the main
browserwindow somuchthattheit appearsfrozen.Such
windowsgreatlycomplicatethesemanticsof how theuser
decideswhetherto trustawindow.

Appeared at the 11th USENIX Security Symposium, Aug 2002. 6

To addressthis weakness,we neededto re-introduce
a meta-datareferencewindow, openedat browser start-
upwith codeindependentof theprimarybrowserthreads.
This window is alwaysactive, andcontainsa flashy col-
oredpatternthatchangesin synchronizationwith themas-
ter randombit—andthe boundaries.If a boundarydoes
notchangein synchronizationwith thereferencewindow,
then the boundaryis forged and its color shouldnot be
trusted.

Our referencewindow is like the CMW-style win-
dow in thatusesnon-textual materialto indicatesecurity.
However, oursdiffers in that it usesdynamicbehavior to
authenticateboundaries,it requiresnoexplicit useraction,
and it automaticallycorrelatesto all the unblocked on-
screencontent.

Realityalsointroducedothersemanticwrinkles,asdis-
cussedin Section5.7.2.

5 Implementation

Implementationtook several steps. First, we neededto
addthicker coloredboundariesto all windows. Second,
the boundariesneededto dynamically change. Third,
thechangesneededto happenin a synchronizedfashion.
Finally, asnoted,we neededto work aroundthefact that
Mozilla sometimesblocksbrowserwindow threads.

In Section5.2 throughSection5.5 below, we discuss
thesesteps.Section5.7discussesthecurrentstatusof our
prototype.

Figure4 shows theoverall structure.

5.1 Star ting Point

In orderto implementour trustedpathsolution,we need
abrowserasits base.Welookedatopensourcebrowsers,
andfound two goodcandidates,Mozilla andKonqueror.
Mozilla is the“twin” of Netscape6,andKonqueroris part
of KDE desktop2.0.WealsoconsideredGaleon,whichis
anopensourceWebbrowserusingthesamelayoutengine
as Mozilla. However, when we startedour experiment,
Galeonwasnot robust enough,so we choseMozilla in-
steadof Galeon.

We choseMozilla over Konquerorfor threeprimary
reasons. First, Konqueroris not only a Web browser,
but alsothe file managerfor KDE desktop,which make
it might be unnecessarilycomplicatedfor our purposes.
Secondly, Mozilla is closely relatedto Netscape,which
has a big market share on current desktops. Third,
Konqueroronly run on Linux; Mozilla is able to adapt
to severalplatforms.

Additionally, althoughboth of browsersarewell doc-
umented, we felt that Mozilla’s documentationwas
stronger.

5.2 Adding Colored Boundaries

Thefirst stepof our prototypewasto addspecialbound-
ariesto all browserwindows. To do this, we neededto
understandwhy browserwindows look theway they do.

Mozilla hasa configurableanddownloadableuserin-
terface,calleda chrome. The presenceandarrangement
of differentelementsin a window is not hardwiredinto
the application,but ratheris loadedfrom a separateuser
interfacedescription,the XUL files. XUL is an XML-
baseduserinterfacelanguagethatdefinestheMozilla user
interface. EachXUL elementis presentasan object in
Mozilla’s documentobjectmodule(DOM).

Mozilla usesCascadingStyleSheets(CSS)to describe
what eachXUL elementshouldlook like. Collectively,
thissetof sheetsis calledaskin. Mozilla hascustomizable
skins. ChangingtheCSSfiles changesthe look-and-feel
of thebrowser. (Figure3 sketchesthis structure.)

TheoriginalMozilla only hasonetypeof window with-
outany boundary. We addedanorange boundaryinto the
original window skin to mark the trustedwindows con-
taining materialexclusively from the browser. Thenwe
defineda new type of window, external window, with a
blue boundary. We addedthe externalwindow skin into
theglobalskin file, andchangedthenavigatorwindowto
invoke anexternalwindowinstead.

As a result,all thewindowelementsin XUL files will
have thick orangeboundaries,and all the external win-
dowswould have thick blue boundaries. Both the pri-
mary browsing windows aswell asthe windows opened
by server contentwould be external windowswith blue
boundaries.

(The new chrome feature introducessomewrinkles;
seeSection5.7.2.)

5.3 Making the Boundaries Dynamic

Wenext needto maketheboundarieschangedynamically.
In the Mozilla browser, window objectscan have at-

tributes. Theseattributescanbe setor removed. When
theattributeis set,thewindow canbedisplayedwith dif-
ferentstyle.

To makewindow boundariesdynamic,weaddedabor-
derStyleattributeto thewindow.

externalwindow[borderStyle="true"]�
border-style: outset !important; �

WhenborderStyleis set, the boundarystyle is outset;
whenborderStyleis removed,theboundarystyleis inset.
Mozilla observesthechangesin attributesandupdatesthe
displayedborderStyleaccordingly.

With a referenceto a window object,browser-internal
JavaScriptcodecanautomaticallysettheattributeandre-
move the attribute associatedwith that window. We get
this referencewith themethod:

Appeared at the 11th USENIX Security Symposium, Aug 2002. 7

random
number
generator

Modified
browser

Trusted window

Server side
material

SRD boundary

server content

SRD boundary Untrusted window

Reference window

browser meta data

Figure 2 Thearchitectureof ourSRDapproach.

