
Electronic Documents and Digital Signatures
Dartmouth Computer Science Department, Technical Report TR2003-457

A Thesis

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Master of Science

in

Computer Science

by

Kunal Kain

DARTMOUTH COLLEGE

Hanover, New Hampshire

May 30, 2003

Examining Committee:

Sean Smith (chair)

Edward Feustel

Chris Hawblitzel

Carol Folt
Dean of Graduate Studies

Copyright by
Kunal Kain

This thesis incorporates material from the paper “Digital Signatures and Electronic Documents: A
Cautionary Tale”, K. Kain, S.W. Smith, R. Asokan. [10]

2002

Abstract

The natural progression today is to use electronic documentation instead of paper in order to streamline the

business environment. For digitally signed electronic documentation to be incorporated in today’s market,

people need to have at least as much faith in them as paper. My thesis explores the flaws in how many popular

electronic document formats and COTS PKI packages mesh together, and how adversaries can construct

digital documents whose viewed contents can change in useful ways without invalidating the signature using

these flaws, and will also discuss some countermeasures.

ii

Acknowledgments

There are many people to thank and I would like to start with my girlfriend Elizabeth who has supported me

throughout this process and helped me through this writing, my parents who have supported me throughout

my life and encouraged all my choices. Another important person I must thank is my advisor, Professor Sean

Smith who has provided guidance, assistance and continuous support over the last two years. He has always

been there to point the way, provide insight, and take part on all aspects of this thesis work. His intellectual

originality, astute suggestions and fresh approach have been invaluable for this thesis research. I could never

thank him enough for being an exceptional adviser.

My thanks also go to the other members of my thesis committee; Professor Chris Hawblitzel, who helped

me look at this problem from a systems perspective; Professor Edward Feustel for his ideas on exploring this

field and considering the bigger picture.

This work was supported in part by the Mellon Foundation, AT&T/Internet2, and the U.S. Department of

Justice (contract 2000-DT-CX-K001). Therefore, my thanks go to them for making this project possible.

iii

Contents

1 Introduction 1

1.1 Digital Signature Principles . 2

1.2 Signing Electronic Documents . 2

2 Our Dilemma 5

2.1 Problems with digital signatures . 5

2.2 Related Work . 6

3 Attack Principles 9

3.1 Introduction . 9

3.2 Motivation . 9

3.3 Attack Taxonomy . 10

3.3.1 Hidden Parameters . 11

3.3.2 Fraudulent Content . 11

3.3.3 Nature of Change . 12

iv

3.3.4 Other Angles . 12

4 Worflow Formats and Attacks 13

4.1 Microsoft Word 2000/XP . 13

4.1.1 Macros . 13

4.1.2 Fields . 16

4.1.3 Links . 17

4.2 Microsoft Excel 2000/XP . 17

4.2.1 Macros . 17

4.2.2 Time and Date . 18

4.2.3 Operating System . 18

4.2.4 Links . 19

4.2.5 External Queries . 19

4.3 Adobe Acrobat PDF . 19

4.3.1 Time . 20

4.3.2 Viewer Action . 20

4.4 HTML mail . 21

4.4.1 Date . 21

4.4.2 Remote Control and Viewer-Specific Attacks . 22

4.5 Netscape Communicator signed forms . 23

v

5 PKI packages 24

5.1 External PKI . 24

5.2 Assured Office . 25

5.3 Acrobat Signed PDF . 25

5.3.1 Visible Signatures . 25

5.3.2 Invisible Signatures . 26

5.4 Utimaco . 26

5.5 Silanis . 26

5.6 Office XP built-in signatures . 27

5.7 Summary of Attacks . 27

6 Case Studies 29

6.1 An attack on Microsoft Word . 29

6.1.1 An attack on Microsoft Word using Fields . 29

6.1.2 An attack on Microsoft Word using Linked Files 35

6.1.3 An attack on Microsoft Word using Signed Macros 43

6.2 An attack on Microsoft Excel . 63

6.3 An attack on Signed HTML mail using Outlook Express 70

7 Countermeasures 77

vi

8 Conclusions 79

vii

List of Tables

5.1 Summary of attacks on Office 2000/XP, Adobe Acrobat and Outlook express using COTS PKI 27

5.2 Summary of attacks on Office XP internal signatures . 28

viii

List of Figures

1.1 Digital signatures creation and verification . 3

2.1 Sketch of problematic scenario . 6

4.1 Microsoft Word macros . 14

4.2 Signed Macro warning window . 15

6.1 A simple Microsoft Word document . 30

6.2 The same Microsoft Word document viewed on a different day 31

6.3 Toggleing field codes. 32

6.4 E-Lock Prosigner is used to sign this document and deduce the hidden content 33

6.5 E-Lock Prosigner fails to do its job . 34

6.6 The Microsoft Word document “linked.doc” . 35

6.7 The Microsoft Word document “approve.doc” . 36

6.8 Copying content into clipboard . 37

6.9 “Paste Special” in “linked.doc” . 38

ix

6.10 Click Paste as link . 39

6.11 Pasting link as unformatted text . 40

6.12 E-Lock Prosigner verified document viewed on May 14, 2003 41

6.13 E-Lock Prosigner verified document viewed on May 14, 2003 after “approve.doc” is modified 42

6.14 The Selfcert.exe application . 44

6.15 Using Selfcert.exe to create a certificate from “Microsoft Corporation” 45

6.16 A simple Office document containing a field . 46

6.17 Opening the Visual Basic Editor from the “Tools” toolbar 47

6.18 Inserting the “update all fields” macro in the “Document Open()” function 48

6.19 Digitally signing the macro . 49

6.20 Selecting certificate to sign macro . 50

6.21 Selecting the “Microsoft Corporation” certificate created by Selfcert.exe 51

6.22 Signing the macro with the chosen certificate . 52

6.23 Selecting the options menu item in the “Tools” toolbar . 53

6.24 Digitally signing the document using built-in PKI . 54

6.25 Adding a signer step 1 . 55

6.26 Adding a signer step 2 . 56

6.27 Adding a signer step 3 . 57

6.28 Setting macro security to High . 58

x

6.29 Warning window shown when the file is opened says it does not trust the certificate but says

its from Microsoft . 59

6.30 Tricking the user into accepting the macro . 60

6.31 Document viewed on Monday, May 26, 2003 . 61

6.32 Document viewed on Tuesday, May 27, 2003 the mark at the bottom signifies that the docu-

ment content has not changed . 62

6.33 A simple Microsoft Excel document . 63

6.34 Inserting dynamic content using the NOW() function call 64

6.35 Signature Process step 1. Using E-Lock Prosigner . 65

6.36 Signature Process step 2. Using E-Lock Prosigner . 66

6.37 Validating Certificate . 67

6.38 E-Lock Prosigner verified document viewed on May 12, 2003 68

6.39 E-Lock Prosigner verified document viewed on May 13, 2003 69

6.40 A simple email . 70

6.41 Corrupting the simple email . 71

6.42 Inserting JavaScript into the email . 72

6.43 Click the sign button . 73

6.44 Signing the email using user’s private key . 74

6.45 Viewing the email on Friday, May 23, 2003. Security header says it is signed and verified . . 75

6.46 Viewing the email on Saturday, May 24, 2003. Security header still says it is signed and verified 76

xi

Chapter 1

Introduction

The purpose of digital signatures is to authenticate digital documents and give them a purpose—e.g., “I ap-

prove this.”. Here, digital signatures provide us a way of checking who “I” is and the purpose is to “approve”.

