Dartmouth College Computer Science Technical Report TR2001-400

An Armored Data Vault

Alex Iliev
sasho@cs.dartmouth.edu
Senior Honors Thesis. Adviser: Sean Smith.

June 1, 2001

Abstract

We consider the problem of secure long-term archiving of network traf-
fic, an instance of the problem of storing private data securely. We ap-
proach the problem using secure hardware, which enables the enforcement
of flexible access policy. The policy cannot be circumvented by anyone,
even insiders, and so we are assured that access to the data is as origi-
nally intended. The policy can be expressed as any feasible computation,
as it will be checked inside the secure hardware without possibility of in-
terference. We discuss our design of a device to perform such network
data archival and have implemented a prototype device. We discuss other
possible application areas of the design.

1 Introduction

In this work we examine the problem of storing data with assurances as to how
it will be used. We examine in detail the secure storage of network data, but
one should keep in mind that many of the questions explored and techniques
used are much more general. Flexibility in specifying allowed usage, and then
enforcing the specified usage pattern are big questions, and network traffic stor-
age provides a useful instance of these questions. Such storage has also become
a hot topic lately, with much contention between parties wanting access to data,
and those who do not want to have their data be seen.

The system we describe in this paper can take over an important part of the
whole social process of controlling access to private data—enforcing the rules
once they are in place. This job is arguably better left to a machine, the less
likely to be disturbed the better. Having an impartial machine acting securely

as arbiter to stored data can leave policy-makers in the much improved position
of being able to decide on policies which may be desirable but impractical for
difficulty of enforcement.

The armored vault we describe is the beginning of a system which can poten-
tially relieve the difficulties of trusting humans with one’s private information.
It is the next step from a security perspective after the Packet Vault, which
began the exercise of cryptographically secure mass collection of net data.

Section 2 describes in some detail the motivations behind the Packet Vault
and our Armored Vault. Section 3 describes our design, and Section 4 our
implementation of the prototype. We conclude with a discussion of the relation
of our work to the Advanced Packet Vault, the wider applicability of the design
of our vault, and general future work.

2 Background

Here we examine some developments motivating our subject matter of compre-
hensive network traffic archives, and the utility of armoring.

2.1 Evidence collection

Examination and storage of network data has become an important discipline
lately. In the US, controversy has been publicly raging since the revelation of
Carnivore, a tool to wiretap network communication at ISP’s. Carnivore is a
software system designed to run at an ISP and collect communications of the
parties under surveillance. Privacy advocates attack Carnivore on the grounds
that such a system, once established and accepted, will allow the government
to wantonly spy on individuals without their knowledge. They claim that even
if the FBI acts in good faith, the system is technologically incapable of en-
suring that data usable as evidence is collected in a minimal fashion—without
obtaining information about parties not involved in the investigation. Some
objections include: difficulties in obtaining the exact data which the recipient
of the communication does, difficulties in keeping up selection algorithms with
a highly loaded network, following assignment of IP addresses, and handling the
general complexity of network protocols in order to extract useful information.
All these accusations are of course speculations, as the FBI has not made the
working mechanisms of Carnivore public.

An independent technical review of Carnivore [SHHPKMO0] concluded that
it is largely technologically sound, and will err on the side of under-collection

if the exact data needed is difficult to select from the network. They do give
that this is dependent on correct configuration for the case in question though.
There were high-profile followups to report though, like [BBF*00], which points
out more questions and warns that there is a long way to go before Carnivore
is ready for use.

The FBI defends Carnivore as being necessary to keep up with the Internet
Age criminal. Tt claims that its use of Carnivore is exactly analogous to tele-
phone wiretaps—only after authorization from a Federal judge, after which the
collected data is subjected to the full scrutiny of the legal system.

To make the network archival question even hotter, law enforcement agencies
in the European Union have pushed into consideration by governments their
demands that all communication data be archived for extended periods—from
[oPC00]:

It is impossible for investigation services to know in advance which
traffic data will prove useful in a criminal investigation. The only
effective national legislative measure would therefore be to prohibit
the erasure or anonymity of traffic data.

This kind of approach to chasing criminals on the Internet is potentially much
more privacy-invading than the comparatively tame-looking Carnivore.

