
Dartmouth College Computer Science Technical Report TR2002 - 425

The Future of Cryptography Under Quantum
Computers

Marco A. Barreno
marco.barreno@alum.dartmouth.org

July 21, 2002

Senior Honors Thesis
Advisor Sean W. Smith

Contents

1 Preliminaries 1
1.1 Motivation . 1
1.2 Overview . 1
1.3 Introduction to cryptographic primitives 2

1.3.1 Basics and terminology 2
1.3.2 Symmetric-key cryptography 2
1.3.3 One-way hash functions 3
1.3.4 Trapdoor functions and public-key cryptography 4
1.3.5 Digital signing . 4
1.3.6 Pseudorandom number generation 5

1.4 Complexity theory . 5
1.4.1 Overview of complexity classes 5
1.4.2 Hard problems vs. easy problems 8

1.5 Quantum computers . 9

2 Complexity-Generalized Cryptography 10
2.1 Complexity and cryptography 11
2.2 Definitions of cryptographic primitives 11

2.2.1 Definition of symmetric-key cryptography 12
2.2.2 Definition of one-way hash functions 14
2.2.3 Definition of public-key cryptography 15
2.2.4 Definition of digital signing 17
2.2.5 Definition of pseudorandom number generation 19

2.3 Complexity-generalized requirements for security and feasibility 20
2.3.1 Complexity requiremens of Symmetric 21
2.3.2 Complexity requirements of OneWayHash 21
2.3.3 Complexity requirements of PublicKey 22
2.3.4 Complexity requirements of DigitalSign 22

i

2.3.5 Complexity requirements of PseudoRandom 22

3 Quantum Computers 24
3.1 Introduction to quantum computation 24

3.1.1 Qubits and quantum properties 24
3.1.2 The parallel potential of quantum computers 26
3.1.3 Decoherence . 26

3.2 Shor’s factoring algorithm . 27
3.3 Consequences . 27

4 Cryptographic Implications of Quantum Computers 28
4.1 Complexity of quantum computation 28

4.1.1 Known relationships 29
4.1.2 Possibilities . 29

4.2 Implications . 30
4.2.1 BPP = BQP ⊂ NP 30
4.2.2 BPP ⊂ BQP . 31
4.2.3 UP ⊆ BQP . 31
4.2.4 NP ⊆ BQP . 32

5 Conclusions 34
5.1 Complexity-generalized cryptography 34
5.2 Philosophical and practical implications 34
5.3 Open questions and future work 35

ii

Abstract

Cryptography is an ancient art that has passed through many paradigms,
from simple letter substitutions to polyalphabetic substitutions to rotor ma-
chines to digital encryption to public-key cryptosystems. With the possible
advent of quantum computers and the strange behaviors they exhibit, a new
paradigm shift in cryptography may be on the horizon. Quantum computers
could hold the potential to render most modern encryption useless against
a quantum-enabled adversary. The aim of this thesis is to characterize this
convergence of cryptography and quantum computation.

We provide definitions for cryptographic primitives that frame them in
general terms with respect to complexity. We explore the various possible re-
lationships between BQP, the primary quantum complexity class, and more
familiar classes, and we analyze the possible implications for cryptography.

Chapter 1

Preliminaries

1.1 Motivation

Cryptography is an ancient art that has passed through many paradigms,
from simple letter substitutions to polyalphabetic substitutions to rotor ma-
chines to digital encryption to public-key cryptosystems. With the possible
advent of quantum computers and the strange behaviors they exhibit, a new
paradigm shift in cryptography may be on the horizon. Quantum computers
may hold the potential to render most modern encryption useless against a
quantum-enabled adversary. The aim of this thesis is to characterize this
convergence of cryptography and quantum computation. We are not con-
cerned so much with particular algorithms as with cryptography in general.
To this end, we will examine primitives that constitute the core of modern
cryptography and analyze the complexity-theoretical implications for them
of quantum computation.

1.2 Overview

This chapter will be devoted to introducing the subjects to be discussed in
this thesis. In Chapter 2 we define and analyze the basic cryptographic prim-
itives, and in Chapter 3 we give an introduction to quantum computation and
discuss some results that could have implications for cryptography. Chap-
ter 4 is devoted to bringing together the cryptographic and quantum pieces
and characterizing their intersection. Finally, in Chapter 5 we summarize
our conclusions and suggest possible avenues for future work.

1

1.3 Introduction to cryptographic primitives

1.3.1 Basics and terminology

The term cryptography refers to the art or science of designing cryptosystems
(to be defined shortly), while cryptanalysis refers to the science or art of
breaking them. Although cryptology is the name given to the field that
includes both of these, we will generally follow the common practice (even
among many professionals and researchers in the field) of using the term
“cryptography” interchangeably with “cryptology” to refer to the making
and breaking of cryptosystems.