This allows us to expand the application of digital documents so that people do not use them just as a con-

venient storage medium. This presents obstacles because the way in which digital signature schemes are

integrated with applications leaves unconventional avenues of attack for devious minds to explore.

In today’s business world, complex work flow formats and convenient interfacing allow us to introduce attacks

that are mere manipulations of the internal ability of workflow format to introduce dynamic content.

Assessing a wide range of common digital signatures packages embedded in our popular workflow formats,

this thesis creates taxonomy of attacks designed to effectively counter the security these COTS PKI packages

are hyped to provide. It also provides a preliminary series of countermeasures to the attacks.

This thesis includes material from our paper “Digital Signatures and Electronic Documents: A Cautionary

Tale”, K. Kain, S.W. Smith, R. Asokan. [10], revised and extended.

Chapter 2 discusses the problem with common digital signature schemes and Chapter 3 provides scenarios in

which an adversary (perhaps “Alice”, or person “X” who gave Alice the document) can benefit by construct-

ing dynamic objects. In Chapter 4, we discuss how popular workflow formats permit the construction of such

1

objects. In Chapter 5, we discuss how many common ways of integrating PKI with workflow can still appear

to validate signatures on these objects (although some packages resisted our attacks). In Chapter 6, we shall

discuss some case studies of attacks. In Chapter 7, we consider some countermeasures. Chapter 8, concludes

this thesis.

1.1 Digital Signature Principles

A digital signature associates a digital sequence with an electronic document to represent a handwritten

signature on a paper printed document. This digital sequence should be considered similar to a handwritten

signature. In principle, a digital signature is based on the use of two different digital keys known as a key

pair. Each key pair is made up of a private key and a public key. The two are interdependent but can be used

separately. Typically each key pair may belong to a specific key holder. The algorithm works in such a way

that it is computationally infeasible for a third party to compute the private key even if they are in possession

of the public key.

1.2 Signing Electronic Documents

To create a digital signature one usually uses a one-way hash function. A hash function is a transformation that

takes an input and returns a fixed-size output. A hash function is said to be one-way if it is computationally

infeasible to find some input given the output of the hash function.

Public-key cryptography is used to sign a digital document using a few simple steps carried out on the bits of

the document as it is stored:

• Alice produces a one-way hash of the document to be signed using some pre-specified hash function.

This creates a fixed length message from the document data. Any change in the bits of the document

would profoundly alter the hash value.

• Alice performs her private key operations on this fixed length hash of the document.

• This value is the “signature” and is appended to the document, which is now said to be “signed”.

2

Figure 1.1: Digital signatures creation and verification

• Alice sends this signed document to Bob.

• Bob first uses the same hash function on the document.

• Bob does Alice’s public key operations on the “signature” appended to document.

• These two values are compared.

• Finally if they match it verifies that the document came from Alice and it was not altered.

This scenario is sketched in Figure 1.1.

Properties of digital signatures are:

• The signature should be authentic, i.e. should convince the recipient that the signer deliberately signed

the document.

• It should not be reusable, i.e. it should not be possible to transfer the signature to another document.

• it should be unalterable, i.e. the digital document should not change after it is signed without detection.

3

• It should be non-repudiatable, i.e. the signer should not be able to claim he/she did not sign it.

4

Chapter 2

Our Dilemma

2.1 Problems with digital signatures

One of the most common uses of public-key cryptography is for digital signatures. If Alice performs a

private-key operation on an electronic object O (usually via hash and padding functions) to yield a signature

S(O), then those who believe in the PKI can verify that S(O) came from O via Alice’s public key, and thus

conclude that Alice generated this signature.

Typically, O itself may consist of an object O1 and a field I indicating intention, such as “Alice approves O1”

or “Alice witnesses that O1 arrived by some point in time”. In the process of signing, Alice takes O1, adds I ,

and signs the result: indicating her approval or witness.

In the non-digital world, people must frequently take such action on paper documents: e.g., signing forms and

expense sheets and contracts; recording when a bid or homework assignments was submitted. The last decade

has seen a revolution: these paper documents have migrated into electronic settings; rather than dealing with

a paper expense form, we deal with an Excel spreadsheet. This change in media permitted a revolution in the

ease and speed of creating and sharing documents, even between parties on opposite sides of the Internet.

The natural question arises: since we often need to sign paper documents, and a PKI would permit a nice

5

non-digital
world

digital
world

Alice Bob

1. Approves

2. Signs

4. Concludes that
Alice approved

3. Verifies against
Alice’s Public Key

VA(O) VB(O)

O O, S(O)

Figure 2.1: Current PKI/workflow integration attempts to capture the non-digital process of signing paper, by
digitally signing the corresponding electronic object. To “sign” the virtual document VA(O), Alice digitally
signs the corresponding electronic object O. If Bob receives O and S(O) and verifies this signature, then he
concludes that Alice approved the virtual document VB(O) that he sees.

way to sign electronic objects, can we compose the two, and indicate personal approval of a “virtual” paper

document, by digitally signing the corresponding electronic object? The ability to do this composition is

often a main motivating factor in deploying enterprise PKI (such as ACES [17]); businesses and products

exist to provide exactly these services. Many have been surveyed [2, 3, 5, 11, 12] for this thesis.

Typical electronic workflow tools replace a paper document with an electronic object O, yielding a virtual

piece of paper when a party opens the object. When Alice signs an object O, she commits to the virtual

piece of paper she sees when she views the object. By PKI, when Bob verifies S(O), he concludes that

Alice digitally signed O. By composition—if we accept that digital signatures imply workflow approval—

Bob concludes that Alice approves the virtual paper document that O represents. Figure 2.1 sketches this

scenario.

This thesis investigates whether this composition actually works. The particular angle that was questionable

is the implicit assumption that electronic objects generate semantically equivalent virtual documents each

time they are opened. If VB(O) can be made to be substantially different from VA(O), then Bob’s conclusion

about what Alice signed will differ from what Alice thought she signed.

2.2 Related Work

My work was motivated by planned deployment of real applications that used digital signatures on electronic

documents. We consequently began investigating the extent to which these these document formats were

malleable, and to the surprising degree to which COTS PKI packages tolerated this malleability.

6

However, these issues certainly have an older history.

