Secure Public-Key Services For Web-based
Mail

A sketch of a secure e-mail environment

Evan Knop
Advisor: Prof. Sean Smith

Summer 2001

Abstract

Many people believe that electronic mail ought to have the same privacy as
paper mail; strong encryption may be used to insure that messages which
are sent across public channels are protected against examination or mod-
ification. For this purpose, several standards have been proposed and im-
plemented which use public-key cryptography to provide authentication and
privacy to RFC822 messages. The two most popular standards are S/MIME
and OpenPGP, each of which is supported by a variety of mail clients.

As the internet becomes more ubiquitous, and people want to access their
e-mail from any client, web-based interfaces to e-mail have become more
popular. Instead of using specialized mail clients, users want to be able to
access their messages from anywhere, using a web browser. Unfortunately,
this move to more centralized services is in direct conflict with the desire
to keep mail private by keeping private keys on a small number of secured
machines.

In particular, the user may not wish to trust the provider of the web-based
e-mail service with their private key. In this situation, a trusted computing
environment is needed to ensure that the web server cannot compromise the
private key, while allowing the user to authorize decryption and signing of
messages through a web-based interface. The IBM 4758 provides a secure
hardware coprocessor which can be used to protect the user’s secrets from the
system administrator and provide a trusted computing platform for decrypt-
ing and managing the user’s keys. Building on Shan Jiang’s master’s thesis,
WebALPS, we have researched and attempted to build a web-based S/MIME
user agent which would keep the user’s keys secured from the server operator.
Although the sofware was not completed, we learned several software engi-
neering lessons and created a paradigm for indicating the source and trust
level of displayed HTML source from a trustworthy and untrustworthy host
sharing an HTTP connection.

Contents

1 Introduction
1.1 Background Lo
1.2 Current Solutions
1.3 Current Status oL
2 Selection of Problem
2.1 Selection of Technology
2.2 OtherWork
2.2.1 Hushmail
2.2.2 TFS Secure Messaging-Server
3 Software Support
3.1 Library support
3.1.1 cryptlibo
3.1.2 Crypto++ L
3.1.3 Snacc
3.14 certlib
3.1.5 Getronics S/MIME Freeware Library
3.2 Webinterface
321 WebALPS
3.2.2 SquirrelMail Lo
4 Securing the Interface
4.1 Controlling content from the server
4.1.1 Filters
4.1.2 Filter Interface
4.2 Allowing the co-processor to serve pages
4.3 Indicating the status of the connection

4.3.1 Sessionexampleo 14

5 Results 31
5.1 S/MIME implementation 31
5.1.1 Operating system support 31

5.1.2 S/MIME specification 32

5.1.3 Library supporto 32

5.2 Future Directions oo 0oL 32
6 Conclusions 34
6.1 Library support 34
6.2 Standardsdesigno Lo 35
6.3 WebALPS design 36

i

Chapter 1

Introduction

1.1 Background

With the dramatic increase of Internet connectivity and e-mail use in the past
few years, there has been increasing demand to enable electronic communica-
tions to have the same security guarantees that exist for physical correspon-
dence. Furthermore, because of the heterogeneous nature of the Internet,
any new solutions must inter-operate (or at least not interfere with) existing
communications.

Current e-mail communication is based on the SMTP protocol described
in RFC 821 [12]. The format of e-mail headers is defined in RFC 822, and
message bodies general conform to the MIME standard described in RFCs
2045, 2046 and 2047 (Multipurpose Internet Mail Extension) [3, 4, 5]. Any
replacement electronic mail system must either conform to the guidelines of
the RFCs, or must define its own transport medium, message syntax, and
naming scheme. Furthermore, the transition between this new system and
the current system may also cause user confusion and system incompatibility.
For all of these reasons, most attempts to add capabilities have chosen to
extend the 7-bit ASCII protocol specified in RFC 822.

Two of the areas in which RFC 821/822 e-mail falls short of physical mail
are in securing and authenticating messages. Because RFC 821 does not
specify any method of verifying the identity of message sender , it is simple!
for a malicious host to send mail with a forged To: header. Similarly, RFC

! The most obvious example of this phenomenon is unsolicited commercial e-mail, often
called “SPAM.”

S/MIME PGP
old S/MIME v2 PGP/MIME
RFCs 2311-2315, 2268 | RFCs 1991, 2015
new S/MIME v3 OpenPGP
RFCs 2630-2633 RFC 2440

Table 1.1: Old and new public-key e-mail solutions

821 makes no provision for the transmission of encrypted or blinded messages,
“sending e-mail is like sending a postcard” — anyone along the delivery path
(which could include the administrators of third-party systems, or network
eavesdroppers) can examine and alter the contents of an e-mail message.

Both security and authenticity can be achieved using cryptographic meth-
ods. Using public-key cryptography, users can encrypt their messages so that
they cannot be read except by the possessors of certain private keys. Sim-
ilarly, e-mail senders can use digital signatures to prove their identity and
prevent tampering with messages which they have sent.

1.2 Current Solutions

Currently, there are two competing standards for formatting and encoding
public-key protected e-mail: S/MIME (Secure MIME, proposed by RSA,
Inc.) and PGP (based on the Pretty Good Privacy software). Each of these
standards has two versions currently in use, as shown in Table 1.1 [1].

These two solutions approach the goal from different ends of the software
spectrum: S/MIME is based on the X.509 certificate standard and the ASN.1
syntax defined by the ITU (International Telecommunications Union) and the
ISO (International Organization for Standardization), while PGP is based on
the binary format of the popular PGP application. Table 1.2 shows some of
the differences between the S/MIMEv3 and the OpenPGP message formats
[1].