The main purpose of cryptography is to protect the interests of parties
communicating in the presence of adversaries. A cryptosystem is a mecha-
nism or scheme employed for the purpose of providing such protection. We
examine several cryptosystems in this paper, spanning a wide range of cryp-
tographic uses. We shall now take a moment to introduce the cryptographic
primitives to be discussed. They will be formally defined and analyzed in
Chapter 2. For a more comprehensive review of cryptographic concepts the
reader is directed to Rivest’s chapter in the Handbook of Theoretical Com-
puter Science [20], and for a wide-ranging treatment of the application of
those concepts the reader is referred to Schneier’s book Applied Cryptog-
raphy [22]. The definitions presented in Chapter 2, however, are meant to
construct a more general complexity-theoretical framework for discussing the
primitives than can be found currently in the literature.

1.3.2 Symmetric-key cryptography

Symmetric-key, or secret-key, cryptography is characterized by the use of
one key, kept secret, that both parties in communication use to encrypt
and decrypt messages. Modern symmetric-key cryptosystems come in two
main flavors: block ciphers and stream ciphers. A block cipher operates on
larger blocks of text (often 64-bit blocks), performing a particular scram-
bling function on the block. A simple block cipher will always encrypt the
same plaintext block to the same ciphertext block, though more advanced
techniques such as block chaining can negate this effect. A stream cipher,
on the other hand, operates on smaller units—often just one byte or one bit
at a time—and produces an output stream in which the encryption of each
unit of ciphertext depends on the sequence of units for some length before it.

2

The same piece of plaintext will generally encrypt to a different ciphertext
at different times. A stream cipher is conceptually very similar to a pseudo-
random number generator (see below) and, in fact, is often implemented in
the same way.

The main purpose of such a cryptosystem is, of course, to thwart an ad-
versary in his or her attempt to intercept or disrupt communications. The
adversary may have various types of information available with which to
attack the cryptosystem. In a ciphertext-only attack, the adversary knows
nothing but a number of ciphertexts polynomial in the input size (the input
size is the sum of the sizes of the key and message). Note that in this paper
we always assume that the adversary has full knowledge of the algorithm
used. In a known-plaintext attack, the adversary has access to a polynomial
number of plaintext-ciphertext pairs. In a chosen-ciphertext attack, the ad-
versary may select a polynomial number of ciphertexts for which to see the
plaintext. One might also encounter adaptive chosen-plaintext or adaptive
chosen-ciphertext attacks, in which the adversary need not choose all the
plaintexts or ciphertexts at once but may see some results before making
further selections. For simplicity’s sake, we do not address the additional
complexity of these last three attacks, and we concern ourselves here with
ciphertext-only and known-plaintext attacks.

1.3.3 One-way hash functions

Informally, a one-way function is a function that is easy to compute but dif-
ficult to invert. We are concerned primarily with cryptographically relevant
one-way functions, and these tend to fall into two major categories: one-way
hash functions and trapdoor functions. We will discuss trapdoor functions in
the context of public-key cryptography, but here we introduce one-way hash
functions.

Various other properties are sometimes associated with the concept of
a one-way function, such as that it must be one-to-one [11, 18] or that it
must be honest, meaning that for any x in the domain, f(x) may be no more
than polynomially smaller than x [11, 15]. A one-way hash function used in
cryptographic applications, such as MD5 or SHA, generally has neither of
these properties. Its purpose is to create a smaller, usually fixed-size value
such that it is difficult to find a message that hashes to any particular value,
or even any two messages that hash to the same value. Because the message
space tends to be much bigger than the space of hash values, the hash function

3

is not one-to-one, and it clearly cannot be honest with a fixed-size output. For
a detailed look at cryptographic one-way hash functions, including myriad
real-world examples, see Schneier’s book [22, Chapter 18]. Although there
are differing opinions on just what should constitute a one-way function, we
will attempt to make some generalizations and draw conclusions relevant to
cryptography.

1.3.4 Trapdoor functions and public-key cryptography

A trapdoor function is a one-way function with a corresponding piece of
information (the trapdoor) that helps one easily to compute the inverse of
the function. Trapdoor functions are crucial to public-key cryptography.

Public-key cryptography was conceived by Diffie and Hellman in 1976 [7],
though Merkle had previously developed some of the key concepts [16]. It is
characterized by different encryption and decryption keys; each user makes
his or her encryption key publicly available but keeps the decryption key se-
cret. Anyone can encrypt messages using any public key, but the ciphertexts
can be decrypted only by the user possessing the decryption key correspond-
ing to the key used for encryption. This is the trapdoor function: encryption
is the one-way operation, and the private key is the trapdoor information al-
lowing the user to invert the function and decrypt messages. The best-known
example is the RSA cryptosystem, so named for the initials of its inventors
Rivest, Shamir, and Adleman [21]. RSA uses modular exponentiation as the
trapdoor function, and its difficulty is based on the difficulty of factoring
large numbers.