2.2 Complete archival of net traffic

Storing all network traffic is clearly not as wild an idea as one might think. Only
from the law enforcement perspective it has many advantages over attempting
to filter out the needed data on the fly and discarding everything else:

e As quoted above from [oPCO00], authorities often do not know in advance
where evidence may be picked up.

e Filtering for the needed data could be a complicated operation—reconstruction
of several protocol layers, keeping track of dynamic IP assignments all take
time. The speed of net traffic may be such that real-time filtering is un-
feasible.

Moreover, traffic could be stored for other reasons, as research data for
example.

2.3 Previous Work: The Packet Vault

The Packet Vault described in [AUH99] is the pioneering device to securely
record all network traffic. It achieves the performance necessary to capture
10MB ethernet traffic, with ongoing work to accommodate 100MB networks too
[ACO00]. It attempts to store packets securely, so that they may be accessed only
through the security mechanism imposed by the vault. The security mechanism
is as follows: in an archive (on a CD-ROM) host-to-host conversations are
encrypted with separate secret keys, and the set of these keys is encrypted using
a public key algorithm (PKA) with the private key held by a trusted entity, the
overseers. Access to the archived data is accomplished by getting the overseers
to decrypt the secret keys for the desired conversations, which they presumably
do once they decide all access conditions are satisfied. This approach leaves
many questions unanswered, basically involving insider attack and flexibility.

2.3.1 Vulnerability to insider attack

The Vault depends on the trustworthiness of the overseers. If they are law-
enforcement personnel for example, trusting a complete record of network traffic
to them seems objectionable. It is not very different from letting them have a
cleartext record of the net traffic, and trusting them to use it as all concerned
parties (those who have data from/about them stored) would like. Even if the
overseers act in good faith, their private key may be compromised, which could
either expose all the archives on which the public key of the pair was used, or
necessitate the archives’ destruction.

2.3.2 Access flexibility

Accessing the archived packets is not very flexible. Full access or no access to
some set of conversations can be granted to a requester; nothing else is possible.
Some other useful access possibilities which the Packet Vault does not provide
for are:

e Accessing data at finer granularity than a conversation. Rounding to the
nearest conversation could either skip needed data, or over-select to the
extent of making the released data unsuitable for evidentiary use. Simply
using different secret keys for smaller chunks than conversations cannot
solve this as we will eventually have to have a different key for every bit.
A purely cryptographic solution cannot be complete, some computation
has to take place to perform arbitrary selection of the data.

e Proof of the source of the released data. The only thing we have in the
vault system is the assurance of the overseers that they authorized the
access, at the alleged time. A simple extension (mentioned in [AUH99])
consisting of securely time-stamping and signing the data released could
help here.

e Altering the packet data granted in some way, or giving output calculated
using the archived packets and not the actual packets. Such a capability
could be useful in a lot of applications—law enforcement may want to
detect the presence of some party under investigation without needing the
full record of their activities, system administrators could want to detect
the presence of various attacks without needing to know the exact targets,
researchers could want anonymous data for experiments (say with blanked
IP numbers) or statistics of the net traffic.

This particular feature cannot be provided by some simple cryptographic
or other extension to the Packet Vault. By definition, computation must
be done on packets which must not themselves be seen in their original
form.

Notice that all the above features could be provided by trusting the overseers
to perform them, for example perform calculations on the stored packets and
give us results. Trusting refers not just to the integrity of the overseers, but
also to the integrity of the machines on which they perform their computations.
If these machines are compromised by intruders, the computation the overseers
claim (and believe) to have performed could be maliciously modified.

3 Design

3.1 Overview

The previous discussion suggests a secure solution to the problem of providing
more flexible access to stored archives—perform any computation needed inside
secure hardware instead of trusting the overseers to do it. Moreover, we can
examine the functions of the overseers in the current Packet Vault design:

e Hold an encryption keypair which effectively allows complete access to the
archived data.

¢ (Potentially) hold a signing keypair to certify data they have let out of
the archive.

e Make decisions about how entitled a requester is to receive the data they
seek. This they do using whatever electronic or conventional means (“I
know this guy”) they have at their disposal.

These are functions which a trusted machine could perform just as well. The
last point is the most difficult to translate to a machine, since we are moving
into a purely electronic authorization domain, but this field is rapidly evolving
and more and more solutions will be found.