1. The German digital signature act came into force in the August of 1997 even before the EU’s Directive,

in fact the directive was adjusted to conform to the German Digital signature Act [15].

2. In the December of 1997 the European Union invited a proposal for its electronic signature directive [4]

with the purpose of making electronic signatures at least as binding as paper-based signatures in a

bid to facilitate “free movement of goods and service in the internal market”. The purpose of the

directive was also to build trust in this new medium of business. The directive dealt with the truth

that documents today have various means to introduce dynamic content which causes the document to

become malleable.

3. Herzberg [8] in a private communication suggested signing the viewing program as well as the docu-

ment, insuring that the data displayed is viewed as it was intended.

4. Austria fully implemented the directive [1] in 1999; and concretized the malleability problem by spec-

ifying that only data formats may be used which have an “available specification” and which exclude

“dynamic changes” or “invisibilities.”

5. Ulrich Pordesch [13, 14] a German researcher viewed it a risk to have other agencies verify and sign

a document, “imbedding and using the schemes in application systems involves considerable risks, in

particular, if the signer or the verifier uses an application environment which is maintained, used, or

controlled, by other persons or organizations.” He considered personal signature verification appli-

cations that the user could himself administer and verify signatures. His scheme involved having a

Personal Digital Assistant to which documents could be transmitted for scrutinization. This scenario

would behave like a safe room where the documents are inspected and verified. This strategy though

avoids the problem of how secure the Personal Digital Assistant is and whether it has the capability to

process dynamic content.

6. Concurrent with the conference publication [10] of the main results of this thesis, Audun Jφsang,

a senior research scientist with the “Distributed Systems Technology Centre”, published [9] a very

interesting paper based on the same area but with orthogonal results. Audun Jφsang’s approach differed

in terms of the depth and direction of attacks proposed. In his example of changing content based on

browser type he used the differences in handling of HTML tags in Netscape Communicator and in

7

Internet Explorer. Thus showing that there are many ways to carry out attacks. In this paper he also

considered various attacks on XML signatures. “Not only can the same XML document look different

in two different applications, but different XML documents can look the same in the same application”.

8

Chapter 3

Attack Principles

3.1 Introduction

An attack on a digitally signed document would imply any action on behalf of the attacker that would directly

or indirectly change the contents of the electronic document to benefit himself without invalidating the digital

signature. In this chapter I will talk about the scenarios in which attacks on digitally signed documents would

be feasible and upon what conditions these attacks could be structured to execute.

3.2 Motivation

Whenever someone performs a vulnerability analysis, and discovers some avenue that would cause the system

to engage in unexpected ways, the typical response encountered is that no one would attempt to do that.

Consequently, we begin by pro-actively addressing this concern. Within our university, two applications

motivating campus PKI are timestamped homework submission and signing of payroll and expense forms.

• The timestamped homework application typically posits that a student Alice submits homework to an

automatic system Bob that appends the current time, digitally signs the result, and forwards both on

9

to the instructor Cathy. (One could also easily imagine a system using more advanced timestamping

techniques. [7].)

Suppose student Alice could construct an electronic document O that, whenever it was viewed, first

consulted a remote file or Web location, and rendered a virtual document based on the contents of

that remote file R. Alice could then completely subvert the purpose of timestamping by submitting O

before the assignment deadline, but continuing to work on R up to the time the project was graded. If

the assignment is one where the instructor Cathy posts sample solutions before grading, Alice could

guarantee herself high scores by preparing R so that it can change its contents to incorporate the posted

solutions.

• In the typical processing of expense forms, a submitter Alice sends a form to an approver Bob, who

then sends it to Cathy, who actually issues checks. Suppose malicious Alice has two sets of numbers: a

set S1 with illegitimate expenses that Bob would not approve but which would result in Cathy issuing

a large check, and a set S2 with smaller numbers that Bob would approve. If Alice could construct an

electronic document O that displays S2 when viewed by Bob but S1 when viewed by Cathy, then Cathy

will receive a Bob-approved expense form indicating S1, and Alice will receive a larger reimbursement

than she should.

In the above two examples, Alice benefits by obtaining Bob’s signature on an electronic object that, when

viewed in some contexts, displays a virtual document that Bob would not have signed. Scenarios also exist

where Alice could benefit by being able to retroactively change documents to which she previously commit-

ted. For example, Alice might submit a signed bid to provide (or purchase) services, and might benefit from

retroactively changing the terms of that bid. Other scenarios of digital signature include the US government’s

ACES project (which gives citizens an electronic ID), legal documents, etc. Thus subversion of an electronic

signature would indeed be a profitable avenue for the attacker to explore.

3.3 Attack Taxonomy

A taxonomy of attacks that would be worth considering is sketched here. Many parameters that could be

involved in an attack by an adversary to construct malleable documents are considered.

10

3.3.1 Hidden Parameters

This avenue of attack works when the virtual document that appears when someone views an electronic object

O is not completely determined by O alone, but instead depends in part on other parameters. One way to

characterize attack strategies is to consider these parameters. We offer some:

• Time. An attack involving usefully changing the content of the virtual document based on the time the

object is viewed.

• Viewer Data. Suitably changing the content of the virtual document depending on the identity of the

viewer, their machine, their operating system, or other such context data advantageous attacker.

• Viewer Action. Changing the content of the virtual document depending on actions the viewer takes

to benefit the attacker.

• Remote Control. Usefully changing the content of the virtual document depending on the existence or

contents of a file controllable by the adversary. A secondary issue here would be the proximity of this

file to the viewer: a strategy that permitted the file to be an arbitrary URL would require only that the

attacker control a web site, but also would require that the viewer have a good connection to the Web

(in some cases, we have been able to overcome this restriction by using a 1x1-pixel image to pre-load

the required document in the viewer’s cache). Having the file to be closer to the viewer may require

the attacker to have greater access.

Note that a Web-based remote control attack can potentially be used to mount a viewer-specific attack, if the

viewer visits from a predictable host.

3.3.2 Fraudulent Content

In these attack scenarios, could the adversary devise ways to usefully change the apparent content of a signed

document? The question then arises of when the adversary must determine this alternate content. Two natural

choices suggest themselves:

• Pre-signature. The alternate content must be fixed at the time the signature is applied.

11

• Post-signature. The alternate content may be chosen at some point after the signature has been applied.

3.3.3 Nature of Change

Another parameter is how the display of alternate content affects the “current” electronic document.

• Static Content. The most powerful attack strategy is one where viewing alternate content does not

change the working object.

• Dynamic Content. A strategy that requires the working object (e.g., the Word document the viewer

opened) to be modified as part of displaying alternate content can still be effective, but only when the

signature is verified against the original object.

• Dynamic Content and Signature. It is also conceivable that an attack strategy might change sig-

natures at the same time it changes the contents of the object, perhaps by shipping pre-established

object-signature pairs.