Inclusiveness Effectiveness MinimizingUserWork MinimizingIntrusiveness
No turn-off No Yes Yes No
Backgrounds Yes Yes No No
MAC Phrase Yes No No Yes
MetaTitle No No Yes Yes
MetaWindow No No Yes Yes
Boundaries No Yes Yes Yes
CMW-style Yes No No Yes
SRD Yes Yes Yes Yes

Table 1 Comparisonof strategiesagainstdesigncriteria.

Browser
User
Interface

La
yo

ut
 E

ng
in

e
 (

G
ec

ko
)

CSS files

XUL files

Figure 3 ThelayoutengineusesXUL andCSSfiles to generatethebrowseruserinterface.

Appeared at the 11th USENIX Security Symposium, Aug 2002. 8

document.getElementById("windowID")

When browser-internal JavaScript code changesthe
window’sattribute,thebrowserobserver interfacenotices
the changeandschedulesa browserevent. The event is
executed,andthebrowserrepaintstheboundarywith dif-
ferentstyle.

EachXUL file links to JavaScriptfilesthatspecifywhat
should happenin that window with eachof the events
in the browsing experience. We placed the attribute-
changingJavaScript into a separateJavaScript file and
linkedit into eachcorrespondingXUL file.

With the

setInterval("function name",

intervalTime)

method,aJavaScriptfunctioncanbecalledautomatically
at regulartime intervals.We let our functionbecalledev-
ery0.5second,to checkarandomvalue0 or 1. If theran-
dom valueis 0, we setwindow’s borderStyleattribute to
betrue; elseremove this attribute. Thewindow’s onload
eventcallsthissetIntervalmethodto startthispolling.�

window id="example-window"

onload="setInterval(..)" �
If the window elementdoesnot have an ID associ-

atedwith it, we needto give it onein orderto make the
JavaScriptcodework. TheJavaScriptfilesneedto include
into correspondingjar.mnfile in orderto be packed into
thesamejar astheXUL file.

5.4 Adding Sync hronization

All the browser-internal JavaScriptfiles needto look at
the samerandom number, in order to make all win-
dows changesynchronously. Sincewe could not get the
JavaScriptfiles in Mozilla sourceto communicatewith
eachother, we usedan XPCOM module to have them
communicateto asingleC++ objectthatdirectedtheran-
domness.

XPCOM (the Cross Platform Component Object
Model) is a framework for writing cross-platform,mod-
ular software. As an application,XPCOM usesa setof
coreXPCOM librariesto selectively loadandmanipulate
XPCOM components.XPCOM componentscanbewrit-
ten in C, C++, andJavaScript,andarethe basicelement
of Mozilla structure.

JavaScriptcandirectly communicateto a C++ module
throughXPConnect. XPConnectis a technologywhich
allowsJavaScriptobjectstransparentlyaccessandmanip-
ulateXPCOM objects.It alsoenablesJavaScriptobjects
to presentXPCOM-compliantinterfacesto be calledby
XPCOMobjects.

WemaintainedasingletonXPCOMmodulein Mozilla
which tracks the current “random bit.” We defineda

borderStyleinterfacein XPIDL (CrossPlatformInterface
DescriptionLanguage), whichonlyhasaread-onlystring,
which meansthe string only can be readby JavaScript,
but can not be set by JavaScript. The XPIDL com-
piler transformsthis IDL into a headerfile and a type-
lib file. The nsIBorderStyleinterfacehasa public func-
tion, GetValue, whichcanbecalledby Mozilla JavaScript
throughXPConnect.The nsBorderStyleImpclassimple-
mentsthe interface,and also hastwo private functions,
generateRandomand setValue. When a JavaScriptcall
accessesthe borderStylemodule throughGetValue, the
moduleusestheseprivatefunctionsto updatethecurrent
bit (from /dev/random) if it is sufficiently stale. The
modulethenreturnsthecurrentbit to theJavaScript.

5.5 Addressing Bloc king

As notedearlier, Mozilla hadscenarioswhereonewin-
dow, suchas the enter-SSL warningwindow, canblock
the others. Rather than trying to rewrite the Mozilla
threadstructure,we let the borderStylemodule fork a
new process,which usestheGTK+ toolkit createa refer-
encewindow. Whena new randomnumberis generated,
the borderStylemodulepassesthe new randomnumber
throughthe pipe to the referenceprocess.The reference
window changesits imageaccordingto therandomnum-
berto indicatetheborderstyle.

The idea in the GTK+ programis creatinga window
with a viewport. A viewport is a widget which contains
two adjustmentwidgets.Changingthescaleof thesetwo
adjustmentsenableto allow the useronly seepart of the
window. The viewport alsocontainsa tablewhich con-
tains two images: one imagestandsfor inset style, the
otherstandsfor outset.Whenrandomnumberis 1, weset
the adjustmentscaleto show the inset image;otherwise
weshow theoutsetimage.

5.6 Why This Works

ThisSRDapproachworksbecause:

� Server material has to be displayedin a window
openedby thebrowser.

� Whenit opensa window, thebrowsergetsto choose
which typeof window to use.