With the above in mind, an initial design for combining the overseer function-
ality in the Packet Vault and the power which the ability to apply computation
to our data can bring could be as follows.

e The overseers are simply replaced with a secure machine (call it Solomon)
which possesses an encryption keypair and a signing keypair, a description
of how to evaluate the “worthiness” of requests for data, and a description
of what computation must be done to select and/or process traffic data
to be given to a requester.

e The stored traffic is all encrypted with Solomon’s encryption keypair. If
we do not wish to trust someone to do this part, we could get Solomon to
do it too.

e Requests for access to the stored data are given to Solomon, who can then
(1) evaluate if the request is worthy of being honored, (2) compute what
data is to be released and (3) perform whatever computation is needed on
that data to produce the final result, which it then signs and releases.

Our design for an Armored packet vault, proposed in [SAH00], is a variation
of the above theoretical beginning. It consists of two secure coprocessors—the
secure machines—one for collecting the net traffic and producing archives, and
the other for arbitrating access to the archives. We refer to them as the Encoder
and Decoder respectively. We use two because their tasks could be separated
by space and time, and also the job of the Encoder is high-load and continuous.
The Encoder encrypts the stored traffic using the Decoder’s encryption key, and
signs the archive using its own signing key. The Decoder must decide if access
requests against archives are authorized, decrypt the archive in order to perform
selection of the desired data, compute the query result using the selected data
(this computation could be just returning the selected data) and sign this final
result. This is shown in Figure 1.

Traffic

Encoder

/

A

Archive

The decoder public encryption key
is given to the encoder

Access request |

Decoder

URAHSHRNS Qe

IPSomRiodEr IRy

Holds
|
""" O e

Figure 1: Overview of armored vault design. Details of the cryptographic orga-
nization are described in Section 3.4.

3.2 The secure hardware
3.2.1 Overview

The secure machine we use is the IBM 4758 programmable secure coprocessor
[SW99, Smi01]. These coprocessors can

e Be programmed in C, with full access to an embedded OS (CP/Q++ from
IBM) and hardware-accelerated cryptographic functionality.

e Carry out computation without possibility! of being observed or surrep-
titiously modified.

e Prove that some given data was produced by an uncompromised program
running inside a coprocessor. This is done by signing the data in question
with a private key which only the uncompromised program can know.
Details of this process follow.

The coprocessors are realized as PCI cards attached to a host workstation.
Currently drivers exist for Windows NT /2000, Linux, AIX and OS/2 hosts.

3.2.2 Owutbound Authentication

The 4758 includes a mechanism for proving that output alleged to have come
from a coprocessor application actually came from an uncompromised instance
of that application. This is achieved by signing the output with an Applica-
tion keypair, generated for the application by the coprocessor, and providing a
certificate containing the public key of the signing pair, and a certificate chain
attesting to the application certificate. In this chain is the identity of the appli-
cation too. The structure of the chain is shown in Figure 2. To establish that
the coprocessor application which produced some signed output is the expected
one and is uncompromised:

1. Verify the signature using the public key in the application certificate.

2. Verify that all the certificates are signed as appropriate by their parent
certificates.

3. Verify that the identity of the application, stored in the Layer 2 certificate,
is what we expected. This identity includes things like program name,
developer ID and program hash. The identity of the OS in Layer 2 can
also be verified.

las defined by FIPS 140-1 Level 4 validation

When this is done, we can be certain that the correct program produced the
signed output. See [Smi0l] for a comprehensive treatment of Outbound Au-
thentication in the 4758.

3.3 Access Policy

We gather all the information relating to how archives are to be accessed into
an access policy. The policy is thus the central piece of the armored vault.
The Decoder will give access to the archive only in accordance with the access
policy, and no one can extract any more information, since the design of the
coprocessor precludes circumventing its programmed behavior.

To represent access policies we use a table, whose rows represent different
entry points into the data, and whose columns represent the parameters of each
entry point. Anyone wanting access must select which entry point to use, and
then satisfy the requirements associated with it.

3.3.1 Entry point parameters

The first two parameters define how the decoder will select the initial data of
interest from the archive.