Currently, there is no clear industry support for one format over the
other — plugins exist to enable PGP support in almost every mail client,
but products such as Netscape Communicator and Microsoft Outlook have
chosen to adopt S/MIME as their “built-in” public-key message format. One
advantage of S/MIME is that it supports the X.509 certificate structure which

Mandatory Features

S/MIMEv3

OpenPGP

Message format

Binary, based on CMS

Binary, based on PGP

Certificate format

Binary, based on X.509

Binary, based on PGP

Triple DES
(DES EDE3 CBC)
Diffie-Hellman (X9.42)

Triple DES
(DES EDE3 CFB)
El Gamal with DSS

Symmetric encryption
algorithm
Signature algorithm

with DSS
Hash algorithm SHA-1 SHA-1
MIME encapsulation Choice of multipart /signed
of signed data multipart /signed with ASCII armor

or CMS format
application /pkcs7-mime

MIME encapsulation
of encrypted data

multipart /encrypted

Table 1.2: Features of S/MIME and OpenPGP message formats

is considered the standard for most PKI (Public-Key Infrastructure) efforts.

1.3 Current Status

Although there exist client programs which will support either S/MIME or
PGP, these programs require that the user have local access to their pub-
lic/private key pair in order to perform e-mail functions. Because this key
pair acts as a digital “proof of identity”, it should be well-protected, which ar-
gues for putting it on as few machines as possible. The goal of protecting pri-
vate keys unfortunately restricts the number of clients machines from which
an e-mail user can access their mail. In the increasingly decentralized Internet
environment where many users may access their e-mail on many computers
(corporate desktop, laptop, home computer, public terminals, etc.), the re-
striction that only certain “secured” computers can allow a user to access
their messages is restrictive.

For many users where e-mail privacy and security is not an issue, web-
based e-mail interfaces have proved very successful in providing client-independent
access to e-mail. However, web-based e-mail interfaces do not offer the sort
of private-key assurances which users would expect from client-side software.
Because web services cannot offer these guarantees, there are few web-based

email services which provide support for PGP or S/MIME 2. As digital sig-
natures become legally binding, it becomes increasingly problematic to have
private keys stored on a third-party server — an unscrupulous server operator
could easily sign financially binding documents with the “unforgable” digital
signature of a user.

For these reasons, we decided to attempt to secure the private keys using
the IBM 4758 secure co-processor platform (hereafter known as “the 4758”
or “the card” [18, 13]. Sean Smith suggested many of these directions in his
WebALPS paper, in which he proposed using the 4758 to provide a remote
trusted computing environment [17]. We will building on the work of Shan
Jiang’s master’s thesis, in which he implemented a co-server called on the
4758 which would allow the co-server to participate in an SSL connection
between a client machine and a web host running the apache http server [11].
Using the trusted hardware/software platform of the 4758 and WebALPS, we
could assure that only the co-server and the client can perform private-key
operations. By using the 4758 to intercept only the necessary requests, much
of the load can be offloaded from the co-processor to Apache server software.

20n Freshmeat.net[6], ICEMail, a Java e-mail client, was the only package that pro-
vided any private-key options, and it included only S/MIMEv2

4

Chapter 2

Selection of Problem

2.1 Selection of Technology

The first decision we needed to make when we began this project was whether
we would support the S/MIME or OpenPGP format. Eventually, it would
be very satisfying to have a web-based mail client which could seamlessly
interoperate with both of these specifications, but it would be impractical for
our first attempt to support all the options of either interface, and attempting
to split our work between the two would simply degrade both.

One of the motivations for this project is that secure e-mail is one of the
obvious applications of a public key infrastructure. More generally, secure
web-based e-mail would allow testing of both the WebALPS framework de-
veloped by Shan Jiang and of the capabilities of the IBM 4758. We were
also concerned that there would need to be sufficient deployment to test
the interoperability of our solution with other implementations of the same
protocol.

In the end, we decided to implement S/MIMEv3, because of its inte-
gration with the X.509 certificate structure which forms the basis for most
PKI efforts. Also, there are several software packages which all serve to
implement the S/MIME standard, while OpenPGP is based mostly on two
implementations, GnuPG and the PGP-6.5 applications.

Because several major vendors recently began shipping S/MIMEv3-compliant
mail user agents. In particular, both Microsoft Outlook 2000 SRla and
Netscape Communicator offer some degree of support for S/MIMEv3. There
also exist plugins for existing mail clients (Baltimore’s MailSecure and SSE’s

TrustedMIME). Therefore, we will be able to test our implementation with
several other implementations.

2.2 Other Work

Before we began building our own secure e-mail service, we surveyed the
current options for securing e-mail without relying on a secure local disk to
store private keys. We found only one web-based public-key e-mail solution,
which actually relied on a Java applet to perform the actual private-key oper-
ations. The only other non-client-based solution we found was a product that
claimed to offload the public and private key operations to a trusted server,
but these products seem intended for use in a trusted-server environment.

2.2.1 Hushmail

Hushmail is a free web-based mail service which uses the OpenPGP format
to allow it’s users to create and manage public and private keys and to send
and recieve e-mail. Hushmail’s software is based on signed Java applets; all
public-key operations are actually done in the client’s JVM. Users create
keys using Hushmail’s account sign-up applet, which creates their public and
private keys, and then encrypts the private key using the AES cypher, with
a key based on an iterated SHA hash of the user’s passphrase. The public
and private keys are then stored on the Hushmail servers. Although this
mechanism seems relatively secure, the storage of private keys on third-party
controlled servers is problematic. Although the key which encrypts the pri-
vate keys is known only to the user, many of the private keys could probably
be recovered through a dictionary attack if the keys could be accessed from
the servers.