1.3.5 Digital signing

The objective of digital signing is to provide a means by which it can be
proved that a person has seen and acknowledged a particular document.
Each signature must be associated, with high probability, with one particular
person and one particular document. A digital signature can also act as
proof of identity because only the person possessing the correct private key
can generate signatures verified by the corresponding public key.

Digital signing is closely related to public-key cryptography. Many public-
key cryptosystems can also be used as digital signature system by simply
reversing the order of operations: “encrypt” using the private key to generate
the signature, and verify it by “decrypting” with the public key; this works

4

because the operations are inverses of each other. Only the possessor of the
particular private key can generate a signature that is correctly verified by
the corresponding public key, and the signature for each document is different
(again, with high probability).

1.3.6 Pseudorandom number generation

Of crucial importance to many cryptographic applications is a source of ran-
domness. Because natural randomness is somewhat difficult to come by in
large amounts, it is important to design pseudorandom number generators to
supply numbers that appear to be random. The appearance of randomness
is usually defined by difficulty of predicting the next number (or bit), given
the ones produced so far.

1.4 Complexity theory

The analysis of computational resources required to solve problems is the
realm of complexity theory, pioneered in 1965 by Hartmanis and Stearns [13].
Complexity theory is concerned with comparing the inherent difficulty of
computational problems. The salient measure is the asymptotic time or space
required of an algorithm in terms of some size parameter n of the input. An
algorithm runs in, say, O(n2) time (pronounced “big-oh of n squared”) if its
running time can be bounded asymptotically by some constant multiple of
n2. In general, the set of functions f(n) obeying a particular asymptotic
bound g(n) can be denoted as follows:

O(g(n)) = {f(n) : there exist positive constants c and n0 such that
0 ≤ f(n) ≤ cg(n) for all n ≥ n0}

This definition comes directly from Introduction to Algorithms by Cormen,
Leiserson, Rivest, and Stein [5], in which the reader will also find further
discussion of asymptotic notation and the growth of functions.

1.4.1 Overview of complexity classes

When discussing time complexity of algorithms or problems (or space com-
plexity, but in this paper we are concerned primarily with time complexity)
it is useful to group them into complexity classes, or classes of problems that

5

share the same asymptotic upper limit on running time for a particular model
of computation. Examples of such limits include:

• constant time: O(1)

• linear time: O(n)

• polynomial time: O(nk) for some constant k > 0

• exponential time: O(2n
k
) for some constant k > 0

Examples of models of computation, to be discussed below, include determin-
istic Turing machines, probabilistic Turing machines, nondeterministic Tur-
ing machines, oracle Turing machines, and quantum computers. We present
here a brief overview of some relevant complexity classes; for a thorough
treatment of non-quantum complexity classes, please see Johnson’s chapter
of the Handbook of Theoretical Computer Science [15].

The basic division between tractable and intractable problems is quite
universally held to be the line between polynomial and exponential time.
Exactly which problems are solvable in polynomial time and which in ex-
ponential depends somewhat on the model of computation at one’s disposal
when solving the problem.

Deterministic Turing machines

We assume the reader has at least a basic familiarity with Turing ma-
chines; see, for example, Sipser’s book [25] or Hopcroft, Motwani, and
Ullman’s book [14] for a comprehensive introduction. The complexity
class P is the class of problems solvable on a deterministic Turing ma-
chine in polynomial time. Because deterministic Turing machines are
essentially equivalent to digital computers, provided the computer has
enough memory to be treated as infinite for the given problem, P is
sometimes taken to be the class of tractable problems (especially when
contrasted with the class NP).

Nondeterministic Turing machines

A nondeterministic Turing machine is a Turing machine that can make
nondeterministic guesses during computation. The effect is that when
an NTM (we will often abbreviate various Turing machines by their
initials like this) makes such a guess, it essentially follows both (or

6

all if more than two) execution paths and accepts the input if any
execution path enters an accepting configuration.

Bounded probabilistic Turing machines

A probabilistic Turing machine is a Turing machine that is determinis-
tic except that it can employ a source of randomness, such as flipping
a coin, in making decisions. The complexity class BPP is the class of
problems solvable in polynomial time by probabilistic Turing machines
with bounded error probability. A probabilistic Turing machine has
bounded error probability if the probability that it yields an incorrect
answer is uniformly bounded below 1

2
for all inputs; in other words,

if the input is in the language then the BPTM accepts with proba-
bility strictly greater than 1

2
and if the input is not in the language

then it rejects with probability strictly greater than 1
2
. In either case,

the lengths of all computations are on the same order. BPP is intro-
duced and analyzed in Gill’s 1977 paper [10]. In reality, BPP is usually
held to be a better description of tractable problems than P because
a source of true or good-enough approximate randomness is obtained
easily enough.