Request template This is a template of a query selecting the desired data,
with parameters to be filled by a particular access request. We call the
format of the query the data selection language. An example could be “All
email to/from email address X”.

Data subset A fixed expression in the data selection language which limits
this entry point to some subset of all the archived data. This could be
something like “email traffic only”. The query generated by the request
template would then be matched only against data contained in this sub-
set.

The following two parameters define how the decoder decides whether a
request is legal.

Macro limits Limits on various properties of the result of the query. These
could be things like total number of packets or bytes in the result, how
many hosts are involved in the resulting data, or packet rate with respect
to time at the time of archival.

IBM Root Cert

Publically available

'

Device Certificate

Generated at manufacture
Never changed

l

Layer 2/0S certificate

contains the identity of

Layer 2 (the OS) and
Layer 3 (the application)

Updated by Miniboot

on every layer 2 or 3
reload

Application certificate

contains apublic
key of the application

(signing or encryption)

— ="ggns’

Figure 2: Simplified certificate chain attesting to an application keypair, and
containing the application identity. Layers in the 4758 represent different stages
in the startup process. Layer 0 is the first boot code in ROM (Miniboot 0), Layer
1 is the subsequent boot code (Miniboot 1) replaceable in Flash, Layer 2 is the
0S8, and Layer 3 is the application. Layers also represent a progressively tighter
security environment, essentially with higher layers unable to observe or modify
data in lower layers. When an application is loaded into layer 3, Miniboot 1,
which handles the process, replaces the layer 2 certificate with a new one, which
indicates the identities of the OS in layer 2 and the application in layer 3. Note
that some certificates are missing from this chain, but their presence does not
modify the usage of the chain described in Section 3.2.2

10

Authorization The authorization requirements for this entry point. These
could be something like “Request signed by two district judges”. See also
Section 6.3.

This parameter defines how the Decoder will compute a final result for the
query based on the initial data selected.

Post-processing A procedure to apply to the data picked out by the query to
produce the final result to hand back to the requester. Things like “Scrub
all IP addresses” or some kind of statistical analysis of the data.

The procedure for requesting data from the archive will be to indicate an
entry point, and provide parameters for its request template. The request will
contain the preliminary authorization data needed? to satisfy the requirements
of the chosen entry point, for example be signed by all the parties who need to
authorize the access.

The actual policy has to balance the opposing motivations of (1) enabling
all legal queries®, as decided at the time of archival, to be satisfied and (2)
ensuring that there is no way for anyone, even rogue insiders, to gain access
to more of the data than was intended. Note that ”more” here means not just
more bytes of data, but essentially more information about the archived data.
For example failure to blank an IP address where it was intended to always be
blanked represents giving access to more data than intended.

3.4 Cryptographic organization

The top-level cryptographic organization of the armored vault is as shown in
Figure 1. Here we describe the details of each step.

The Encoder must be initialized by giving it the public encryption key of
the Decoder which will control access to the archives produced by this Encoder.
The key is contained in an Application Certificate, part of a chain as described
in Section 3.2.2.

The Encoder produces an archive which is structured as shown in Figure 3.
Encryption of the stored packets is two-level—first the packets are encrypted
with a TDES session key, and then the session key is encrypted with the stored
public encryption key of the Decoder. The Encoder provides verification for the
archive as described in Section 3.2.2.

2The authorization environment in use could require followups to the outside by the De-
coder.
3potentially far in the future

11

Packets

Covered by
Signature

Policy

RSA
TDES Session Key Encrypted

Signature

Encoder Certificate
Chain

Figure 3: Structure of the archive. Note that the keypairs to encrypt the session
key and to sign the archive are quite distinct.

12

When the Decoder receives a request against an archive, it verifies the archive
by checking the signature and the identity and supporting chain of the Encoder
which produced the archive. It then decrypts the session key using its private
encryption key, decrypts the packet dump using the session key, and carries on
with processing the request. When the final result is computed, it signs it in
the same way that the Encoder signs an archive.

4 Implementation

4.1 Overview

Our setup consists of a Linux PC acting as the host to both the Encoder and
Decoder cards. We picked Linux because we prefer open systems, and the
Linux driver for the 4758 is open-source. See also Section 6.2. We used a PC
with Windows 2000 to run the visual debugger for the 4758, connected to the
cards with a serial cable. The visual debugger for Windows is more stable than
the command-line debugger which exists for Linux, but otherwise equivalently
powerful. An attempt at running the Windows debugger in Vmware on the
Linux host was not entirely successful—the debugger was less stable than the
one running on a real W2K installation.