3.3.4 Other Angles

The above mentioned paratemers are intended simply as an illustrative taxonomy, not as a complete one. In

particular, we also want to leave open other avenues for attack. For one example:

• Spoofed Signature. In standard Web spoofing [6, 18, 19], the adversary uses the richness of the user

interface to create the illusion of the desired result. When attacking signatures,the adversary might use

a similar technique: the document might modify itself and invalidate its bona fide signature—but mimic

the signature-verification user interface sufficiently well that the user is still convinced the signature is

valid.

12

Chapter 4

Worflow Formats and Attacks

Today with so much variety in colors, fonts, graphics, etc. no one is satisfied with plain ASCII text anymore.

In this section, we will consider various popular formats for electronic documents, and the potential to realize

the above attack scenarios in these formats.

4.1 Microsoft Word 2000/XP

In Microsoft Word 2000/XP there are many avenues to introduce dynamic content into electronic documents.

In this section we will discuss some of the attack strategies discussed in Chapter 3 in a more practical setting.

In particular these attacks shall show how difficult it is to completely remove all malicious dynamic content

from an electronic document.

4.1.1 Macros

Since releasing 6.0, Microsoft Word has permitted users to add active content to documents via macros. The

most common approach to add active content would involve using Macros to carry out a remote control,

post-signature attack. With some trial and error, this is easily done: with the opening of the document, a

13

Figure 4.1: Microsoft Word macros

associated macro is run that replaces the current contents with the contents of a remote file.

Private Sub Document_Open()
Set doc = Documents.Open(URL of file)
Set rng2 = doc.Range
Documents("signed.doc").Activate
Set rng = ActiveDocument.Range
rng.FormattedText = rng2.FormattedText
doc.Activate
ActiveDocument.Close

A Document Open() function is called whenever a document is opened in Word. The code demonstrates how

the content of the document being opened is replaced with another document over the internet.

This is a dynamic content attack that changes the file contents.

Signed Macros in Office 2000/XP

The danger of having macros in a Microsoft Office document are well know and thus everyone sets the secu-

rity setting of Microsoft Office documents to High. But with the introduction of signed macros in Microsoft

Office 2000, using macros to conduct attacks to digitally signed Microsoft Office documents has become

feasible.

In Microsoft Word 2000/XP a signed macro that is accepted by a user and allowed to execute will never

raise a warning window again. Thus this provides a convenient attack scenario. One can sign a macro that

14

Figure 4.2: Screenshot of initial warning window to accept the macro from a “Trusted Source”

manipulates document content, and once this macro is approved by the user, it is executed even with the

security setting set to High without giving any warning message. This allows devious ways to fool a user.

This is shown in the screenshot Figure 4.2.

The twist in this strategy comes with a utility provided by Microsoft Office called Selfcert.exe. It is possible

to create a self generated certificate using the Selfcert.exe application and create a certificate capable of code

signing. The utility also allows arbitrary names to be selected as the party the certificate is issued to, thus

an attacker could choose names like ”Microsoft Corporation”, ”Dartmouth College PKI Lab” etc to trick the

user into accepting the signed macro.

This approach to macro signer certificate management means that, once a user decides to trust a vendor for

some specific plug-in, they give that vendor the right to forge signatures in perpetuity.

15

4.1.2 Fields

One set of promising techniques is the Insert Field feature in Word. Fields are different from Macros in the

sense the code is embedded inside the text and it needs to be updated to reflect any change in it. Fields only

allow very specific code to be inserted into a document thus the scope of their use is limited. From the Insert

menu, if one selects Field, one is given a rich set of fields and operators with which to build active content.

For example, one can carry out a time attack by using the conditional IF operator on the DATE field. In

the fragment below, the author revises his testimony after the 16th. (A more complex conjunction operation

would give us month and year checks as well.)

{ IF { DATE \@ "d" * MERGEFORMAT } < 16
"I did not have" "I did have"}

Installing field code is tricky: one cannot simply “type” the code into the field box. For code such as the

example, one must first select the IF operator from the menu, then within the resulting code, one can insert

the DATE field. This scenario is sketched in Figure 6.1− Figure 6.5.

The above attack has the limitation of being pre-signature but the advantage of being static content: the

binary document appears to contain the entire conditional, and does not appear to change depending on the

branch taken.

Fields also offer promising hooks such as USERNAME.

There have been some changes in the Field update policy. In Microsoft Office 2000 the Date and Time were

auto update fields and others had to be manually updated but with Microsoft Office XP all fields were made

manual update. Auto update fields are very useful to the attacker because the field contents change according

to the conditional statement inserted

Fields can also be updated automatically by via macros, but that reduces us to the case discussed in Sec-

tion 4.1.1 by relying on macros.

Sub UpdateAllFields()
Dim aStory As Range
Dim aField As Field

16

For Each aStory In ActiveDocument.StoryRanges
For Each aField In aStory.Fields

aField.Update
Next aField

Next aStory
End Sub

4.1.3 Links

Somewhat unexpectedly, Office documents allow users to insert material from remote documents by refer-

ence. To do this in Microsoft Word the user copies text from another Microsoft Office document (eg. Word,

Excel, Powerpoint etc.); then, in the target document, the user selects Edit, then Paste Special, then Paste

Link, then pastes the text in as a link (unformatted text works nicely).

This approach permits a post-signature, remote control attack. Unfortunately, this also appears to be a dy-

namic content attack—Word asks whether to save the document.

A surprising side-effect of the existence of this feature in Word is that a remote Web site can track each time

one reads a document, and even plant cookies. The cookie being an invisible 1×1 pixel image file inserted

into the Microsoft Word document via Paste Special. (The University of Denver [16] has also noticed this

“feature”.)

4.2 Microsoft Excel 2000/XP

In this section I will talk about introducing dynamic content into the popular spread sheet package Microsoft

Excel.

4.2.1 Macros

Similar to Word, Excel also has powerful Macro capabilities, however the plausibility of Excel macros as an

attack vector might be greater than Word’s. Many organizations use macro-laden spreadsheets as standard

practice. For example, universities preparing grant proposals for the National Science Foundation (NSF)

17

are required to download Excel spreadsheets with Macros. Since these spreadsheets typically get routed

throughout university administrative staff, at least one large population is primed to always hit the “accept

macros” button. This makes the feasibility of this attack quite high.

4.2.2 Time and Date

In Excel, the user can associate functional behavior with specific cells. This behavior has interesting potential

for our purposes.

For example, an attacker can mount a pre-signature, time-based attack by selecting Insert, then Function,

then building an IF construct using NOW(). A simple example:

IF(DAY(NOW())<16, 2000,20000)

Unfortunately, this is a dynamic content attack, since Excel appears to notice the cell is “volatile”. Which

means it does notice that the contents of the cell are dynamic, and asks whether the document should be

saved. This scenario is sketched in Figure 6.33− Figure ??.