Unambiguous Turing machines

An unambiguous Turing machine is simply an NTM with at most one
accepting configuration for each possible input string. The class of
problems solvable in polynomial time by a UTM is UP. This class is
important because it is closely tied to the existence of one-way func-
tions, as we shall see later on in Section 4.1.1.

Quantum Turing machines

A quantum Turing machine is a Turing machine that can use quantum
mechanical operations in performing calculations. BQP is the class of
problems solvable in bounded-error polynomial time by QTMs, analo-
gous to BPP for non-quantum machines. We will be exploring QTMs
in more depth in Chapter 4; for background and definitions, see papers
by Deutsch [6] and Bernstein and Vazirani [2].

Oracle Turing machines

An oracle Turing machine is a Turing machine with a special oracle
tape. The Turing machine can ask a question of the oracle by writing

7

to the oracle tape and then entering a special oracle state; after a single
time step, the answer will replace the question on the oracle tape. The
oracle can be thought of as a problem the Turing machine gets to solve
for free.

When a proof is given that involves an OTM, it is an example of rela-
tivized complexity, or complexity analysis relative to an oracle. There
are at least two reasons why such proofs can be interesting. First, the
relativized proof becomes a non-relativized proof if ever a tractable al-
gorithm is devised to perform the same function as the oracle. And
second, since many proof techniques relativize, that is, remain valid
when applied in a relativized setting, it can be useful to demonstrate
different oracles relative to which open questions are answered in dif-
ferent ways. If this can be done it means that proving the question one
way or another will be difficult and require unusual technique

If O is an oracle, we denote by MO an oracle Turing machine that can
query O in its computations.

There is one more class that we will mention: PSPACE is the class of
problems that take polynomial space to solve (and unspecified time). It is
well known that P ⊆ NP ⊆ PSPACE and BPP ⊆ PSPACE, but it is not
known whether any of those inclusions are proper.

Note that there is a distinction to be drawn among what we have been re-
ferring to generally as “problems.” Turing machines recognize languages, or,
equivalently, solve decision problems. Given a string, a Turing machine will
return accept or reject. Most of the problems we are concerned with, how-
ever, are not decision problems but functions that produce a value other than
merely accept or reject. These functions are described by classes FP analo-
gous to P, FNP analogous to NP, and so on (Grollmann and Selman [11]
refer to FP as PSV, FNP as NPSV, etc.). See Papadimitriou’s book [18]
for further explanation and analysis of this distinction. In this paper, we will
not distinguish between classes of languages and classes of functions until it
becomes crucial to draw the distinction clearly for Theorem 2.

1.4.2 Hard problems vs. easy problems

We have some division between “easy” and “hard” complexity classes. So far
this has been the division between polynomial and exponential classes, and

8

BPP has replaced P as the main polynomial class. Now we want to make
this bound movable. The hard of tomorrow may be more restricting than
the hard of today, but we want these definitions to withstand the shift.

When talking about cryptography and complexity-theoretic security, we
need to define what is considered to be “hard” and what is “easy.” Gen-
erally the line between tractable and intractable has been taken to be the
polynomial/exponential line. That is, a problem is considered tractable if the
running time of an algorithm to solve it is O(nk) for some constant k, and
a problem is considered intractable if it cannot be bound by such a limit.
Though there are classes between polynomial and exponential, by far the
most commonly discussed superpolynomial bound is exponential time.

Classifying decision problems as easy and hard by these standards de-
pends on the model of computation used, of course. Exactly which problems
are solvable in polynomial time depends on whether you can make coin flips,
choose nondeterministically, etc.

In this paper we shall use the notation Easy(n) to refer to classes that are
feasible as n grows large and Hard(n) to refer to classes that are infeasible
as n grows large, judging by the most powerful model(s) of computation
available. In Chapter 4 we will examine which problems will be in Easy(n)
and which will be in Hard(n) if a quantum computer is built and quantum
computing becomes available as a model of computation.

1.5 Quantum computers

In a nutshell, a quantum computer is a computer built to make use of quan-
tum mechanical effects in its computations. No one has yet succeeded in
building a quantum computer of significant size, and indeed there are fun-
damental difficulties that may prevent a large-scale quantum computer from
ever being built. If a quantum computer were built, however, it would have
powers exceeding the known powers of a classical (i.e. non-quantum) com-
puter, due to the quantum mechanical effects. In particular, it has been
shown that some problems critical to cryptography (to be discussed in Chap-
ter 3) can be solved on a quantum computer in much less time than the best
known time for a classical algorithm, suggesting that the advent of large-
scale quantum computers may have very significant implications for the field
of cryptography. Exploring the extent and nature of these implications is the
main purpose of this thesis.