� Only the browser gets to seethe randomnumbers
controlling whetherthe borderis currently inset or
outset.

� Server content,suchas maliciousJavaScript, can-
nototherwiseperceive theinset/outsetattributeof its
parentwindow.

(Section5.7.2below discussessomeknown issues.)

Appeared at the 11th USENIX Security Symposium, Aug 2002. 9

XUL files

changeborder.js
getElementById("main-window");

BorderStyle
XPCOM
Module

Layout engine
(Gecko)

set /re
move

attrib
ute

DOM object

at
tri

bu
te

 s
et

attribute rem
oved

 CSS files

DOM object DOM object

window

DOM tree

borderStyle = inset borderStyle = outset

Figure 4 This diagramshows theoverall structureof our implementationof SRDin Mozilla. TheMozilla
layout enginetakesXUL files asinput, andconstructa DOM tree. The root of the treeis the window ob-
ject. For eachwindow object,JavaScriptreadsthe randomnumberfrom borderStylemodule,andsetsor
removesthewindow objectattribute. The layoutenginepresentthewindow objectdifferentlyaccordingto
theattribute.Thedifferentappearancesaredefinedin CSSfiles.

Appeared at the 11th USENIX Security Symposium, Aug 2002. 10

We elaborateon the last point above. The DOM is a
tree-like structureto representthedocument.EachXML
elementor HTML elementis representedas a node in
this tree. The DOM treeenablestraversalof this hierar-
chy of elements.EachelementnodehasDOM interfaces,
which can be usedby JavaScriptto manipulatethe ele-
ment. For example,element.stylelets JavaScriptaccess
the style propertyof the elementobject. JavaScriptcan
changethisproperty, andthereforechangetheelementap-
pearance.

When the Mozilla layout engine Gecko readsXUL
files andrendersbrowseruserinterface,it treatsthewin-
dow objectasa regularXUL element,oneDOM nodein
the DOM tree. Therefore,at the point, browser-internal
JavaScriptcansetor remove attributesin thewindow ob-
ject. However, from thepoint of view of server-provided
JavaScript,this window objectis not a regularDOM ele-
ment,but is rathertherootobjectof thewholeDOM tree.

Thisrootobjecthasachild node,document. Underthis
documentobject, the server contentDOM tree startsto
grow. Therootwindow doesnotprovide thewindow.style
interface. It also doesnot supportany attribute func-
tions [11]. Therefore,eventhoughserver-sideJavaScript
canget a referenceof the window object,andcall func-
tions like window.open, it cannot reador manipulatethe
window borderstyletocompromiseSRDboundaries.Our
experimentaltestsalsoprovedthisstatement.

5.7 Prototype Status

We have implementedSRD for the main navigator ele-
mentsin modernskin Mozilla (currentlyMozilla-0.9.2.1)
for Linux. Furthermore,we have preparedscriptsto in-
stall andundothesechangesin the Mozilla sourcetree;
to reproduceour work, onewould needto downloadthe
Mozilla source,runourscript,thenbuild.

ThesescriptsareavailableonourWebsite.

5.7.1 Inner SRD vs Outer SRD

In the current browsing paradigm,someotherwiseun-
trustedwindows, suchasthe main surfingwindow, con-
tain trustedelements,suchasMenuBar, etc.As faraswe
could tell in our spoofingwork, untrustedmaterialcould
not overlay or replacethesetrustedelements,if they are
presentin thewindow.

TheSRDapproachthusleadsto adesignquestion:

� Shouldwe just mark theoutsideboundariesof win-
dows?

� Or shouldwe also install SRD boundarieson indi-
vidualelements,or at leaston trustedones?

We usethe termsouter SRDand inner SRDrespectively
to denotethesetwo approaches.

Inner SRD raisessomeadditionalquestionsthat may
take it further away from the designcriteria. For one
thing, having changing,colored boundarieswithin the
window arguablyweakenssatisfactionof theminimal in-
trusivenessconstraint.For anotherthing, what aboutel-
ementswithin a trustedwindow? Shouldwe announce
that any elementin a region containedin a trustedSRD
boundaryis thereforetrusted?Or would introducingsuch
anomalies(e.g.,whetherabarneedsatrustedSRDbound-
aryto betrustabledependsontheboundaryof its window)
needlesslyandperhapsdangerouslycomplicatetheuser’s
participation?

For now, we have stayedwith outer-SRD. Animated
GIFsgiving thelook-and-feelof browsersenhancedwith
outer-SRDandinner-SRDareavailableonourWebsite.

5.7.2 Kno wn Issues

Ourcurrentprototypehasseveralareasthatrequirefurther
work. Wepresentthemin orderof decreasingimportance.

Aler t Windo ws. Theonly significantbugwecurrently
know about pertainsto alert windows. In the current
Mozilla structure,alert windows, confirm windows and
prompt windows are all handledby the samecode, re-
gardlessof whethertheserverpagecontentor thebrowser
invokes them. In our current implementation,the win-
dow boundarycolor is decidedonce,as“trusted”. Weare
currentlyworking with Netscapedevelopersto determine
how to have this codedeterminethe natureof its caller
andestablishboundarycoloraccordingly.