4.2.3 Operating System

It is possible to use functions in Microsoft Excel to mount viewer-data attacks—although the most useful

viewer data I found was mounting attacks based on operating system. (or perhaps file path name).

For example:

IF(INFO("osversion")<>"Windows (32-bit) NT 5.00",
"I love Linus","I love Bill")

Again, this attack is pre-signature, but also is dynamic-content.

18

4.2.4 Links

The same techniques of Section 4.1.3 apply to Excel as well: the attacker can copy data from a Word or

Excel file under his control, then Paste Special a link into an Excel cell. As long as the Word file is tab

delimited it seems to place the data very accurately. As before, this enables a remote-control, post-signature,

dynamic-content attack.

Unfortunately, this appears to trigger a warning each time the file is opened. Options exist to disable this

warning (Tools, then options, then Edit), but these appear to remain with the installation of Excel, rather than

traveling with the file.

4.2.5 External Queries

Excel includes features to make explicit queries to remote files. These features enable post-signature, remote

control attacks that have dynamic content.

From the Data menu, the attacker can select Get External Data and then set up a query to a remote text file.

The text file should be written with tab spaces between words to specify different fields in the spreadsheet.

By right-clicking on the cell and selecting Data Range Properties, the attacker can configure the query to

update on open or even regularly (in the background).

Sometimes, this technique gives a warning and an external data toolbar pop-up, which indicates that Excel

realizes that there is external data involved.

4.3 Adobe Acrobat PDF

Adobe’s Portable Document Format (PDF) is fast becoming an alternative to Word as the de facto standard

for electronic documents.

Various tools exist to view PDF and to convert other formats into PDF; however, using the official Acrobat 5

product, one can more directly investigate nuances in creating PDF documents.

19

With this flexibility, and with Acrobat’s use of Javascript with event-driven actions, I have been able to explore

attacks based on Viewer Action (although I have not been able to carry out a remote-control attack here).

4.3.1 Time

Using some Javascript functions I was able to make attacks similar to our time-based attacks on Word and

Excel.

For example, one can use the form toolbar to create a form field, and then add Javascript code in its calculate

field to change the value of the field according to the date.

var f = 9000
var g = util.printd("d", new Date())
if(g < X) f = 5000
event.value = f

The variable g here removes the day out of the date value, and the X represents some day against which

we want to check the value of g. In this type of form field, I can make it appear without a border—like an

ordinary text. I was also able to make it “Read-only” using the appearance tab, which means that the user

cannot differentiate between normal text and the form fields.

4.3.2 Viewer Action

Above, I made a form that appeared to be text. I can also make a form that is invisible—but which has

Javascript associated with viewer actions.

For example, when the mouse moves over the form, I can trigger Javascript to change the value of another

field. If one were to click on the form creation tool on the tool bar and use the mouse to create a box in the

document by dragging it across the screen to the size we want the form box to be. Then click the mouse

enters from the Actions bookmark, and select Run Javascript from the drag-down menu. I could then use the

Javascript to give some form named “danger” another value.

event.value = 1

20

4.4 HTML mail

As with documents, people are not satisfied with just plain ASCII mail, and instead want mail content to

incorporate feature such as colors, different fonts, and pictures. The MIME standard permits email to be

formatted as HTML, and consequently many popular clients (such as Yahoo Mail, Hotmail, iname.com, and

Mailcity) do this.

HTML email provides a rich breeding ground for a variety of attacks. To test these techniques, one needs

to discover how to convince one’s mail client to send an arbitrary HTML file as MIME mail; in Microsoft

Outlook, when sending new mail, one clicks on the view menu item, then selects source edit, then selects the

HTML tab.

4.4.1 Date

Using JavaScript as a tool one can carry out a variety of attacks in this area.

For example, It is possible to change the content of the document with a change in date by using the

document.write() method which allows us to write a new page using HTML tags. With many mail

clients (including Netscape and Outlook) if the user attempts to look at the HTML source for this mail they

only see the final HTML—and not the Javascript with the dynamic content.

<HTML>
<HEAD>
<TITLE>HTML Mail</TITLE>
<SCRIPT language=JavaScript >
function InitForm()
{
var today = new Date()
var day = today.getDate()
if (day > 8)
{
document.write("<PRE>
Kunal 4000
Sean 8000
</PRE>")

}
else {
document.write("<PRE>
Kunal 8000
Sean 16000
</PRE>")

}
}
</SCRIPT>

21

</HEAD>
<BODY onLoad="InitForm();">
<PRE>
</PRE>
</BODY>
</HTML>

4.4.2 Remote Control and Viewer-Specific Attacks

Another type of attack that one can carry out is include, in the HTML, references to inline images which reside

on a remote system. This technique permits post-signature remote-control attacks (since we can change

the images after the fact) as well as viewer-specific attacks (since our Web server can track which user is

requesting the images).

I was able to successfully carry out this attack with an image that looked like text.

<HTML>
<HEAD>
<TITLE>HTML Mail</TITLE>
<BODY>
<PRE>

</PRE>
</BODY>
</HTML>

As noted, it is possible to get all kinds of information from already existing methods from the browser type

to the operating system being used.

We can do this at the client-side by using Javascript:

<HTML>
<HEAD>
<TITLE>HTML Mail</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function InitForm()
{
if (navigator.appName == "Microsoft Internet Explorer")
{
document.write("<PRE>
Kunal 4000
Sean 10000
</PRE>")

22

}
else {
document.write("<PRE>
Kunal 8000
Sean 16000
</PRE>")

}
}
</SCRIPT>
</HEAD>
<BODY onLoad="InitForm();">
<PRE>
</PRE>
</BODY>
</HTML>

Using Microsoft Outlook, which employs Microsoft Internet Explorer to view HTML mail, I was able to

successfully carry out this test.

4.5 Netscape Communicator signed forms

Netscape Communicator 4.04 provided the ability to associate a digital signature with data generated as the

result of a transaction, such as a purchase order or other financial document. This is extremely useful as it

provides a standards-based way to digitally sign forms or other transaction-related text on the Web. Called

Form Signing, this technology allows web sites to ask users to digitally sign transactions, thus providing the

higher level of assurance that a verifiable digital signature brings.

After the data has been signed and both the signature and the data have been sent across the network, a CGI

script running on the server can use the Signature Verification Tool(provided by Netscape) to extract the

digital signature and validate it.

These signed forms allow us to insert JavaScript and conduct the HTML mail attacks as described in Sec-

tion 4.4. Newer versions of Netscape do not seem to support this. We successfully tried the remote control

attack described in Section 4.4.2, using an image. This attack would have the user sign an image which would

reside on website which we could then change.

23

Chapter 5

PKI packages

In this section I will introduce some of the packages I looked at for signing electronic documents, and discuss

how the attacks proposed here affected electronic documents signed using these packages.