2.2.2 TFS Secure Messaging-Server

The TFS Secure Messaging-Server promises to allow organizations to apply
public-key encryption at the mail server, based on rules and policies defined
by administrators. The Messaging-Server offers support for both S/MIME
and OpenPGP, and supports both generation and import of X.509 Certifi-
cates. This product does not fall into the same category as Hushmail, be-
cause it seems to be intended to allow e-mail encryption on the mailserver

before mail is sent through a firewall to the internet at large. However, this
product might also be a candidate for application of the secure coprocessing
technology of the 4758, to protect the device from insider attack. (If one
applied the WebALPS method of an untrusted server and a secure co-server
to SMTP-over-SSL, this type of product could be the result.)

Chapter 3

Software Support

3.1 Library support

To perform the actual S/MIME decoding on the 4758, we needed to use a
cryptographic library to decode the X.509 certificates and (possibly) for the
operations to encode and decode the S/MIME envelopes and signatures.

3.1.1 cryptlib

We began the project by looking at cryptlib, a cryptographic library with
some support for the IBM 4758, as well as a high-level software interface
to S/MIME and X.509 certificates. Cryptlib is implemented entirely in C,
and it supports a large number of encryption modes and standard formats.
Cryptlib is commercial software, however the source code is available, and
there is a free license for non-commercial use of cryptlib.

When using cryptlib, we discovered a few limitations in the cryptlib soft-
ware, in particular, the need to use a keyset to store private keys. Keysets
are a collection of public and private keys and certificates which cryptlib can
store and access on a variety of media, including databases, LDAP directo-
ries, and fies. Unfortunately, the CP/Q embedded operating system running
on the 4758 has no support for any of these abstractions.

3.1.2 Crypto+-+

Crypto++ is a free library which provides access to a large number of con-
ventional and public-key encryption algorithms. Crypto-++ is intended to

serve as a library for encryption source, and does not provide high-level han-
dling of services such as X.509 certificates or S/MIME signatures. Also, the
interface to Crypto+-+ is implemented in C++, which is not available in
the 4758 development environment. For all these reasons, Crypto++ was
removed from consideration.

3.1.3 Snacc

Snacc is a tool for producing C parsers and data representations automat-
ically from ASN.1 syntax trees. Snacc is short for “Sample Neufeld ASN.1
to C Compiler”. Because of the need to use X.509 and the Cryptographic
Message Syntax, both of which are specified in ASN.1, we considered using
snacc to process these data structures, which would then be supplied to cus-
tom software libraries and the 4758’s crypto hardware to perform the actual
encryption and decryption. Unfortunately, the size of the ASN.1 specifica-
tions for X.509 and CMS, in addition to the lack of documentation and the
difficulty of reading or using the final flex/yacc output, caused us to abandon
this solution.

3.1.4 certlib

Certlib is a free software library for reading X.509 certificates, released by
Sun Microsystems for use in their SKIP Secure IP initiative. Certlib contains
code for reading and writing X.509 certificates used by S/MIME, but it
is unfortunately written in C++. Also, much of certlib is based on Sun’s
underlying C++ API, which would also need to be ported to C on the 4758.

3.1.5 Getronics S/MIME Freeware Library

Getronics has been contracted by the U.S. government to produce a free
S/MIME library in conjunction with the S/MIME v3 standards process.
The library is designed to be able to use a variety of cryptographic back-end
libraries to perform it’s processing. The library itself implements all of RFCs
2630 and 2634, and parts of RFC 2633 and 2632. The underlying crypto
library is responsible for implementing RFC 2631 and the remainder of RFCs
2632 and 2633. Unfortunately, the current back-end library modules exist
only for Crypto++, RSA BSAFE, and hardware crypto engines. Also, the

library only provides a very limited C interface, with most of the functionality
being provided by a C++ APL

3.2 Web interface

3.2.1 WebALPS

We have decided to build upon the foundations of the WebALPS project, as
this has already provided a platform where the 4758 can participate meaning-
fulling in a SSL-encrypted connection. In addition, there already exist some
hooks to allow for co-server filtering of requests to the web server, which will
be necessary for requests which should be fulfilled by the co-server itself.

3.2.2 SquirrelMail

SquirrelMail is a PHP e-mail client based on IMAP. SquirrelMail was selected
from a variety of Open-Source web-based e-mail clients on the basis of: mail
attachment handling, no use of Javascript or Java, and the ability of source
code. There exist several other web-mail packages which may fulfil similar
requirements; since the focus of this project is not on the e-mail interface,
SquirrelMail seemed to be a reasonable solution. SquirrelMail is particularly
useful in that it uses IMAP features to selectively retrieve portions of a
MIME message for display. This functionality can be used by the co-server
to download only the necessary attachments for verification or decryption.

10

Chapter 4

Securing the Interface

4.1 Controlling content from the server

If we want to protect users’ private keys and private-key functions from
unauthorized access by the untrusted host software, we need a clear way to
indicate to the user the origin of each element, and prevent the host server
from being able to display malicious content. One example of such malicious
content would be a page from the host server which would allow the user to
apply their private key, but which also had a java applet which would report
the user’s keystrokes to the host. Because of the arbitrary nature of Java
and Javascript, the entire secure-mail system should neither depend upon
nor contain any Java or Javascript.