Signed JavaScript. Signed JavaScript from the
server canaskfor privilegesto useXPConnect.Theuser
canthenchooseto grantthis privilegeor not. If theuser
grantstheprivilege,thenthesignedJavaScriptcanaccess
theborderStylemoduleandreadtherandombit.

To exploit this, an attacker would have to open an
emptywindow (seebelow) or simulateonewith images,
andthenchangethe apparentboundaryaccordingto the
bit. For now, theusercandefendagainstthisattackby not
grantingsuchprivileges;however, a betterlong-termso-
lution is simply to disabletheability of signedJavaScript
to requestthisprivilege.

Chrome feature . Mozilla addedanew featurechrome
to thewindow.openmethod.If aserverusestheJavaScript

window.open("test.html",

"window-title", "chrome")

then Mozilla will open an empty window without any
boundary. The chrome featurelets the server eliminate
the browserdefault chromeandthus take control of the

Appeared at the 11th USENIX Security Symposium, Aug 2002. 11

whole window appearance.However, this new window
will not be able to synchronizeitself with the reference
window and the other windows. Furthermore,this new
window cannotrespondto theright mouseclick andother
reservedkeystrokes,likeAlt+C for copy underLinux. It is
a known bug [4] that this new window cannotbring back
themenubarandtheotherbars,andit cannotprint pages.

So far, the chromelesswindow is not a threatto SRD
boundaries.However, Mozilla is living code.TheMozilla
developerswork hardto improve its functionality;andthe
behavior of thechromefeaturemayevolvein thefuturein
waysthatarebadfor our purposes.So,we planeitherto
disablethis feature,or to install SRDboundariesevenon
chromelesswindows.

Pseudo-sync hronization. Another consequenceof
real implementation was imprecise synchronization.
Within thecodebasefor ourprototype,it wasnot feasible
to coordinateall the SRD boundariesto changeat pre-
ciselythesamereal-timeinstant.Instead,thechangesall
happenwithin an approximately1-secondinterval. This
imprecision is becauseonly one threadcan accessthe
XPCOM module;all otherthreadsareblockeduntil it re-
turns. SincetheJavaScriptcallsaccesstherandomvalue
sequentially, theboundarieschangesequentiallyaswell.

However, we actuallyfeel this increasesthe usability:
the staggeredchangesmake it easierfor the userto per-
ceive thatchangesareoccurring.

6 Usability

Theexistenceof a trustedpathfrom browserto userdoes
not guaranteethat userswill understandwhat this path
tells them. In order to evaluate the usability of SRD
boundary, wecarriedoutuserstudies.

Becauseour goal is to effectively defendagainstWeb
spoofing,our groupplansfutureteststhatarenot limited
to theSRDboundaryapproach,but would cover thegen-
eralprocessof how humansmake trust judgments,in or-
derto providemoreinformationonhow to designabetter
way to communicatesecurity-relatedinformation.

6.1 Test Design

The designof the SRD boundaryincludestwo parame-
ters: the boundarycolor andthe synchronization. They
expressdifferentinformation.

� The boundarycolor indicateswhere the material
comesfrom.

� The synchronizationindicateswhetherthe usercan
trust the information expressedby the boundary
color scheme.

In our tests,we changethe two parametersin orderto
determinewhetherthe usercanunderstandthe informa-
tion eachparametertries to express.We vary thebound-
arycolorover:

� trusted(orange)

� untrusted(blue)

Wevary thesynchronizationparameterover:

� static(window boundarydoesnot change)

� asynchronous(window boundarychanges,but not in
asynchronizedway)

� synchronized

Accordingto our semantics,a trustablestatuswindow
shouldhave two signals: a trustedboundarycolor, and
synchronizedchanges.Eliminating the caseswherethe
userreceivesneitherof thesesignals,we have four ses-
sionsin eachtest: a static trustedboundary;a synchro-
nizedtrustedboundary;a synchronizeduntrustedbound-
ary; andanasynchronoustrustedboundary.

WealsosimulatedtheCMW-styleapproachandexam-
inedits usabilityaswell. In particular, thetheCMW-style
approachis lessdistractingthanSRDboundary, because
mostof thelabelsarestatic.This reducesintrusiveness—
but lessdistractingmayalsomeanwinning lessattention.

We thenranthreetests.

� In thefirst test,we turnedoff thereferencewindow,
andusedonly theSRDboundaryin themainsurfing
window asa synchronizationreference.We popped
up the browser’s certificatewindow with different
boundaries,in four sessions.

� In the secondtest, we examinedthe full SRD ap-
proach,andleft the referencewindow on, asa syn-
chronizationreference.We poppedup thecertificate
window four differentways,just asin the first test.
Wewantedto seewhetherusingreferencewindow is
helpful for providing extra security-relatedinforma-
tion, or whetherit is needlesslyredundant.

� In the third test, we simulatedthe CMW-style ap-
proach. Boundarieswere static; however, a refer-
encewindow alwaysindicatedtheboundarycolorof
thewindow to which themousepoints. In this case,
thestatusinformationprovidedby thereferencewin-
dow arrivesat thesametimewhentheusermove the
mouseinto thewindow.