9

Chapter 2

Complexity-Generalized
Cryptography

Before we discuss in detail the effects quantum computers will have on cryp-
tography, it is necessary to define and review some important cryptographic
concepts. In this section we will present some fundamental elements of cryp-
tography as they are relevant to the subject. We assume the reader has a
basic familiarity with cryptography, but we will review the key details.

It is important to keep in mind that the security of the systems we are
concerned with is measured in the sense of computational complexity, not
the information-theoretic sense. A cryptosystem is information-theoretically
secure if the ciphertext (along with knowledge of the algorithm) does not
give the adversary enough information to find the plaintext. The standard
example of such a system is the one-time pad, under which each message
is xor’d with a different random key of the same length as the message.
Since any plaintext of that length could encrypt to the same ciphertext,
given the appropriate key, the adversary cannot determine any information
about the message (other than perhaps the length). A cryptosystem is still
computationally secure, on the other hand, even if an adversary has enough
information to recover the message in theory but the computation requires
too much time to be feasible.

10

Primitive Definition Security & feasibility
Symmetric cryptography Section 2.2.1 Section 2.3.1
One-way hash functions Section 2.2.2 Section 2.3.2
Public-key cryptography Section 2.2.3 Section 2.3.3
Digital signing Section 2.2.4 Section 2.3.4
Pseudorandom number generation Section 2.2.5 Section 2.3.5

Table 2.1: Cryptographic primitives and sections in which discussed and
analyzed

2.1 Complexity and cryptography

Central to measuring the success of a cryptosystem is assessing the ease of
using it and difficulty of breaking it. Complexity theory is the language
we use to do this, but we take what we believe to be a novel approach in
our treatment of the subject. This chapter presents a formulation of some
important cryptographic primitives that frees them from being tied to any
particular model of computing or any specific notion of easy and hard. We
discuss using and breaking these primitives independently of a particular
easy-hard boundary so that the discussion will be germane to any model of
computation.

First we lay out the definitions of the primitives. After we have estab-
lished our definitions, we will present a brief analysis of the feasibility of using
the primitives and difficulty of breaking them in terms of our complexity-
generalized definitions.

2.2 Definitions of cryptographic primitives

Wherever M and C appear in definitions, they should be taken to be the
message space and ciphertext space, respectively, each a set of strings over
some alphabet (not necessarily the same).

The cryptographic primitives we will discuss are listed in Table 2.1, which
summarizes where the definitions and complexity analysis can be found for
each.

11

2.2.1 Definition of symmetric-key cryptography

We begin with our complexity-generalized definition of a symmetric cryp-
tosystem.

Primitive Definition 1 Symmetric = {f, g,M,K, C} such that:

• f : M × K −→ C and g : C × K −→ M are the encryption and
decryption functions, respectively

• K is the key space, a set of strings over some alphabet

• g(f(m, k), k) = m for all k ∈ K,m ∈M

An instance of a symmetric cryptosystem consists of encrypting and de-
crypting functions (which may be the same function), a message space, a key
space, and a ciphertext space. In order to discuss the cracking problem, we
must first introduce some additional concepts.

Definition 1 For any message spaceM, letM∅ =M∪{∅}, where ∅ means
no message at all.

We define M∅ to be the space of possible messages for a given message
space augmented with ∅, or “no message.” This should be taken to mean
that an element m ∈ M∅ could be any message in M or simply no message
at all.

When we say that an adversary has cracked a cryptosystem, we mean
that the adversary can decrypt messages encrypted under the cryptosystem
without prior knowledge of the key. This requires being able to identify
the particular key used to encrypt a given message. It is not cracking a
cryptosystem for an adversary to “decrypt” a message with some key that
was not used to encrypt it and get a “plaintext” that is not the one encrypted
and gives no information about the real plaintext. However it is done, then,
the correct key must be identified. In order to capture this requirement
without being concerned with the details, we define an oracle.

Definition 2 (Identification Oracle) Given an instance of a primitive,
such as Symmetric, the identification oracle I identifies a particular key, or
message in the case of OneWayHash. A Turing machine MI may query the
oracle with a key, or a message, and the oracle will answer True if the given
key or message is “the one we are after.”