4.1.1 Filters

In order to prevent the server from providing malicious content, the co-server
must assure that all data that is sent to the web client has been scanned and
that the content has been removed or neutralized in some way. Also, the
co-server may want to protect certain information from the client before it
is accesses by the host server. For example, the text of an e-mail message
which is to be encrypted should not be passed to the untrusted host until it
has been encrypted.

Both of these tasks (and perhaps others, such as controlling the caching
of pages) call for the application of co-sever-side filters. By designing these
filters in such a way that each filter can be considered independently, we can
practice software re-use by writing a filter interface once, and then writing

11

Host Server
(apache)

Client . . Client
Request o Filter \ o Filter A | Response

Replace

Replace

Function Function =

Figure 4.1: Overview of the filtering process

each filter independently, rather than adding filtering code piecewise to the
rest of WebALPS. At a minimum, the filter interface would need to supply
the ability to run one or more co-server-supplied functions with the ability
to modify the input and output strings from the server. To simplify filter
programming, it should be possible to load several filters and have them
operate sequentially. To simply common tasks, the filter interface could
specify a text string or filter action which would indicate whether or not the
filter should be run. Because a common task is fixed-string replacement, we
should make it possible to write a fixed-function filter which replaces a server
text string with a string from the co-server. This leads us to a filter model
similiar to that of Figure 4.1.

4.1.2 Filter Interface

The actual filter interface is written in C, and supports three types of filters:
input filters, which operate on the client input string after it is decrypted
but before it is passed to apache; output filters, which operate on the server
output string before it is encrypted and sent to the client; and session filters,
which are described in Section 4.2.

To accommodate our goals from Section 4.1.1, we needed to design an
interface which allows the programmer to create and add a filter, and to be
able to remove the filter if it is no longer needed. We also need to establish

12

two different “filter queues”: one, called “input”, is applied to all data coming
from the user to the server, and the other, called “output”, which is applied
to data being sent to the user from the server. Both of these queues operate
in the same manner: each filter is applied sucessively, until the filter list is
exhausted, or until one of the filters signals an error.

Each filter is allowed to modify the data string before control is passed
to the next function. The order of the queue is based on the time that the
filter is registered, with filters being applied from most-recently registered to
least-recently-registered. Each filter consists of three items: a search pattern
(currently, only case-sensitive and case-insensitive exact-string matches are
available), an “action specifier”, which specifies which queue the filter should
be added to, and what sort of action the filter should take when a match is
found (string replace or run a supplied function), and a data element, which
can be a replacement string or a pointer to a programmer-supplied function.

4.2 Allowing the co-processor to serve pages

To allow the co-processor to service client requests itself, rather than passing
along filtered content from the web browser, we have specified a third type
of filter, which completely replaces the server output with the output of a
programmer-supplied function. These filters are called session filters, and
they allow the co-processor to begin it’s own dialogue with the client by
creating it’s own content. The server is completely unaware of this re-writing,
because it must trust the co-server to encrypt the SSL pages. One example
of this re-writing occurs in Figure 4.16, where the server believes that it is
instructing the client to prepare one frameset, while the co-server actually
sends a different frameset (to establish the security connection).

Session filters exist in both the input and output filters, although they
only match on the output filter if their input filter matched. Furthermore,
if a session filter matches on the output, no other output filters are run.
Effectively, if the input function on the session filter accepts the session,
then the filter software provides a direct session with the client’s web browser,
unaffected by the surrounding context. Although the session filter acts as if
it has a direct connection to the client, it must still run as an input and an
output filter, connecting to the host web server between the two.

This intermediate connection to the web server can also be used to ex-
change other data. For example, in Figure 4.14, the request for the server to

13

provide /null.html could be replaced with a call to a server-side cgi which
would look up the public keys of the message recipients for an encrypted
message. In the example transactions that follow, most of the transactions
in which the co-server requests null.html represent the result of a session
filter.

4.3 Indicating the status of the connection

Because there is no clear way for the user to be certain as to whether the
content they are seeing in the web browser window is a provided by the apache
web server or output from the 4758 co-server, we needed to find some way
to present an “unforgable” graphical tag which would indicate to the user
whether the page(s) they were viewing had originated on the (untrusted)
host or from the trusted co-server. Without this information, the host could
simply forge a public-key login window, and use this information to launch a
man-in-the-middle attack by connecting back to the co-processor and using
the password to later connect to the co-server and sign arbitrary data.

While working with SquirrelMail, we realized that HTML 4.0 Frames
allowed us to enclose the host’s “access area” by limiting it to one frame
in a frameset. By not naming the other frames, and by removing any host-
provided links which had a TARGET="_top" specification, the host would have
no way to refer to other content in the browser window beyond its own frame.
By using further co-server filters registered before (thus executed after) the
TARGET="_top" filter, we could selectively set the TARGET specification on
links which referenced the co-server to allow us to update the “security sta-
tus” frame of the web interface.

4.3.1 Session example

To illustrate the way in which this filtering scheme would would with the
secure mail application, Figures 4.2 — 4.16 provide a graphical representa-
tion of the user’s screen and the corresponding HTTP traffic between the
client, co-server, server, and back. The sequence represented here roughly
corresponds to the following sequence:

e A user logging in

e Reading a message which is encrypted with their public key

14

e Sending a signed message

In particular, the stages of navigation within the upper (content) frame that
occur entirely on the host are sketched, because the possible richness of a
web-based mail system would be more than could be sketched in this format..