5.1 External PKI

One approach is to use a PKI package that is completely oblivious to documents it is signing. For example,

one might use PGP to sign and verify documents sent as email attachments. For another example, we obtained

a certificate from Digital Signature Trust [2] and used this certificate with their CertainSend application to

sign, transmit, and verify signatures on electronic documents. With these approaches, the attack strategies on

Microsoft Word discussed in Section 4.1, Microsoft Excel discussed in Section 4.2, and Adobe Acrobat PDF

discussed in Section 4.3 would effectively function.

I also worked with S/MIME and found it vulnerable to the HTML email attacks. Experimenting with Out-

look and using its built-in signature and encryption features, I was successfully able to carry out the attacks

proposed in Section 4.4.

24

5.2 Assured Office

Another approach is to use a PKI package that is explicitly integrated with the document software. For

example, the Assured Office product from E-Lock Technologies [5] adds sign and verify buttons in one’s

Office installation, and uses a key pair resident in the user’s browser to sign documents.

With this approach all of the Word and Excel attacks I have outlined thus far work. Even the dynamic-content

attacks work, because the signature is verified at document open, before the changes have been made.

(E-Lock had been acquired by Lexign [11], and the Assured Office product has been renamed Prosigner.

Lexign recently sold the Prosigner package to Frontier Technologies Corporation and it is called E-Lock.)

I tried all the attacks discussed in Section 4.1 and Section 4.2 with the latest version of E-Lock Prosigner and

they still work even with repeated notification of these facts to E-Lock.

5.3 Acrobat Signed PDF

Adobe Acrobat has two types of signature features built in: visible and invisible signatures.

5.3.1 Visible Signatures

In Adobe Acrobat’s visible signatures, the document’s signature is visible as an image that indicates whether

the signature has been verified and whether the document was modified since. My time-based attack of Sec-

tion 4.3.1 succeeded (although some versions with updates every second seemed to change the document

before the signature was verified).

In theory, one could also use the techniques of Section 4.3.2 to add mouse-over action to the digital signature

field—for example, to change a global value when the user verifies the signature, so interesting things can

happen after the signature is verified.

The visible signature approach is also potentially vulnerable to plain old spoofing: including an image that

25

looks just like a valid, verified signature.

5.3.2 Invisible Signatures

In Acrobat’s invisible signatures, the signature is applied as an invisible tag. This technique works extremely

well against the attacks I have proposed since the image of the document can easily be matched after a change

in the file content with the previous image and the changes can be easily noticed.

5.4 Utimaco

Another product we discovered is the SafeGuard Sign&Crypt for Office from Utimaco Safeware [3], in Ger-

many. Although we have not been able to obtain sample tools, even after repeated requests to the respective

personnel, we was very pleased to notice that their online documentation indicates that they were concerned

about “invisible dynamic content,” and the screenshots indicate they appear to sign and verify TIFF images of

documents. We would speculate that the attack strategies outlined in this paper would not be effective here.

This strategy also has its drawbacks as it removes all the flexibility of signed electronic documents.

5.5 Silanis

Silanis [12] of Canada makes a ApproveIt package for Word and Excel documents. In my tests ApproveIt

seems to be aware of most of our attempts to change document contents and blocks the field contents to

be updated. However, our tests also showed that ApproveIt still permits macro-based attacks. This creates

a problem as, once they are accepted, Microsoft allows signed macros in its Office documents to execute

without a warning window, as described in Section 4.1.1

26

5.6 Office XP built-in signatures

Office XP in its first release provided ways to digitally sign electronic documents and like Office 2000 allows

the digital signing of macros in Office XP documents. These digitally signed macros are assumed to be secure

and thus allowed to execute without any warning.

The “auto-update” feature in signed documents, using Office XP’s built-in signing application, has been

removed, but using the signed macro attack all the attacks proposed work if the user accepts the initial claim

of the macro being from a trusted source.

5.7 Summary of Attacks

This is a summary of all the attacks discussed in Chapter 4 applied to some COTS PKI packages discussed

in Chapter 5.

Table 5.1: Summary of attacks on Office 2000/XP, Adobe Acrobat and Outlook express using COTS PKI
Attack Methods Signature Format Workflow format Results
Time/Date-Based
Attacks

E-Lock Prosigner, E-Lock Assured Of-
fice, Digsigtrust Certainsend

Microsoft Word/Excel Successful

Silanus ApproveIt Microsoft Word/Excel Unsuccessful
Outlook internal signatures HTML Mail via

Outlook
Successful

Visible Adobe Acrobat PDF signatures Adobe Acrobat PDF Successful
Invisible Adobe Acrobat PDF
signatures

Adobe Acrobat PDF Unsuccessful

Macro-Based Attacks

• Time/Date

• Fields

• Linked files

E-Lock Prosigner,
E-Lock Assured Office,
Digsigtrust Certainsend, Silanus
ApproveIt

Microsoft Word/Excel Successful

Linked file Attacks E-Lock Prosigner, E-Lock Assured Of-
fice, Digsigtrust Certainsend, Outlook
internal signatures

Microsoft Word/Excel,
HTML Mail via
Outlook

Successful

Silanus ApproveIt Unsuccessful
Platform-Based
Attacks

E-Lock Prosigner, E-Lock Assured Of-
fice, Digsigtrust Certainsend Microsoft Word/Excel

Successful

Silanus ApproveIt Unsuccessful

27

Table 5.2: Summary of attacks on Office XP internal signatures
Attack Methods Signature Format Workflow format Results
Time/Date-Based
Attacks

Built-in signatures Microsoft Word/Excel Unsuccessful

Macro-Based Attacks

• Time/Date

• Fields

• Linked files

Built-in signatures Microsoft Word/Excel Successful

Linked file Attacks Built-in signatures Microsoft Word/Excel Successful
Platform-Based
Attacks

Built-in signatures Microsoft Word/Excel Unsuccessful

28

Chapter 6

Case Studies

In this section I shall show some of the results produced from the attacks described in Chapter 4.

6.1 An attack on Microsoft Word

Microsoft Word allows many ways to insert dynamic content in a document without using macros. This

section describes attacks using Microsoft Word with E-Lock Prosigner as the digital signature package.

6.1.1 An attack on Microsoft Word using Fields

As I show, it is easy to carry out an attack in Microsoft Word. In this example, I use the Insert Field as

demonstrated in Section 4.1.2. Using this attack, if the document were viewed on different days then the

amount of money requested changes. Figure 6.1 shows a simple Word document written and signed by Prof.

Sean Smith and sent to the head of the department for release of funds. Figure 6.2 shows the same Word

document. Figure 6.3 shows the dynamic content in the file. I sign the document using E-lock Prosigner and

verify it in Figure 6.4. When the document is opened the next day, its contents have changed as shown in

Figure 6.5, but Prosigner still says the document contents are signed and verified.