12

This definition is left intentionally general because the particulars do
not concern us at this time. Whether this can easily be implemented as a
real test rather than an oracle query depends on the type of attack. For
a ciphertext-only attack in which the attacker knows something about the
structure of the message and has enough ciphertext, this test returns True
if the decryption for the key in question is intelligible (i.e. fits the known
structure). An obvious case is when the message is known to be, say, English
text in ASCII; I would return True if decryption with the key in question
produced a message recognizable as English. In a known-plaintext attack, the
test returns True if it decrypts the given ciphertext into the corresponding
plaintext.

Whether the attacker has “enough ciphertext” in a ciphertext-only at-
tack is measured by unicity distance, introduced by Shannon in his 1949
paper [23]. The unicity distance for a message with a certain structure is the
message length needed to guarantee with high probability that there is only
one plaintext that could produce the given ciphertext with any key. The
unicity distance for ASCII English text encrypted with various algorithms
ranges from about 8.2 to 37.6 characters for keys of length 56 to 256 bits [22,
p.236], so for this case it may be reasonable to assume that most messages
under consideration will be longer than the unicity distance and the test can
be performed without difficulty.

Note that the unicity distance test is meaningless for a one-time pad for
the same reasons that any ciphertext-only attack against a one-time pad is
theoretically impossible; namely, a particular ciphertext could be produced
by any message of the correct length given the right key, so there is no way to
distinguish one key from another if each decrypts the ciphertext to a message
that fits the structure.

We now turn to the cracking problem for a symmetric cryptosystem.

Definition 3 The cracking problem

crack[Symmetric]I : {C ×M∅}+ −→ G,

given an instance of Symmetric and relative to an oracle I, takes a polyno-
mial number p of ciphertext/plaintext pairs and produces a function g′ ∈ G :
C −→M that can then be used to decipher enciphered messages. The crack-
ing problem is to compute crack[Symmetric]I(c1,m1, c2,m2, . . . , cp,mp) = g′

13

such that:

∃(k ∈ K)∀(c ∈ C)∃(m ∈M) :
(I(k) = True) ∧ (m = g(c, k)) ∧ (m = g′(c))

There is an acknowledged drawback to this definition of the cracking
problem: it presents an all-or-nothing approach. A real cryptosystem would
be considered compromised if the adversary could reliably decrypt half of
the messages but not all of them, though such a situation does not count as
cracking under our definition. This is one area in which further work could
extend the results presented here.

2.2.2 Definition of one-way hash functions

A one-way hash function f(x) computes a hash value h (often but not nec-
essarily of fixed length) for any x in the domain. A value x is said to be the
pre-image of h if f(x) = h. The purpose of a one-way hash function is to
produce a value h that can be treated as uniquely associated with pre-image
x for practical uses. A one-way hash function is called collision-free if it is
hard to find two pre-images w and y such that f(w) = f(y). Remember
that most cryptographically significant real-world hash functions are neither
one-to-one nor honest (see Section 1.3.3).

Here Z+ is the set of positive integers.

Primitive Definition 2 OneWayHash = {f,D,R, l} such that:

• f : D ×Z+ −→ R is the hash function

• D is the domain of f

• R is the range of f

• f is not necessarily one-to-one but f is onto

• l ∈ Z+ is the length of the hash value: |f(x, l)| = l

Cracking a one-way hash function means finding any pre-image that
hashes to a particular hash value. Note that this does not mean that a
hash function must be completely collision-free to be uncrackable by our def-
inition, but only that a collision for a particular hash value cannot easily be
found. The cracking function takes as input the hash value to be cracked as
well as a polynomial number of generated message/hash value pairs.

14

Definition 4 The cracking problem

crack[OneWayHash]I : Z+ × (D ×R)∗ −→ G,

given an instance of OneWayHash and relative to an oracle I, takes a length
and a polynomial number p of message/hash value pairs, where all hash val-
ues have the given length. It produces a function g′ ∈ G : R −→ D that
returns a pre-image for the given hash value of the correct length (and is
undefined for r of any other length). The cracking problem is to compute
crack[OneWayHash]I(l, d1, r1, d2, r2, . . . , dp, rp) = g′ such that:

∀(r ∈ R where |l| = r)∃(d, d′ ∈ D) :
(I(d) = True) ∧ (r = f(d, l)) ∧ (r = f(d′, l)) ∧ (d′ = g′(r))

Sometimes the notion of cracking a hash function is broadened to include
findinga claw, or any two messages that produce the same hash value. A
hash function is claw-free if for that hash function it is infeasible to find any
two pre-images that hash to the same hash value. We do not require the
function to be claw-free because it would further complicate matters; this
may be another avenue for future work.