15

Client
Co-server:
Server:

Co-server:

GET / HTTP/1.0
GET /null.html HTTP/1.0
Content-Type: text/html

Content-Type: text/html

<HTML>

<HEAD><TITLE>S/Mail</TITLE></HEAD>
<FRAMESET COLS=*,60>

<FRAME SRC="apachelogin.html" NAME="_toy">
<FRAME SRC="insecure'">

</FRAMESET>

</HTML>

Figure 4.2: The initial request/response filter

16

S/Mail

User name———1
Password— 1]

Client GET /apachelogin.html HTTP/1.0
Co-server: GET /apachelogin.html HTTP/1.0
Server: Content-Type: text/html
<HTML>
<HEAD><TITLE>S/Mail</TITLE></HEAD>
<BODY>

<H1 ALIGN="center">S/Mail</H1>

<FORM ACTION="main.php" METHOD="get" TARGET="_top'"> Username:
<INPUT TYPE="text" NAME="user'">

Password: <INPUT TYPE="password" NAME="pass'>

<INPUT TYPE=submit NAME=login> </FORM>

</BODY>

</HTML>

Co-server: Content-Type: text/html

<HTML>

<HEAD><TITLE>S/Mail</TITLE></HEAD>

<BODY>

<H1 ALIGN="center">S/Mail</H1>

<FORM ACTION="main.php" METHOD="get"> Username: <INPUT
TYPE="text" NAME="user'">

Password: <INPUT TYPE="password" NAME="pass'>

<INPUT TYPE=submit NAME=login> </FORM>

</B0ODY>

</HTML>

Figure 4.3: The sle7rver’s login page

S/Mail

User name———1
Password— 1]

Normal SSL-server content

Client GET /insecure HTTP/1.0
Co-server: GET /null.html HTTP/1.0
Server: Content-Type: text/html

Co-server: Content-Type: text/html

<HTML>

<HEAD><TITLE>Insecure (SSL-only) page</TITLE></HEAD>
<BODY>

Normal SSL-server content

</BODY>

</HTML>

Figure 4.4: Loading the insecure service banner from 4.2

18

Normal SSL-server content

Client GET /main.php?user=user&pass=FooBAr HTTP/1.0
Co-server: GET /main.php?user=user&pass=FooBAr HTTP/1.0
Server: Content-Type: text/html

<HTML>

<HEAD><TITLE>S/Mail</TITLE></HEAD> <FRAMESET ROWS=*,100>
<FRAME SRC="mailbox.php?new" NAME="content">

<FRAME SRC='"sidebar.php" NAME="sidebar">

</FRAMESET>

</HTML>

Co-server: Content-Type: text/html

<HTML>

<HEAD><TITLE>S/Mail</TITLE></HEAD> <FRAMESET ROWS=*,100>
<FRAME SRC="mailbox.php?new" NAME="content">

<FRAME SRC="sidebar.php" NAME="sidebar">

</FRAMESET>

</HTML>

Figure 4.5: S/Mail loading apache server contents

19

S/Mail

Welcome, you have 1 new message.
testing argent@dartmouth.edu

Normal SSL-server content

Client GET /mailbox.php?new HTTP/1.0

Co-server: GET /mailbox.php?new HTTP/1.0

Server: Content-Type: text/html
<HTML>

<BODY> <H1 ALIGN="center">S/Mail</H1>

Welcome, you have 1 new message.

<TABLE>

<TR><TD>testing</TD>
<TD>argent@dartmouth.edu</TD></TR>

</TABLE>

</BODY>

</HTML>

Co-server: Content-Type: text/html

<HTML>

<BODY> <H1 ALIGN="center">S/Mail</H1>

Welcome, you have 1 new message.

<TABLE>

<TR><TD>testing</TD>
<TD>argent@dartmouth.edu</TD></TR>

</TABLE>

</BODY>

</HTML>

Figure 4.6: S/Mail loading front page

20

Client
Co-server:
Server:

Co-server:

S/Mail

Welcome, you have 1 new message. compose
testing argent@dartmouth.edu j
folder

address

Normal SSL-server content

GET /sidebar.php HTTP/1.0
GET /sidebar.php HTTP/1.0
Content-Type: text/html

<HTML>

<BODY>

compose

folders

addresses

</BODY>

</HTML>

Content-Type: text/html

<HTML>

<BODY>

compose

folders

addresses

</BODY>

</HTML>

Figure 4.7: Loadin% 1the S/Mail sidebar

Client GET /smime?message=1 HTTP/1.0
Co-server: GET /null.html HTTP/1.0
Server: Content-Type: text/html

Co-server: Content-Type: text/html

<HTML>

<HEAD><TITLE>S/Mail</TITLE></HEAD>

<FRAMESET COLS=%,60>

<FRAME SRC="smime_decode_pass?message=1" NAME="_toy">
<FRAME SRC="secure">

</FRAMESET>

</HTML>

Figure 4.8: Accessing private-key operations

22

Client:
Co-server:
Server:

Co-server:

S/Mail

You are about to access a message which
has been encrypted with your public key.

Password— 1]

GET /smime_decode_pass?message=1 HTTP/1.0
GET /null.html HTTP/1.0
Content-Type: text/html

Content-Type: text/html

<HTML>

<BODY>

<H1 ALIGN="center">S/Mail</H1>

You are about to access a message which has been encrypted
with your bublic key</BR>

<FORM ACTION="smime display?message=1" METHOD="get">
Password: <INPUT TYPE="password" NAME="pass'">

<INPUT TYPE="submit">

</FORM>

</B0ODY>

</HTML>

Figure 4.9: Private key verification

23

S/Mail

You are about to access a message which
has been encrypted with your public key.