In the conventionalCMW approach,the mousehas
to beclickedonthewindow to getit focusatfirst. In
our test,we usedmouse-over, which getsthe infor-
mationto theusersooner. (In thefuture,we hopeto

Appeared at the 11th USENIX Security Symposium, Aug 2002. 12

designmoreuserstudiesto obtainadditionaldataon
how the time whenstatusinformationarriveseffect
users’judgmentduringbrowsing.)

Beforestartingthe tests,we gave the usersa brief in-
troductionabouttheSRDboundaryapproach.Theusers
understoodthereweretwo parametersthey neededto ob-
serve. The usersalso viewed the original Mozilla user
interface, in order to becomefamiliar with the buttons
andwindow appearance.After viewing theoriginal user
interface,the usersstartedour modifiedbrowseranden-
teredanSSLsessionwith a server. Theusersinvokedthe
pageinformationwindow, andcheckedtheserver certifi-
catewhich thebrowserappearedto present.Thepagein-
formationwindow andthecertificatewindow poppedup
with differentboundaries,accordingto thesession.

The userswereasked to observe the windows for ten
secondsbeforethey answeredthe questions.The ques-
tions includedwhat they observedof the two parameters
of thewindow boundaries,whetherthey thoughtthewin-
dow was authentic,and how confidentthey were about
their judgment.

6.2 Users Description

Wetried to collectusersfrom differentsophisticationlev-
els, in order to provide realistic resultsfor evaluationof
our design. More importantly, we wantedto collect in-
formationon how regularusersrecognizestatusfrom the
browseruserinterface—thisinformationwould not only
helpusevaluateourcurrentapproaches,but couldalsopo-
tentially helpdrive designsof betteruserinterfaces.(We
seemuchpotentialfuturework here.)

For thisuserstudy, wehadsevenvolunteers.

� Two can be ranked as experts: a scientist
at Dartmouth’s Institute for Security Technology
Studies,andaPh.D.candidatein computerscience.

� ThreeareundergraduateswhosearchtheWebfor in-
formationandbuy productsovertheWebquiteoften.
They alsolike new technologyandarequick learn-
ers.

� Two are medical scientistswho use Web mainly
for searchingresearchpapers,anddo not do online
creditcardtransactionsveryoften.

The useragesrangefrom 21 to 40, covering the main
ageareaof Web users. The usersmajor in physiology,
biology, computerscience,engineering,psychology, so-
ciology, medicine.Amongtheseusers,only thecomputer
expertscheckthe securityfeatureson their browsersbe-
fore they submitcredit card informationonline. Except
for thesetwo experts,only onesubjecthadevenheardof
the phrase“SSL” andnoneof themknew what it meant.

Exceptfor the experts,no onechecked the httpsandthe
lock icon.

6.3 User Stud y Results

We summarizethe most significantresultswe observed
from thetests.

6.3.1 No Reference Windo w

In thefirst test,weuseddynamicboundariesbut no refer-
encewindow.

Response to the static trusted boundar y. This is
thefirst testsession.Whenshown thecertificatewindow
with a statictrustedboundary, only thecomputerexperts
correctly perceived the statusinformation and asserted
thatthecertificatewindow wasnotauthentic.All theother
usersfailed to make the correctjudgment,althoughthey
werenotconfidentabouttheirdecision.An interestingob-
servationwasthatthreeoutof fiveuserswhomadewrong
judgmentat first, recalledthewindow in first sessionwas
inauthenticafter finishing the first test. This shows how
quickly theuserscanbeeducated.

Response to the sync hroniz ed trusted boundar y.
In this session,theusersviewedthebrowserwith proper
SRDboundaries.Fiveoutof sevenusersmadethecorrect
judgment.Theoneswhomadethecorrectjudgmentwere
confidentaboutthedecision.Theonesthat failedto cap-
ture the right informationwerenot confidentabouttheir
decision.

Response to the sync hroniz ed untrusted bound-
ary. In this session,thecertificatewindow camewith a
blue (untrusted)boundary. Five out of seven userscor-
rectly recognizedthecertificatewindow wasnot authen-
tic, becauseit shouldbein anorangeboundary. Theones
who madethecorrectjudgmentwereconfidentaboutthe
decision,and thoughtthe signal expressedby the color
schemewasveryclear.

Response to the async hronous trusted bound-
ary. In this session,the userneededto recognizethat
the trustedboundarywasnot changingcorrectly. All the
userssuccessfullyjudgedthis window wasnot authentic.
They werealsoconfidentin their judgment.

This resultsurprisedus: we thoughtthe synchroniza-
tion is not asstronga signalasthecolor. Apparently, hu-
manusersrecognizethesynchronizationparametersbet-
ter thanthecolor scheme.Onereasonmaybe thatusers
paymoreattentionto dynamicfeaturesthanto staticones.
A secondreasonfor this resultmaybethatthis is thelast
sessionof thefirst test.During thefirst threesessions,the

Appeared at the 11th USENIX Security Symposium, Aug 2002. 13

usersmay have learnedhow to observe andmake judg-
ment.

6.3.2 Full SRD

Wethentestedfull SRD,with thereferencewindow.

Response to the static trusted boundar y. The
referencewindow poppedup before the main window
started,which won mostof theusers’attention.Five out
of sevenusersrecognizedthewindow statussuccessfully.
Theonesmadecorrectdecisionwereconfidentabouttheir
decision.