29

Figure 6.1: A simple Microsoft Word document

30

Figure 6.2: The same Microsoft Word document viewed on a different day

31

Figure 6.3: By right-clicking on the field one can “Toggle Field Codes” to open the field and see the actual
inserted code

32

Figure 6.4: E-Lock Prosigner is used to sign this document and deduce the hidden content

33

Figure 6.5: E-Lock Prosigner fails to do its job

34

6.1.2 An attack on Microsoft Word using Linked Files

In this section, I show an attack on a Microsoft Word document signed using E-Lock Prosigner. The linked

file “approve.doc” resides on the internet and whenever the file “linked.doc” is opened, it updates the link

and replaces the content with the content of “approve.doc”. In this way, one could modify the content of the

linked document and thus change the content of the main document.

Figure 6.6 shows “linked.doc”. Figure 6.7 shows “approve.doc” that resides on a website. I copy the contents

of “approve.doc” in Figure 6.8. In “approve.doc”, I Paste Special the contents of the clipboard demonstrated

in Figure 6.9. I select Paste as link in Figure 6.10. In Figure 6.11, I select inserting link as unformatted text.

Now, when the document is viewed on May 14, 2003, it shows approval but when viewed on on May 15,

2003 after I modify “approve.doc”, it shows the opposite.

Figure 6.6: The Microsoft Word document “linked.doc”

35

Figure 6.7: The Microsoft Word document “approve.doc”

36

Figure 6.8: Copying content into clipboard

37

Figure 6.9: “Paste Special” in “linked.doc”

38

Figure 6.10: Click Paste as link

39

Figure 6.11: Pasting link as unformatted text

40

Figure 6.12: E-Lock Prosigner verified document viewed on May 14, 2003

41

Figure 6.13: E-Lock Prosigner verified document viewed on May 14, 2003 after “approve.doc” is modified

42

6.1.3 An attack on Microsoft Word using Signed Macros

Microsoft Word 2000/XP allow the signing of macros. This allows users to accept signed macros from some

entity they consider trusted and run these macros without a warning window everytime. I will show an attack

using this feature to trick users into accepting a macro from someone whom they consider trusted. I create a

certificate using the Selfcert.exe application provided by Microsoft, and use this certificate to sign the macro.

Microsoft Office XP in allowing users to digitally sign Office documents (using there built-in signature ap-

plication) blocks all auto-updates in the signed document. My attack will use a signed macro to update all

the fields and link on the document to carry out this attack.

Figures 6.14 and 6.15 indicate how the Selfcert.exe application is used to create a certificate from Microsoft

Corporation. Figure 6.16 shows a simple Office document. It is easy to insert macros in Word as shown

by opening the Visual Basic Editor in Figure 6.17 and inserting the “update all fields” macro in the Docu-

ment Open() function call in Figure 6.18. In Figures 6.19, 6.20, 6.21 and 6.22, I sign the macro using the

certificate generated using Selfcert. Figures 6.23 and 6.24 show how one can use the Microsoft Office’s built-

in PKI. Figures 6.25, 6.26, 6.27 show the steps in signing a Microsoft Word document. To show the depth of

this attack, I set the macro security settings to hign in Figure 6.28. When the file is opened for the first time,

a warning window pops up (displayed in Figure 6.29) which says it does not trust the certificate, but says it

is from Microsoft. Figure 6.30 shows how most users are tricked into accepting the macro. Thus, when the

document is opened on Monday, May 26, 2003, it shows one amount as shown in Figure 6.31, and when it

is opened on Tuesday, May 27, 2003, it shows another amount as shown by Figure 6.32. The small mark at

the bottom and the signed comment next to the document name indicates that the document is signed and the

content has not changed according to Microsoft’s signature application.

43

Figure 6.14: The Selfcert.exe application

44

Figure 6.15: Using Selfcert.exe to create a certificate from “Microsoft Corporation”

45

Figure 6.16: A simple Office document containing a field

46

Figure 6.17: Opening the Visual Basic Editor from the “Tools” toolbar

47

Figure 6.18: Inserting the “update all fields” macro in the “Document Open()” function

48

Figure 6.19: Digitally signing the macro

49

Figure 6.20: Selecting certificate to sign macro

50

Figure 6.21: Selecting the “Microsoft Corporation” certificate created by Selfcert.exe

51

Figure 6.22: Signing the macro with the chosen certificate

52

Figure 6.23: Selecting the options menu item in the “Tools” toolbar

53

Figure 6.24: Digitally signing the document using built-in PKI

54

Figure 6.25: Adding a signer step 1

55

Figure 6.26: Adding a signer step 2

56

Figure 6.27: Adding a signer step 3

57

Figure 6.28: Setting macro security to High

58

Figure 6.29: Warning window shown when the file is opened says it does not trust the certificate but says its
from Microsoft

59

Figure 6.30: Tricking the user into accepting the macro

60

Figure 6.31: Document viewed on Monday, May 26, 2003

61

Figure 6.32: Document viewed on Tuesday, May 27, 2003 the mark at the bottom signifies that the document
content has not changed

62

6.2 An attack on Microsoft Excel

Figure 6.33 shows a simple Excel document sent by the department and signed by the people to pay for an

overnight stay for a conference. It is easy for the attacker to conduct attacks using the Now() function to carry

out an attack as demonstrated in Section 4.2.2. In the attacks due to some devious code Prof. Sean Smith

ends up paying for everyone’s stay at the hotel.

In Figure 6.34, dynamic content is inserted in each of the credit card number cells using the NOW() function

call. Figures 6.35, 6.36 and 6.37 show the steps in the digital signatures process using E-Lock Prosigner.

When verified on May 12, 2003, the document shows (Figure 6.38) the various credit card numbers and

expiration dates and when verified on May 13, 2003, the document shows Prof. Sean Smith paying for

everyone (Figure 6.39).

Figure 6.33: A simple Microsoft Excel document

63

Figure 6.34: Inserting dynamic content using the NOW() function call

64

Figure 6.35: Signature Process step 1. Using E-Lock Prosigner

65

Figure 6.36: Signature Process step 2. Using E-Lock Prosigner

66

Figure 6.37: Validating Certificate

67

Figure 6.38: E-Lock Prosigner verified document viewed on May 12, 2003

68

Figure 6.39: E-Lock Prosigner verified document viewed on May 13, 2003

69

6.3 An attack on Signed HTML mail using Outlook Express

In this section, I will show an attack on Signed HTML mail. The figures show a simple way of inserting

JavaScript code into an email so that the contents can change according to some variable. In the case shown

here, I am using the attack defined in Section 4.4.1. Here, the signed email’s content changes according to

the date.

Figure 6.40 shows a new mail window in Outlook Express 6. Outlook allows users to edit the source of the

email, i.e., the underlying HTML code as shown in Figure 6.41. I insert the JavaScript code into the email

in Figure 6.42. In Figure 6.43, I use Outlook Express’s built-in PKI to sign the outgoing email. Figure 6.44

shows Outlook signing the email using the users private key with the cryptoAPI. Viewing the email on Friday,

May 23, 2003 shows one amount and when the email is opened on Saturday, May 24, 2003, the amount is

completely different even though the header of the email says that it is still signed and verified.