Password— 1]

WebALPS co-server secured content

Client GET /secure HTTP/1.0
Co-server: GET /null.html HTTP/1.0
Server: Content-Type: text/html

Co-server: Content-Type: text/html

<HTML>

<HEAD><TITLE>WebALPS secured page</TITLE></HEAD>
<BODY>

WebALPS co-server secured content
</BODY>

</HTML>

Figure 4.10: Displaying the secure banner while decoding messages

24

Just an encrypted, signed test message.
Nobody can read it until | publish it!

Since S/MIME uses MIME content, | could even include
several documents here.

Send me a reply!

WebALPS co-server secured

Client: GET /smime display?message=1 HTTP/1.0
Co-server: GET /download.php?message=1 HTTP/1.0
Server: Content-Type: application/pkcs7-mime

encrypted attachment data

Co-server: Content-Type: decrypted content-type

decrypted content

Figure 4.11: Displaying the encrypted content

25

Client:
Co-server:
Server:

Co-server:

To: | |
Subject:l]

Just a sample message.

compose

address

[Encrypt this message

[sign this message
Normal SSL-server content

GET /compose.php HTTP/1.0
GET /compose.php HTTP/1.0
Content-Type: text/html

<HTML><BODY>

<FORM ACTION="/mail.php" METHOD="get">

To: <INPUT TYPE="text" NAME="to">

Subject: <INPUT TYPE="text" NAME="subj">

<TEXTAREA NAME="mess"></TEXTAREA>

<INPUT TYPE="checkbox" NAME="enc">Encrypt this message

<INPUT TYPE="checkbox" NAME="sign">Sign this message

<INPUT TYPE="submit" NAME="Send">

</FORM>

</BODY></HTML>

Content-Type: text/html

<HTML><BODY>

<FORM ACTION="/mail.php" METHOD="get" TARGET="_top">

To: <INPUT TYPE="text" NAME="to">

Subject: <INPUT TYPE="text" NAME="subj">

<TEXTAREA NAME="mess"></TEXTAREA>

<INPUT TYPE="checkbox" NAME="enc">Encrypt this message

<INPUT TYPE="checkbox" NAME="sign">Sign this message

<INPUT TYPE="submit" NAME="Send">

</FORM>

</BODY></HTML>

Figure 4.12: The standard gompose window (from 4.7)

Client GET /mail.php?to=user&subj=subject&...&mess=message HTTP/1.0
Co-server: GET /null.html HTTP/1.0
Server: Content-Type: text/html

Co-server: Content-Type: text/html

<HTML>

<HEAD><TITLE>S/Mail</TITLE></HEAD>

<FRAMESET COLS=*,60>

<FRAME SRC="send?to=user&subj=subject&...&mess=message"
NAME="_toy">

<FRAME SRC="secure">

</FRAMESET>

</HTML>

Figure 4.13: Intercepting a send mail message

27

You have asked to sign the following message:
To: Sean Smith <sws@cs.dartmouth.edu>
From: user@host.com

Subject: Test Message

I've signed this message so you know that | sent it.

User Person <user@host.com>

Password: 1]

ClaD
Client: GET /send?to=user&subj=subject&...&mess=message HTTP/1.0
Co-server: GET /null.html HTTP/1.0
Server: Content-Type: text/html

Co-server: Content-Type: text/html
<HTML>
<BODY>
You have asked to sign the following message:

<FORM ACTION="/smime_send" METHOD="get">
<PRE>
To: wuser
From: user@host.com
Subject: subj
message
</PRE>
Password: <INPUT TYPE="password" NAME="pass"'">

<INPUT TYPE="submit'">
</FORM>
</BODY>
</HTML>

Figure 4.14: Verifying message signing

28

You have asked to sign the following message:
To: Sean Smith <sws@cs.dartmouth.edu>
From: user@host.com

Subject: Test Message

I've signed this message so you know that | sent it.

User Person <user@host.com>

Password:]

WebALPS co-server secured

Client GET /secure HTTP/1.0
Co-server: GET /null.html HTTP/1.0
Server: Content-Type: text/html

Co-server: Content-Type: text/html

<HTML>

<HEAD><TITLE>WebALPS secured page</TITLE></HEAD>
<BODY>

WebALPS co-server secured content
</BODY>

</HTML>

Figure 4.15: Displaying the secure banner for message signing

29

Client GET /smime _send?pass=pass HTTP/1.0
Co-server: GET /mail.php?to=user&subj=subject&...&signed message

HTTP/1.0
Server: Content-Type: text/html

<HTML>

<HEAD><TITLE>S/Mail</TITLE></HEAD>
<FRAMESET ROWS=%,100>

<FRAME SRC="mailbox.php?new" NAME="content'">
<FRAME SRC="sidebar.php" NAME="sidebar">
</FRAMESET>

</HTML>

Co-server: Content-Type: decrypted content-type

<HTML>
<HEAD><TITLE>S/Mail</TITLE></HEAD>
<FRAMESET COLS=%,60>

<FRAME SRC="main.php" NAME="_toy">
<FRAME SRC="insecure">

</FRAMESET>

</HTML>

Figure 4.16: Returning to the main (insecure) page

30

Chapter 5

Results

5.1 S/MIME implementation

Due to the complexity of the S/MIME specification and the time constraints
of this researcher, it was not possible to produce an implementation of the
S/MIME mail client running on the 4758. Several factors combined to pre-
vent this outcome; I have attempted to categorize the barriers from funda-
mental to awkward. A programmer attempting to implement this mailer
would be advised to familiarize him- or her-self with these problems before
attempting to implement the S/MIME functionality.