Response to the sync hroniz ed trusted boundar y.
This time,all theuserssuccessfullyrecognizedthestatus
informationandfelt confidentin their decision.

Response to the sync hroniz ed untrusted bound-
ary. Six out of sevenusersmadethecorrectjudgment.
They thoughtthe signalexpressedby the color wasvery
clear.

Response to the async hronous trusted bound-
ary. All theusersmadethecorrectjudgment.They all
wereconfidentabouttheir decision,andthoughtthesig-
nalswereveryclear.

6.3.3 CMW-Style

In our lasttest,wesimulatedtheCMW-styleapproach.
This testwasan optionalone for the users. Two out

of four userswhodid this testsuccessfullymadetheright
judgment—but they weretheexperts.In general,theusers
felt confusedabouttheinformationprovidedby theCMW
referencewindow, andthey tendedto neglect it. We plan
amoredetailedstudyhere.

6.4 User Stud y Conc lusions

Diff erent levels have very diff erent responses.
During our tests,we noticedthat it wasvery obviousthat
thecomputerscientistshavemuchfasterreactionto secu-
rity signals,andweremoresuccessfulatrecognizingwhat
thesignalsmeant.Theotheruserstook longerto observe
thesignals,andstill did notalwaysmakethecorrectjudg-
ment. The userwith the physiology backgrounddid not
understandtheparametersuntil thesecondsessionof the
secondtest.

Oneconclusionis thatcomputerscientistshave a very
different view of theseissuesfrom the generalpopula-
tion. A goodsecurityfeaturemaynot work without good
public education. For example, SSL has beenpresent

in Web browsersfor years,andis the foundationof “se-
cure”e-commerce,whichmany in thegeneralpublicuse.
However, only oneof our non-computerpeopleheardof
this phrase. Signalssuchas the lock icon—or anything
moreadvancedwedreamup—will makenosenseto users
whodonot know whatSSLmeans.

Users learn quic kly. Anothervaluablefeedbackfrom
our userstudywasthat generaluserslearnedquickly, if
they have someWeb experience.Threeout of five non-
computerexperts understoodimmediatelyafter we ex-
plainedSSLto them,andwereableto perceiveserverau-
thenticationsignalsright away. The othertwo gradually
picked up the ideaduring the onehour tests. At the end
of thetests,all of our usersunderstoodwhatwe intended
themto understand.

This resultsupportsthe“minimal userwork” property
of our SRDapproach:it easyto learnevenfor thepeople
outsideof computerscience.The usersdo not do much
work; what they needto do is observe. The statusin-
formationreachesthemautomatically. No Web browser
configurationor detailedtechniquesareinvolved.

Reference is better . Mostof ourusersfelt it wasbet-
ter to havethereferencewindow, becauseit madethesyn-
chronizationparametereasyto be observed. The refer-
encewindow startsearlierthanthemainwindow, soit at-
tractsuser’s attention.Theuserswould noticethechang-
ing of boundaryright afterthemainwindow startsup.

This result is ironic, whenoneconsidersthat we only
addedthereferencewindow becauseit waseasierthanre-
writing Mozilla’s threadcode.

Dynamic is better . The dynamic effect of SRD
boundaryincreasesits usability. The humanuserspay
moreattentionto thedynamicitemsin Webpages,which
is why many Web site usedynamictechniques. In our
userstudy, mostof thenon-computerpeopledid not even
notice that a staticwindow boundaryexisted in the first
sessiontest.

Automatic is better . The user study result from
CMW-style approachsimulationalsoindicatesthat indi-
catingsecurityinformationwithout requiringuseraction
wasbetter.

7 Conc lusions and Future Work

7.1 Summar y

A systematic,effective defenseagainstWebspoofingre-
quiresestablishinga trustedpathfrom the browserto its
user, sothattheusercanconclusively distinguishbetween

Appeared at the 11th USENIX Security Symposium, Aug 2002. 14

genuinestatusmessagesfrom thebrowseritself, andma-
liciously craftedcontentfrom theserver.

Sucha solutionmusteffectively secureall channelsof
informationthe humanmay useasparametersfor his or
hertrustdecision;mustbeeffective in enablingusertrust
judgment;mustminimizework by theuserandintrusive-
nessin how servermaterialis rendered,andbedeployable
within popularbrowserplatforms.

Any solution which usesstatic markup to separate
server materialfrom browserstatuscannotresistthe im-
agespoofingattack. In order to prove the genuineness
of browser status,the markupstrategy hasto be unpre-
dictableby the server. Sincewe did not want to require
active userparticipation,our SRD solution obtainsthis
unpredictabilityfrom randomness.

This, we believe our SRD solution meetsthesecrite-
ria. We offer this work backto thecommunity, in hopes
thatit maydrivemorethinkingandalsowithstandfurther
attemptsat spoofing.

7.2 New Directions

This researchalso suggestsmany new avenuesof re-
search.

Parameter s for Trust Judgment. Theexistenceof a
trustedpathfrom browserto userdoesnot guaranteethat
thebrowserwill tell theusertrueandusefulthings.