2.2.3 Definition of public-key cryptography

A trapdoor function is a one-way function with a special property: there ex-
ists some information that allows anyone who knows the information to invert
the function easily, while that inversion is hard without knowledge of this se-
cret trapdoor information. Public-key cryptosystems are essentially trapdoor
functions: anybody can encrypt a message that only the intended recipient
can read because that recipient has the trapdoor information necessary to
invert the encryption. It is important to note here that trapdoor functions
have not been proven to exist; rather, like most complexity-theoretic issues
in cryptography, given the current evidence it is likely that they exist and
therefore that public-key cryptography is possible (for more on the existence
of one-way functions, see Section 4.1.1).

Before defining public-key cryptosystems, we first discuss key pairs. The
key pair defines the trapdoor function for a cryptosystem: the public key
parameterizes a one-way function for encryption, while the private key con-
stitutes the trapdoor information that allows the recipient to invert the func-
tion.

15

Note that this definition refers to f and g, which are, respectively, the
encryption and decryption functions parameterized by the keys.

Definition 5 A key pair space Kp[f, g] = {kf ∈ Kf , kg ∈ Kg} is the set of
all valid key pairs for functions f : Df ×Kf −→ Rf and g : Dg×Kg −→ Rg,
where Df and Dg are the domains (excluding the key parameter) and Rf and
Rg are the ranges of f and g, respectively. The exact definition of validity
depends on the application, but generally each key pair must exhibit behavior
with f and g both correct for the application and unique to that key pair. kf
and kg must be similar in size so that |kf | = O(|kg|).

The keys kf and kg parameterize the encrypting and decrypting functions,
respectively.

We are now ready to define public-key cryptosystems.

Primitive Definition 3 PublicKey = {f, g,M, C,Kp[f, g]} such that:

• f : M× Kf −→ C and g : C × Kg −→ M are the public encryption
and decryption functions, respectively (M here corresponds to Df in
the key pair definition, and C to Dg)

• Kp[f, g] is the space of valid encryption/decryption key pairs (ke ∈
Kf , kd ∈ Kg) where ke is the public encryption key and kd is the private
decryption key

• A key pair (ke, kd) is valid for functions f and g if both correctness and
uniqueness hold.

– (Correctness)

∀(m ∈M) : (g(f(m, ke), kd) = m)

∀(c ∈ C) : (f(g(c, kd), ke) = c)

– (Uniqueness)

∀(m ∈M, k′d 6= kd ∈ Kg) : (g(f(m, ke), k
′
d) 6= m)

∀(c ∈ C, k′e 6= ke ∈ Kf) : (f(g(c, kd), k
′
e) 6= c)

16

At the heart of every public-key cryptosystem is a trapdoor function (or
function pair: f and g may or may not be the same function) parameterized
by a key pair in some form. Note that this definition is general enough to
consider function pairs as key pairs: kf and kg can be functions and f and g
can merely apply the given function to the given message or ciphertext.

The correctness criterion for valid key pairs stipulates that encrypting
a message with f, ke and then decrypting it with g, kd will reproduce the
original message, and vice-versa. The uniqueness criterion requires that no
two keys encrypt any one message to the same ciphertext (or decrypt any
one ciphertext to the same message).

Definition 6 The cracking problem

crack[PublicKey]I : Kf −→ G,

given an instance of PublicKey, takes a public key and produces a function
g′ ∈ G : C −→ M that can then be used to decipher enciphered messages.
The cracking problem is to compute crack[PublicKey]I(kf) = g′ such that:

∃(kg ∈ Kg)∀(c ∈ C)∃(m ∈M) :
(I(kg) = True) ∧ (m = g(c, kg)) ∧ (m = g′(c))

This cracking problem is very similar to crack[Symmetric]I . One notable
difference is in I. Here, identifying the correct decryption key is trivial:
since the encryption key is public, one merely encrypts any message and
tests whether the supposed decryption key correctly deciphers it. The iden-
tification oracle in this case, then, takes a public key as input.

2.2.4 Definition of digital signing

The concept of a digital signature is closely tied to public-key cryptosystems.
Here again, each user has a public key and a private key, and the intent is
that anyone can create a digital signature uniquely identifying himself or
herself, which can be verified by anybody with the public key and forged by
nobody without the private key.

Primitive Definition 4 DigitalSign = {f, g,M,S,Kp[f, g]} such that:

• f : M× S × Kg −→ {True,False} and g : M×Kf −→ S are the
public verifying and signing functions, respectively

17

• M is the message space

• S is the signature space

• Kp[f, g] is the space of valid verifying/signing key pairs (kv ∈ Kf , ks ∈
Kg) where kv is the public verifying key and ks is the private signing
key

• A key pair (kv, ks) is valid for functions f and g if for all m,m1 ∈
M, s ∈ S, k′s ∈ Kg:
(Correctness)

– (f(m, g(m, ks), kv) = True)

• It is also desirable for the key pair to have the uniqueness property:

(Uniqueness)

– (m1 6= m) ∨ (k′s 6= ks)⇒ (g(m1, k
′
s) 6= g(m, ks))

– (s 6= g(m, ks))⇒ (f(m, s, kv) = False)

The correctness criterion requires all verifying keys to correctly verify sig-
natures created with their corresponding signing keys. The uniqueness crite-
rion specifies that no verifying key can produce a false positive, or True result
for a signature generated with either another message or another signing key.
The uniqueness criterion is usually slightly relaxed in practice, though with
the intent that it be infeasible for an adversary to take advantage of this
relaxation.