The host-side user interface to the prototype vault consists of a command-
line program which performs two tasks with the Decoder:

e Request its public encryption key/certificate together with a certificate
chain (see Section 3.2.2) attesting to the key. For now the certificates
are in the format used by the secure cryptographic coprocessor (SCC)
interface of the 4758.

e Run a request for data against an archive previously made by the Encoder.
and two tasks with the Encoder:

e Set the encryption key and supporting certificate chain of the Decoder
this Encoder is to work with.

e Produce an archive given a 1ibpcap-format packet dump. This can only
be done after a partner Decoder is established by supplying its public
encryption key.

Packet dumps can be produced by any packet sniffer program which uses
libpcap as its packet-capture mechanism (as libpcap includes a mode to just

13

dump the packets in binary form). Two possibilities are the quintessential
tcpdump, and snort.

4.2 Encoder operation

The Encoder takes a 1ibpcap-format packet dump and produces an archive, as
shown in Figure 4. It performs everything described in our design, but being
an early prototype is limited to processing only as much data as will fit into the
coprocessor at once (1-2 MB).

4.3 The data selection language

We use an existing package, Snort [Roe99], to provide the packet selection ca-
pability in our demo. Snort is a 1ibpcap-based NIDS which can select packets
using the Berkeley Packet Filter (BPF) language as well as its own rule sys-
tem which features selection by packet header fields (as does the BPF) as well
as selection by packet content. This rule language is our data selection lan-
guage. The snort rule system is described in detail at http://www.snort.org/
writing_snort_rules.htm.

We chose Snort as it is an Open Source tool in active development, and
active use. Important features are IP defragmentation, the capability to select
packets by content, and a developing TCP stream reassembly capability.

4.3.1 Porting Snort

We had to compile a subset of Snort (essentially the packet detection system) to
run inside the Decoder card and interpret requests for data. The full program
includes many references to Unix syscalls, but the sections which did were ir-
relevant inside the card (for example alerts to a Unix-domain socket) and were
macro-selected out.

We had to supply implementations for non-STDC functions which were still
needed for packet detection and processing, like inet_ntoa and getprotobynumber.

The major challenge were the stdio functions to enable the transfer of data
to and from Snort when it ran inside the Decoder. The coprocessor runtime does
not provide the stdio functions involving FILE structs. This makes sense be-
cause the embedded OS, CP/Q++, has no filesystem as such. We implemented
a “filesystem” by writing implementations for a few of the POSIX filesystem

14

Packet Dump

Access Policy

/ (A string constant)
q

TDES Generate TDES
Encrypt < Session Ke

6 94 SA Encrypt wi

ecoder encr.

Produce signature
with encoder signing

S7anmmni

6 9<_Cert. chain attesting

to encoder signing key

Archive

@ = concatenate

Figure 4: Encoder procedure, from a packet dump to an encrypted and signed
archive.

15

calls (open, write etc.). These functions pass on the real work of the call to a
module which is selected based upon the file’s name. In C++ this would have
been an abstract base class with methods like write and close, and concrete
derived classes providing different implementations.

In this prototype we simply had files named /membuf/* be handled by a
module which used a simple memory buffer to store data. During a Decoder
run we put the packet dump in a buffer, set up a “file” called /membuf/dump
ready to read from this buffer, and ran Snort telling it to look for the dump in
/membuf /dump.

This filesystem mechanism can be extended to handle any type of IO we may
wish to do, by providing new modules. We currently have a module to store
files on the host, which will be a part of dealing with the very limited storage
(RAM and Flash) in the coprocessor.

4.3.2 Snort rules

Snort rules specify what packets the NIDS selects for further processing (like
logging or alerts). They select packets based on packet parameters, with options
to match on any of the headers desired, as well as packet contents. A simple
example to select TCP packets from the http port for logging is

log tcp any 80 -> any any

This only performs matching on packet headers. It could be read as “log TCP
packets coming from any host, port 80, going to any host, any port”. A fancier
example (from the snort website) using content matching to produce an alert
on noticing a potential attack is

alert tcp any any -> 192.168.1.0/24 143 (content: "|90C8 COFF FFFF|/bin/sh";
msg: "IMAP buffer overflow!";)

The content option is given, as are all options, inside parentheses.