What is reportedin the trustedpath must accurately
matchthe natureof the session.Unfortunately, the his-
tory of theWeboffersmany scenarioswhereissuesarose
becausethe reality of a browsing sessiondid not match
theuser’s mentalmodel. Invariably this happensbecause
the deployed technologyis a richer and more ambigu-
ous spacethan anyone realizes. For example, it is nat-
ural to think of a sessionas “SSL with server � ” or
“non-SSL.” It is interestingto thenconstruct“unnatural”
Web pageswith a variety of combinationsof framesets,
servers, 1x1-pixel images,and SSL elements,and then
observe what variousbrowsersreport. For oneexample,
onNetscapeplatformswetested,whenanSSLpagefrom
server � embeddedanimagewith anSSLreferencefrom
server
 , the browser happily establishedsessionswith
both servers—but only reportedserver � ’s certificatein
“SecurityInformation.” Subsequently, it wasreported[3]
that many IE platformsactually usedifferent validation
ruleson someinstancesof thesemultiple SSL channels.
Anotherissueis whethertheexistenceof anSSLsession
canenabletheuserto trust that thedatasentback to the
serverwill beSSLprotected.[17]

What is reportedin the trustedpath shouldalso pro-
vide what the userneedsto know to make a trust deci-
sion. For oneexample[8], thePalm Computing“secure”
Web site is protectedby an SSL certificateregisteredto

ModusMedia. Is ModusMediaauthorizedto actfor Palm
Computing?Perhapsthe server certificatestructuredis-
playedvia the trustedpath shouldinclude someway to
indicatedelegation.For anotherexample,theexistenceof
technology(or evenbusinesses)thataddhigherassurance
to Webservers(suchasourWebALPS[12, 21, 22] work)
suggeststhata usermight wantto know propertiesin ad-
dition to server identity. Perhapsthe trustedpathshould
alsohandleattributecertificates.

Otheruncertainissuespertainingto effectivetrustjudg-
ment include how browsers handle certificate revoca-
tion [26] and how they handleCA certificateswith de-
liberatelymisleadingnames[17].

Access Contr ol on UI. Researchinto creating a
trustedpath from browser to user is necessary, in part,
becauseWebsecuritywork hasfocusedonwhatmachines
know anddo,andnot on whathumansknow anddo. It is
now unthinkablefor server contentto find a way to read
sensitive client-sidedata,suchastheir systempassword;
however, it appearsstraightforward for server contentto
createtheillusion of agenuinebrowserwindow askingfor
the user’s password. Integratingsecuritypropertiesinto
documentmarkupis anareaof ongoingwork; it wouldbe
interestingto look at this areafrom a spoof-defensepoint
of view.

Multi-Le vel Security . It is fashionablefor younger
scientiststo reject the OrangeBook and its associated
body of work regarding multi-level security as being
archaicand irrelevant to the moderncomputingworld.
However, ourdefenseagainstWeb-spoofingis essentially
a form of MLS: we are marking screenelementswith
security levels, and trying to build a user interfacethat
clearlycommunicatestheselevels.(Of course,wearealso
trying to retro-fit this into a largelegacy system.)It would
beinterestingto explorethis vein further.

Visual Hashes. In personalcommunication,Perrig
suggestsusingvisual hashinformation[18] in combina-
tion with varioustechniques,suchasmeta-dataanduser
customization. Hashvisualizationusesa hashfunction
transformingacomplex stringinto animage.Sinceimage
recognitionis easierthanstringmemorizationfor human
users,visual hashescanhelp bridgethe securitygap be-
tweentheclientandservermachines,andthehumanuser.
Weplanto examinethis in futurework.

Digital Signatures. Anotherinterestingresearcharea
is theapplicationof spoofingtechniquesto digital signa-
tureverificationtools. In relatedwork [13], wehavebeen
examininghow to preservesignaturevalidity but still fool
humans.However, both for Web-basedtools, aswell as

Appeared at the 11th USENIX Security Symposium, Aug 2002. 15

non-Web tools that arecontent-rich,spoofingtechniques
might createthe illusion that a document’s signaturehas
beenverified,by producingtheappropriateiconsandbe-
havior. Countermeasuresmayberequiredhereaswell.

Formal Model of Browser Content Security .
Section3.1discussedthebasicframework of distinguish-
ing browser-provided contentfrom server-provided con-
tent renderedby the browser. However, formally distin-
guishing thesecategories raisesadditional issues,since
much browser-provided contentstill dependson server-
provided parameters.More work herecould be interest-
ing.

Ackno wledgments

WearegratefultoYouguYuan,for hishelpwith ourinitial
spoofingwork; DeniseAnthony andRobertCamilleri, for
their helpwith theuserstudies;JamesRome,for his ad-
vice on CMW; andDrew Dean,Carl Ellison, Ed Feustel,
Steve Hanna,Terry Hayes,Eric Norman,Adrian Perrig,
EricRenault,JesseRuderman,Bill Stearns,MarkVilardo,
DanWallach,RussellWeiserandtheanonymousreferees,
for their helpful suggestions.

This work was supported in part by the Mellon
Foundation,Internet2/AT&T, andby theU.S.Department
of Justice,contract2000-DT-CX-K001. However, the
views andconclusionsdo not necessarilyrepresentthose
of thesponsors.