Figure 6.40: A simple email

70

Figure 6.41: Corrupting the simple email

71

Figure 6.42: Inserting JavaScript into the email

72

Figure 6.43: Clicking the sign button. This signifies that the outgoing email is signed using Outlook built-in
PKI

73

Figure 6.44: Signing the email using user’s private key

74

Figure 6.45: Viewing the email on Friday, May 23, 2003. Security header says it is signed and verified

75

Figure 6.46: Viewing the email on Saturday, May 24, 2003. Security header still says it is signed and verified

76

Chapter 7

Countermeasures

We shall consider several general approaches for potential countermeasures:

• Inert Documents One approach is to carefully design a document format that has no dynamic content.

(This appears to be the approach taken by Utimaco.) Given the surprising richness of document for-

mats, we would hesitate to certify any given one as inert. We also wonder whether users would accept

inert documents in their workflow process.

• Application Awareness Another approach is to make the digital signature tools highly application

aware, and refuse to verify (or perhaps even sign) documents that had malleable content. Acrobat

Invisible Signatures appear to move in this direction. The fact that Excel even flags certain of our tricks

as “volatile” and notices the document changes suggests an avenue to correct those issues.

However, this approach would complicate the acceptable API that PKI tools should offer to applica-

tions.

• Identify and Sign Parameters Herzberg [8] once proposed signing both a document and the program

that views the document. One might extend that to explicitly identify and sign all hidden parameters;

however, it has been observed that this may not be a feasible solution.

• Verification Cleanrooms Alternatively, one might design “safe” places, free of predictable influences,

where a document might be verified. For example, my remote-control Web attacks can be detected if

77

the verifier has a slow or non-existent Web connection. (Of course, this notion of moving verification

to a trusted safe place runs counter to the standard intuition of moving signatures there.)

• Printer Driver We have had some experience with writing a signature application, but Microsoft Word

provides many avenues for devious minds to exploit. One strategy we considered to avoid dynamic

content was to print the document to a file, sign that value and transport that with the document. This

seems a reasonable approach but there are issues. VBA provides a function call to trap the print-to-file

command and this would allow a malicious user to replace the document content before printing and

thus divert the actual signature verification.

78

Chapter 8

Conclusions

I note that some products we tested resisted many of the attacks from Chapter 4, and that the US appears

to lag behind Europe with regard to laws and standards in this area. I would urge application deployers to

carefully examine their tools.

What additional lessons could one draw from this?

First, this work offers more data points in support of standard security canards:

1. The composition of apparently reasonable systems is not necessarily secure. What other things are

dangerous to sign?

2. As we saw before with web spoofing, the surprising functionality and interoperability of common

desktop tools yield many opportunities for malicious behavior.

3. It seems virtually impossible to completely remove dynamic content from modern document formats.

Second, by a simple exploration, this thesis has stopped our university from deploying a fatally flawed signa-

ture/workflow integration.

The Utimaco approach then seems the only feasible approach left but it is not without problems. It converts

a electronic document into a image, which would limit the flexibility of electronic documents. Today in the

79

business world any approval goes through a chain of command with every link stating approval, Utimaco’s

approach does not take this into account.

This thesis could be considered as work to warn people of the fact that the security schemes used today

rely excessively on the fact that all dynamic content can be realized, which as this paper proves is incorrect

through

Future Work

The work in this thesis suggests that to attempt to remove all dynamic content in digital documents is an

infeasible solution to the problem. The obvious solution is to remove dynamic content. This paper shows

that dynamic content has unusual ways of showing up. The solution would have to reside with PKI having a

better understanding of the underlying workflow format. A nice solution to this problem would be to improve

the printer driver idea or to have a way to extend Utimaco’s SafeGuard Sign&Crypt to make it more flexible.

80

Bibliography

[1] C. Brenn. Summary of the Austrian Law on Electronic Signatures. http://rechten.kub.nl/

simone/brenn.htm

[2] Digital Signature Trust. CertainSend Security: A Brief Technical Overview. http://www.

trustdst.com/prod_serv/certainsend/tech_overview.html

[3] D. De Maeyer. Interoperability at Utimaco Safeware: Digital Transaction Security. http://www.

utimaco.de/eng/content_pdf/pkic.pdf

[4] DIRECTIVE 1999/93/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 13 Decem-

ber 1999 on a Community framework for electronic signatures. http://europa.eu.int/ISPO/

ecommerce/legal/documents/1999_93/1999_93_en.pdf

[5] E-Lock Technolpgies. E-Lock Technologies Assured Office. http://www.elock.com/pdf/ao_

entrust.pdf

[6] E. Felten, D. Balfanz, D. Dean, and D. Wallach. “Web Spoofing: An Internet Con Game.” 20th National

Information Systems Security Conference. 1996.

[7] S. Haber and W. Stornetta. “How to Time-Stamp a Digital Document.” Journal of Cryptology. 2:99-111.

1991.

[8] A. Herzberg. Personal communication.

[9] Audun Jφsang, D.Povey, A.Ho. “What You See is Not Always What You Sign.” Australian UNIX and

Open Systems User Group. September 2002.

81

[10] K. Kain, S.W. Smith, R. Asokan. “Digital Signatures and Electronic Documents: A Cautionary Tale”

Sixth IFIP conference on communications and multimedia security. September 2002.

[11] Lexign Incorporated. The Lexign Suite. http://www.lexign.com/resources/white_

papers.htm

[12] D. McKibben. Silanis Technology: Signature Technology for E-business. http://www.silanis.

com/download/whitepapers/silanis_gartner.pdf

[13] U. Pordesch. “Der fehlende Nachweis der Präsentation signieter Daten.” DuD—Datenschutz und Daten-

sicherheit. 2/2000.

[14] U. Pordesch and A. Berger. “Context-Sensitive Verification of the Validity of Digital Signatures.” Mul-

tilateral Security for Global Communication (Müller, Rannenberg, eds.). Addison-Wesley-Longman,

1999.

[15] A. Rossnagel. “Digital Signature Regulation and European Trends.” http://www.emr-sb.de/

news/DSregulation.PDF

[16] R.M. Smith. “Distributing Word Documents with a locating beacon.” SecuriTeam. August 2000. http:

//www.securiteam.com/securitynews/5CP13002AA.html

[17] U.S. General Services Administration. Access Certificates for Electronic Services. http://www.

gsa.gov/aces/

[18] Z. Ye, S.W. Smith. “Trusted Paths for Browsers.” USENIX Security. 2002.

[19] E. Ye, Y. Yuan, S.W. Smith. Web Spoofing Revisited: SSL and Beyond. Technical Report TR2002-417,

Department of Computer Science, Dartmouth College. February 2002.

82