4.4 Decoder operation

The Decoder implements our design (limited to small archives which can fit in
the coprocessor at once), with the following exceptions:

16

e No post-processing is currently possible. This will be a bit of work to
implement fully, with reasonable capabilities, so we did not attack it in
this prototype.

e The data-subset field of the access policy is ignored. This was for the
rather mundane reason that we could have used Snort’s BPF filtering
capabilities here, but the BPF code was rather too Unix-entangled to be
ported easily. Snort allows the usage of a BPF expression which is applied
to all packets and only those passing the filter proceed to other processing,
like selection via the Snort rules. This capability was functionally perfect
for our data-subset requirements, but again some work to port.

e It has no authorization capabilites, except simple macro limits.

The detailed Decoder operation is shown in Figure 5.

4.5 Access Policy

We implement the access policy as XML-format text, with a row tag for the
entry points (rows in the policy table), inside which are tags for all the entry
point fields, with the exception of post-processing which we have not imple-
mented yet. We do not have a document type definition (DTD) yet, and use
very quick and simple “parsing” of the table. The table used in the current
version of the prototype is shown in Figure 6.

4.6 Request Structure

Requests consist of a set of name=value assignments, one for the row number
from the policy table through which the request is going, and the rest assign-
ments for the request template of the chosen row. An example which could be
used with our sample policy in Figure 6 is

row=1
port=80

17

Archive Request

//\

Supporintg
Session ey | Signature chain

Ciphertext |q— — — |- — 1

Packet
dump

Authinfo

Template parameters

Matched heck macro
packets limits

Output

Figure 5: Decoder operation. The Decoder uses constant character strings in-
serted by the encoder between sections to perform all the splits. The separator
strings are about 30 characters long, and the probability of them appearing ran-
domly in the archive (and thus foiling this approach to sectioning) is negligible.

18

<policytable>

<title>
Experimental table
</title>

<row>

<reqtemplate>

log tcp any $port -> any any (content:"sasho"; logto:"snort.asc.out";)
pass tcp any any <> any any

</reqtemplate>

<datasubset>
</datasubset>

<macrolimits>
$total_packets < 100
</macrolimits>

<auth>
</auth>

</row>

</policytable>

Figure 6: Current prototype policy. This policy allows the selection of TCP
packets containing the word “sasho”, and coming from some port specified in
the request (eg. “port=80”). If two or more packets match, the request will
be declined. Note that the “logto” option in the Snort rule should really be
added by the Decoder, as it is an implementation detail, not a part of the
policy. The same applies to the “pass” rule, which has the effect of ignoring
the remaining packets, unmatched by the “log” rule. Thus, once these Decoder
manipulations are implemented, the “reqtemplate” element in this case would
read log tcp any $port -> any any (content:'"sasho";)

19

5 Discussion

5.1 Our Implementation
5.1.1 Snort

This was one of the successful aspects of this prototype. Snort is a very capable
packet detection engine, and it runs happily inside the secure coprocessor. It
will enable us to extend our policy capabilites considerably, especially when we
start to consider application-level data selection, and reassembled TCP streams
become important.

5.1.2 The policy

Our current prototype policy (in Figure 6) is fairly basic, but it does demonstrate
many key points about the armored vault:

e Selection of packets can be computation-based. There is no way to select
packets by content using differentiating cryptography* alone.

e Authorization decisions can be computation-based, and secure since they
are running inside secure hardware. In this case, even in the absence
of a PKI to perform full authorization, an authorization decision can be
made based on the number of packets in the result—no query with more
than one matching packet will be authorized. Since computation must
be performed to calculate such properties of the matching data set, this
cannot be done securely without using secure hardware.

We have not yet implemented post-processing of the initial matching packets,
but this will be one of the next steps.

5.1.3 Performance

High performance was not one of the targets of our prototype, but we include
some figures. The Encoder could process a 1.6 MB packet dump to produce an
archive in 6 seconds. A 630K dump took 2.3 seconds. A 2.0 MB dump failed
due to lack of memory (the 4758 model we use has 4 MB of RAM).