A preliminary version of this paper appearedas
DartmouthCollegeTechnicalReportTR2002-418.

References
[1] A. Alsaid,D. Martin. “DetectingWebBugswith Bugnosis:

Privacy Advocacy throughEducation.” 2nd Workshopon
Privacy EnhancingTechnologies.Springer-Verlag, to ap-
pear.

[2] R.J.Barbalace.“Making somethinglook hacked when it
isn’t.” TheRisksDigest, 21.16,December2000.

[3] S. Bonisteel. “Microsoft Browser Slips Up on SSL
Certificates.” Newsbytes.December26,2001.

[4] Bugzilla Bug 26353,“Can’t turn chrome back on in
chromelesswindow” http://bugzilla.mozilla.
org/show_bug.cgi?id=26353

[5] F. De Paoli, A.L. DosSantosand R.A. Kemmerer.
“Vulnerability of ‘Secure’ Web Browsers.” Proceedings
of theNational InformationSystemsSecurityConference.
1997.

[6] Department of Defense Trusted Computer System
Evaluation ComputerSystemEvaluation Criteria. DoD
5200.28-STD.December1985.

[7] C. Ellison. “The Nature of a Usable PKI.” Computer
Networks. 31: 823-830.1999.

[8] C. Ellison.Personalcommunication,September2000.See
https://store.palm.com/

[9] C. Ellison, C. Hall, R. Milbert, B. Schneier, “Protecting
SecretKeys with PersonalEntropy” Future Generation
ComputerSystems.Volume.16,2000,pp.311-318.

[10] E. Felten, D. Balfanz, D. Dean, and D. Wallach.
“Web Spoofing: An InternetCon Game.” 20th National
InformationSystemsSecurityConference. 1996.

[11] Gecko DOM Reference. http://www.mozilla.
org/docs/dom/domref/dom_window_ref.
html

[12] S. Jiang,S.W. Smith,K. Minami. “SecuringWebServers
against Insider Attack.” ACSA/ACM Annual Computer
SecurityApplicationsConference. December2001.

[13] K. Kain, S.W. Smith,R. Asokan.“Digital Signaturesand
Electronic Documents: A CautionaryTale.” Sixth IFIP
Conferenceon CommunicationsandMultimediaSecurity.
2002.To appear.

[14] Konqueror. http://www.konqueror.org/
konq- browser.html

[15] M. Maremont.“Extra! Extra!: Internet Hoax, Get the
Details.” TheWall StreetJournal.April 8, 1999.

[16] The Mozilla Organization. http://www.mozilla.
org/download- mozilla.html

[17] E. Norman(Universityof Wisconsin).Personalcommuni-
cation,April 2002.

[18] A. Perrig and D. Song. “Hash Visualization: A New
Techniqueto Improve Real-World Security.” Proceedings
of the 1999 International Workshop on Cryptographic
Techniquesand E-Commerce (CrypTEC ’99). 131-138.
July 1999.

[19] J. Rome. “CompartmentedMode Workstations.” Oal
RidgeNationalLaboratory. http://www.ornl.gov/
˜jar/doecmw.pdf April 23,1995.

[20] S.E.C.v. Gary D. Hoke, Jr. Lit. Rel.No. 16266,70 S.E.C.
Docket 1187 (Aug. 30, 1999). http://www.sec.
gov/litigation/litreleases/lr16266.htm

[21] S.W. Smith. WebALPS: Using Trusted Co-Servers to
Enhance Privacy and Security of Web Interactions.
ResearchReportRC 21851, IBM T.J. WatsonResearch
Center, October2000.

[22] S.W. Smith. “WebALPS: A Survey of E-Commerce
Privacy and Security Applications.” ACM SIGecom
Exchanges.Volume2.3,September2001.

[23] S.W. Smith, D. Safford. “Practical Server Privacy Using
SecureCoprocessors.” IBM SystemsJournal.40: 683-695.
2001.

[24] B. Sullivan. “Scam artist copies PayPal Web site.”
MSNBC.July 21, 2000.(Now expired,but relateddiscus-
sion exists at http://www.landfield.com/isn/
mail- archive/2000/Jul/0100.html)

Appeared at the 11th USENIX Security Symposium, Aug 2002. 16

[25] J.D.TygarandA. Whitten.“WWW ElectronicCommerce
andJava Trojan Horses.” TheSecondUSENIXWorkshop
onElectronicCommerceProceedings.1996.

[26] R. Weiser(DST).Personalcommunication,August2001.

[27] A. WhittenandJ.D.Tygar. “Why Johnny Can’t Encrypt:A
UsabilityEvaluationof PGP5.0.” USENIXSecurity, 1999.

[28] Z. Ye. Building TrustedPathsfor WebBrowsers.Master’s
Thesis. Departmentof Computer Science, Dartmouth
College.May 2002(to appear).

[29] E. Ye, Y. Yuan,S.W. Smith.WebSpoofingRevisited: SSL
and Beyond.TechnicalReportTR2002-417,Department
of ComputerScience,DartmouthCollege.February2002.

Appeared at the 11th USENIX Security Symposium, Aug 2002. 17