5.1.1 Operating system support

Although the embedded CP/Q operating system on the 4758 supports a rich
variety of cryptography primatives, many of the other operating system limi-
tations (such as the lack of any file system functions or networking primitives)
make it difficult to move software from host-side code to coprocessor-code.
Also, CP/Q supports only a (mostly-ANSI) subset of the C programming
language, reducing the possible range of tools for programming to only the
IBM toolset with one of three or four supported compilers. Because of the
embedded nature of CP/Q, the on-card debugging tools are also much less
featureful than traditional debuggers.

31

5.1.2 S/MIME specification

The four RFCs which make up the S/MIME specification [9, 16, 14, 15]
total 118 pages, which includes several pages of ASN.1 definitions for the
Cryptographic Message Syntax. CMS further relies on X.509 certificates,
which are detailed in the 129 pages of RFC 2459 [10]. The ASN.1 format
which is used by CMS is very detailed, and is capable of expressing arbitrary
binary data in variety of “compact” forms based on a textual specification.
Unfortunately, the flexibility of ASN.1 makes it difficult to write a parser
for X.509, necessitating the use of a library to process the X.509 and CMS
formats.

5.1.3 Library support

Many of the libraries listed in Section 3.1 are implemented in C++, at least in
part. In particular, the arbitrary length of most ASN.1 representations and
underlying data makes the use of an object-oriented language attractive to
the developer. However, because CP/Q does not support C++ development
tools, these libraries are almost completely worthless, except as references on
the standards.

Of the remaining libraries, only cryptlib has been ported to the 4758. All
of the other libraries would require various degrees of re-writing to be able to
compile in the file-descriptor-less world of CP/Q. While Cryptlib has been
built to run on the CP/Q, it has not been extensively tested, and some of
the major functionality (such as keysets, which are used to store public and
private keys) does not have any way to operate with it’s backing store inside
the 4758. Furthermore, Peter Gutmann, the developer of cryptlib, does not
consider the CP/Q inside the 4758 to be a “supported environment”, and
there are currently no instructions on building and linking cryptlib for use
on the 4758 [7].

5.2 Future Directions

As it currently exist, the S/MIME implementation for the secure mail project
consists of a few utilities written in C for the linux operating system which
have been compiled with cryptlib, but which have not been tested. In this
programmer’s experience, the process which would likely be most fruitful in

32

producing a working S/MIME mailer running on the 4758 would begin with
a working set of host S/MIME utilities in written in C.

These utilities can be used to test the S/MIME implementation and to
discover any library problems before the application reaches the 4758 envi-
ronment. These utilities should be written in such a way that they perform
most of their S/MIME operations on memory buffers not associated with a
file. This method of operation mimicks the environment of the 4758.

For testing purposes, it may also be useful to write some host-side scripts
with the names and functionality of which will later be ported to the card
side. The utilities from the previous step should be used here, to test both
the implementation details and correct operation of the utilities.

Because the co-server filters can be used to prevent (override) access to
files (or arbitrary URL patterns), filters can be written to intercept and over-
write the host-side processing directives as each utility is ready to be ported
into the card. For the initial implementations, it may be useful to print the
input and output from the card to a debugging channel, particularly if the
results from the card are unexpected.

Obviously, before the co-server filters can actually be directed at the
working S/MIME implementation, any necessary support libraries must be
ported to run on the 4758. Unfortunately, this author cannot give much
more advice than this. If cryptlib is chosen for this effort, it is possible that
cryptlib’s keyset support could be modified to allow a memory buffer to act
as a backing store. If another library is selected, research should be done as
to the best way to remove file and socket dependencies from the library.

33

Chapter 6

Conclusions

Although this thesis work has not resulted in a working public-key e-mail
system implemented on the IBM 4758, it has led to several conclusions about
the software engineering process and software design. These conclusions are
based on the obstacles listed in Chapter 5.1.

6.1 Library support

One of the barriers to the use of several potentially useful libraries in this
project was the limitation that the IBM 4758 development toolkit could only
support a subset of ANSI C and the cryptographic functions provided by
the modified CP/Q operating system. Although the 4758 is quite limited, it
can certainly provide an example of the sort of environment which might be
encountered when working on an embedded hardware platform.

If library writers want their software to be usable on embedded systems,
they should write their libraries to the minimum set of C features necessary,
and provide functions which use memory buffers for input and output, rather
than using file descriptors. Although this abstraction might reduce speed
slightly, it has the additional advantage that the C code (separated from the
input/output routines) could also be used in other applications which do not
provide a file descriptor, such as some network packages and device I/O. By
using more recent languages (such as C++) and less portable features (files
instead of memory buffers), library developers may exclude their library from
consideration in non-traditional applications.

34

6.2 Standards design

After the decision to support S/MIME over OpenPGP was made, I did more
investigation into the specifications of S/MIME. The Cryptographic Message
Syntax which is used for S/MIME allows for a large range of encryption
methods and optional attributes.

Many of the data types in the CMS format are defined as an ASN.1 SE-
QUENCE, which (approximately) consists of a data length followed by the
concatenated representations of each object. To make the data representa-
tions shorter, often attributes are specified as OPTIONAL, which requires
the parsing routines to infer the existence or non-existence of those attributes
by the existence or absense of that attribute at the appropriate location in the
SEQUENCE. Because of this representation, any element following an OP-
TIONAL attribute in a SEQUENCE must have an identifying prefix which
allows it to be differentiated from preceding OPTIONAL elements. This ad-
ditional complexity is due to the way in which ASN.1 attempts to provide
both flexible and compact data storage for arbitrary data structures. In con-
trast, most existing applications specify a much more fixed format for data,
which simplifies reading and parsing at the expense of complete generality.