4

meaning that different sections of the stored archive are encrypted with different keys

20

A Decoder run (without restrictions on packet number returned) on the 630K
archive (1000 packets) which selected 105 packets took 6.3 sec. This figure is
more indicative of real performance because a more complete version of the
Decoder will use essentially the same approach to processing an archive as the
current one. On the other hand, we will be working on the speed of the Encoder,
especially for larger data quantities.

5.2 Relation to the Advanced Packet Vault [ACO00]

One of the primary concerns of the Advanced Vault project is speed—to enable
the vault to keep up with a 100Mb network at high load. The major areas
of concern are system questions of keeping packets flowing into their final long-
term storage as fast as they are picked up. Since we do not, nor do we intend to,
consider questions of system infrastructure, our work can combine well with the
Advanced Vault project to produce a fast and more secure device. The 4758
Model 2/23 secure coprocessor can perform TDES on bulk data at about 20
MB per second, which is sufficient to keep up with the Advanced Vault system
infrastructure on a 100 Mb network.

5.3 Wider Applicability of the Design

The problem of storing network packets securely and with an attached access
policy can be generalized to one of storing any data securely and with an access
policy. Some concrete applications could be the following:

5.3.1 Remote data storage

We have close ties with the Condor Project at the University of Wisconsin in
Madison®, who have expressed an interest in remote storage of large data sets
with associated access controls. This problem falls squarely into our system
of securing data with flexible and assured access policy. If a researcher at site
A wants to send data to site B, but ensure that the data is accessed only in
accordance with some policy, she could proceed as follows. She uses a version
of our Encoder to secure the data and attach her policy. She sends the data
to site B, who have the Decoder to work with the data. They can gain only
the kind of access site A specified. For example access could be limited to
some specific research group, or the data can only be accessed a limited number
of times, or some details about the data must always be hidden even if they
are used in calculations inside the vault. One coprocessor may suffice in this

Shttp://www.cs.wisc.edu/condor/

21

scenario, and it would have a different user interface than the armored packet
vault (operating via an SSL connection to a client program perhaps), but the
basic idea of computationally-expressed access control executed inside secure
hardware remains.

5.3.2 Academic PKI

An academic PKI is an area of interest for the Dartmouth PKIlab, and one of
the questions that arises is what to do about confidential student data which
may have to be disclosed under special circumstances. As an example, email
on the school mail servers is considered confidential, but computing personnel
have to provide access to it in the case of a legitimate law enforcement request.
If students hold encrypted data in a PKI environment, there may be reasons
to have access to it under special circumstances. Key Escrow is one solution,
whereby the authorities have a master key, or know a trapdoor which allows
access to the data in question. The possibility exists that the authorities may
have a lapse of consciousness, or their equipment may let them down, resulting
in undesirable (from the combined perspective of all parties involved) exposure
of data.

If access to such student data is controlled by a data vault with an access
policy, the exact circumstances under which data access may be granted can be
spelled out, and will be adhered to.

6 Future Work

6.1 Immediate Work

We plan to expand our prototype along these major directions:

6.1.1 Performance

The limitation of requests and archives being able to fit inside the coprocessor
is unacceptable, and will be lifted. We will augment the current arrangement to
enable arbitrary-sized packet dumps and archives to be passed into the vault co-
processors. Then archive size will be decided by the long-term storage medium,
like CD-ROM.

22

Related is the ability of the Encoder to capture packets in real-time. First,
we plan to attach the Encoder card to a packet source (some sniffer) to enable
live data collection. See the next section for further work.

6.1.2 More Capable Policy

The capabilities of the policy mechanism are very limited currently. The query
language (Snort rules) is very flexible, but the macro limits and authorization
procedures are very bland. We plan to implement limits on more parameters
like packet quantities/rates and number of hosts involved. On the authoriza-
tion side, the first thing would be to implement history checking services of some
kind so that decisions on allowing access now can be made based on accesses
in the past. A full authentication of requests would depend on some identifi-
cation/authorization infrastructure (like SPKI) and so we expand more on it
in Section 6.3. For post-processing, we will implement scrubbing functions to
erase any packet parameters required.

6.2 After the Immediate Work

As pointed out in [BBFT00], it may be necessary to consider selecting data at
a sub-packet level, which would be a part of enabling access requests at the
application layer rather than the network/transport layers as is the case now.
Snort has a developing TCP stream reassembly functionality which will be very
useful in this regard.

We plan to address the implementation difficulty of performing external-
external® TDES encryption and SHA1 hash calculation in one operation on the
4758. External-external operation is needed to obtain the high speeds necessary
for handling a high network load, but two separate operations—for encryption
and hash calculation—would leave the data open to modification on the host
before its hash is produced. Enabling this serialization of DES and SHA could
involve modifications to the existing host device driver.

Another approach to the secrecy-authenticity procedure on the Encoder is
the encryption mode described in [Jut00], which adds message integrity checking
at the cost of logn extra block encryptions. This approach would have the
drawback that the DES hardware on the 4758 may not be able to directly
handle this new mode.

As described in the proposal [SAHO00], the binding of an archive to a single

8Whereby the coprocessor DES hardware operates directly on buffers on the host (vie PCI),
without the data ever being placed in coprocessor memory.

23

Decoder leaves the door open to denial of service attacks through Decoder de-
struction (just a tamper attempt will do the job). This binding is the current
way of ensuring that the archive is accessed only through its attached policy,
and there are no easy alternatives for achieving this assurance. Investigating the
question will be important in making the armored vault practically acceptable.

6.3 Long term work

A serious part of a fully viable data vault system will be integration into an
identification/authorization infrastructure, most likely some type of PKI. This
would enable us to implement policy requirements like “authorization from three
school officials ranked above the post of dean” by using what mechanisms the
PKI offers for establishing posts/officers. Ongoing PKI work at Dartmouth
could be very useful here.

7 Acknowledgments
This project was supported in part by Award No. 2000-DT-CX-K001 awarded
by the National Institute of Justice, Office of Justice Programs.

The opinions, findings, and conclusions or recommendations expressed in
this publication are those of the author(s) and do not necessarily reflect the
views of the Department of Justice.

This work was also supported by Internet2/AT&T.

The author was supported in large part by Iguana.

I am grateful too to my adviser Sean Smith for guiding me through my first
and not last journey into questions of computer security.

References

[AC00] Charles Antonelli and Kevin Coffman. Advanced packet
vault. http://www.citi.umich.edu/projects/vault-adv.
html, 2000. Project description.

[AUH99] C.J. Antonelli, M. Undy, and P. Honeyman. The packet vault:
Secure storage of network data. In Proc. USENIX Workshop on

24

[BBF+00]

[Jut00]

[oPCO00]

[Roe99]

[SAHOO]

[SHHPKMO0]

[Smi01]

[SW99)]

Intrusion Detection and Network Monitoring, Santa Clara, April
1999.

Steven Bellovin, Matt Blaze, David Farber, Peter Neumann, and
Eugene Spafford. Comments on the carnivore system technical
review. http://www.crypto.com/papers/carnivore_report_
comments.html, December 2000.

Charanjit S. Jutla. Encryption modes with almost free message
integrity. Cryptology ePrint Archive, Report 2000/039, 2000.
http://eprint.iacr.org/.

EU Working Party on Police Cooperation. Relations between
the first and third pillars on advanced technologies, Nov 2000.
ENFOPOL 71, REV 1.

Martin Roesch. Snort - lightweight intrusion detection for net-
works. In 18th Systems Administration Conference - LISA
’99. USENIX, November 1999. http://www.usenix.org/
publications/library/proceedings/lisa99/roesch.ht’ml.

S.W. Smith, C.J. Antonelli, and Peter Honeyman. Proposal: the
armored packet vault. Draft, Sep 2000.

Stephen P. Smith, Jr. Henry H. Perritt, Harold Krent, and
Stephen Mencik. Independent technical review of the carnivore
system. http://www.usdoj.gov/jmd/publications/carniv
final.pdf, Dec 2000.

Sean W. Smith. Outbound authentication for programmable se-
cure coprocessors. Submitted, Mar 2001.

Sean W. Smith and Steve Weingart. Building a high-
performance, programmable secure coprocessor. Computer Net-
works, 31:831-860, 1999.

25