Similarly, to represent data of arbitrary length, ASN.1 provides three
methods of encoding the length of an element: two prefix methods, and one
arbitrary-length (ended by a terminator) method. This form of encoding
(of which recording the length is only part) is known as the Basic Encod-
ing Rules (BER), which applies to all elements, from integers to complex
SEQUENCE composites. Although there exists a simplified form of BER
known as DER (the Distinguished Encoding Rules) which allows only the
shortest encoding, this format is not required by most standards. In con-
trast, the OpenPGP standard specifies the representation of integers as two
big-endian octets representing the exact bit length followed by the number
in big-endian form, specifying exactly the encoding for all implentations to
use. From an implementation point of view, the OpenPGP rules are both
more concise and easier to implement.

In general, excess mechanism in standards documents may be consid-
ered harmful, as it is rarely possible to correctly predict the direction of
future enhancements. On the other hand, by specifying a simple and robust
framework without limiting the data contents uneccessarily, it is possible
for later designers to expand the original mechanism without breaking back-
wards compatibility or unnecessarily complicating the mechanism. A good

35

example of this is RFC 822, which attempts to specify the format of mes-
sage headers while leaving room for later customization (as has repeatedly
occurred in the last 19 years).

6.3 WebALPS design

Although the use of the IBM 4758 provides a secure computation platform
to host WebALPS, the current implementation of WebALPS shifts much
of the burden of establishing and maintaining the SSL connection to the
host-side apache, mod_ssl, and OpenSSL software for performance reasons.
Unfortunately, the decision to allow the host to fragment the HT'TP response
before requesting that the co-server encrypt the message may have security
implications if a filtered string can be broken into two fragments by the host
software, allowing some portion of an unacceptable string to be transmitted
to the client. Unfortunately, it might prove difficult to integrate the filtering
software with coprocessor-side fragmentation, particularly if the total size of
the response is larger than the memory of the coprocessor.

36

Bibliography

1]

2]

3]

[4]

[5]

[6]
[7]

8]
[9]

The Internet Mail Consortium. S/MIME and OpenPGP. World Wide
Web, http://www.imc.org/smime-pgpmime.html, 1999.

David H. Crocker. RFC 822: Standard for ARPA Internet Text Mes-
sages. Internet Society, ftp://ftp.isi.edu/in-notes/rfc822.txt,
1982.

N. Freed and N. Borenstein. RFC 2045: Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message Bodies. In-
ternet Society, ftp://ftp.isi.edu/in-notes/rfc2045.txt, 1996.

N. Freed and N. Borenstein. RFC 2046: Multipurpose Internet Mail
FEzxtensions (MIME) Part Two: Media Types. Internet Society, ftp:
//ftp.isi.edu/in-notes/rfc2046.txt, 1996.

N. Freed and N. Borenstein. RFC 2047: Multipurpose Internet
Mail Eztensions (MIME) Part Three: Message Header Extensions for
Non-ASCII Text. Internet Society, ftp://ftp.isi.edu/in-notes/
rfc2047.txt, 1996.

Freshmeat. World Wide Web, http://www.freshmeat.net/.

Peter Gutmann. Personal communication. Discussion on porting
cryptlib inside the 4758.

Peter Gutmann. Cryptlib 3.0 beta, 2001.

R. Housley. RFC 2630: Cryptographic Message Syntax. Internet Society,
ftp://ftp.isi.edu/in-notes/rfc2630.txt, 1999.

37

[10] R. Housley, W. Ford, W. Polk, and D. Solo. RFC 2459: Internet X.509
Public Key Infrastructure Certificate and CRL Profile. Internet Society,
ftp://ftp.isi.edu/in-notes/rfc2459.txt, 1999.

[11] Shan Jiang. WebALPS implementation and performance analysis: Using
trusted co-servers to enhance privacy and security of web interactions.
Master’s thesis, Dartmouth College, 2001.

[12] Jonathan B. Postel. RFC 821: Simple Mail Transfer Protocol. Internet
Society, http://www.rfc-editor.org/rfc/rfc821.txt, 1982.

[13] Proceedings, 22nd National Information Systems Security Conference.
Validating a High-Performance, Programmable Secure Coprocessor,
1999.

[14] B. Ramsdell, editor. RFC 2632: S/MIME Version 3 Certificate Han-
dling. Internet Society, ftp://ftp.isi.edu/in-notes/rfc2632.txt,
1999.

[15] B. Ramsdell, editor. RFC 2633: S/MIME Version 3 Message Specifi-
cation. Internet Society, ftp://ftp.isi.edu/in-notes/rfc2633.txt,
1999.

[16] E. Rescorla. RFC 2631: Diffie-Hellman Key Agreement Method. Inter-
net Society, ftp://ftp.isi.edu/in-notes/rfc2631.txt, 1999.

[17] Sean W. Smith. WebALPS: Using trusted co-servers to enhance privacy
and security of web interactions. Technical Report Research Report
RC-21851, IBM T.J. Watson Research Center, 2000.

[18] Sean W. Smith and Steve Weingart. Building a high-performance, pro-
grammable secure coprocessor. Computer Networks, (Special Issue on
Computer Network Security):31:831-860, April 1999.

38