Many public-key cryptosystems can also function as digital signature
schemes.1 To sign a message, a user “decrypts” it with his or her private
key. Any other user can then verify the signature by “encrypting” it and
comparing the result to the original message. This scheme has some prob-
lems, however, including a signature that is as long as the original message.
A slight modification makes this practice much more useful, though it sacri-
fices perfect uniqueness. By first using a one-way hash function to obtain a
hash value h for the message and then signing h, a user can produce a useful
signature much shorter (in most cases) than the message, while preserving

1Note: The Diffie-Hellman key exchange protocol[7] cannot be used as a signature
scheme, but it also does not fit under our definition of PublicKey.

18

the useful properties of the signature. Uniqueness will be compromised to
the extent that collisions of the hash function can be found.

Definition 7 The cracking problem

crack[DigitalSign]I : Kf −→ G,

given an instance of DigitalSign, takes a public key and produces a function
g′ ∈ G : M −→ S that can then be used to forge signatures. The cracking
problem is to compute crack[DigitalSign]I(kv) = g′ such that:

∃(kg ∈ Kg)∀(m ∈M) :
(I(kg) = True) ∧ (f(m, g(m, kg), kv) = True)

∧(f(m, g′(m), kv) = True))

DigitalSign is cracked if the adversary can forge signatures that appear
to be genuine. (Note that this definition does not explicitly consider find-
ing a second message that has the same signature as a given message; while
such a finding could be a useful attack, it is out of the scope of this anal-
ysis.) If the uniqueness criterion of signatures holds, then this can only be
accomplished by duplicating the signature for each message exactly. If the
uniqueness criterion does not hold, however, then it may be possible to find
alternate signatures that seem to be genuine. For example, if DigitalSign
were composed of a public-key cryptosystem and a one-way hash function,
as described above, collisions in the hash function might lead to different
messages producing the same signature when signed with the same key.

2.2.5 Definition of pseudorandom number generation

In defining pseudorandom number generators, we actually define pseudoran-
dom binary bit generators. A sequence of bits is more useful cryptographi-
cally because it can be directly employed in the creation of a digital one-time
pad, and it can easily be converted into a number sequence by grouping bits
into binary numbers of the desired length.

Here N is the set of natural numbers.

Primitive Definition 5 PseudoRandom = {f,K} such that:

• f : K ×N −→ {0, 1}∗ is the pseudorandom function

19

• K is the key space, a set of strings over some alphabet

• f(k, p) = x1x2x3 . . . xp for k ∈ K, p ∈ N , and xi ∈ {0, 1}. Let f(k, p)i
denote xi.

The key for a pseudorandom number generator is the seed for the gen-
eration process. The output of f is a string of bits. The salient feature of
the string, of course, is that it is hard to predict bit xi given bits x1 . . . xi−1

without knowledge of the seed. In general, the seed should ideally be a
truly random string of bits; the pseudorandom number generator functions
as a randomness expander and increases the length of the sequence without
significantly increasing the feasibility of predicting the next bit.

Cracking a pseudorandom number generator, of course, involves being
able to predict the next bit.

Definition 8 The cracking problem

crack[PseudoRandom]I : {0, 1}∗ ×N −→ G,

given an instance of PseudoRandom, takes a sequence of bits and the number
of bits p in the sequence and produces a function g′ ∈ G : N −→ {0, 1} that
can then be used to predict any bit of a pseudorandom sequence up to the
(p+ 1)th bit. The cracking problem is to compute

crack[PseudoRandom]I({0, 1}p, p) = g′

such that:

∃(k ∈ K)∀(p, q ≤ p ∈ N) : (I(k) = True)∧((q ≤ p+1)⇒ (f(k, p)q = g′(q)))

with probability greater than 1
2

+ ε for some small ε.

The identification oracle here identifies the seed used to generate the
pseudorandom bit sequence.

2.3 Complexity-generalized requirements for

security and feasibility

In this section we discuss the complexity of cryptographic operations in terms
of the size of the input, represented by n. In general, the size parameter n is
length of the key. We will specify n for each primitive.

20

The complexity of each primitive has two parts: feasibility and security.
The security requirement for each primitive is that its corresponding cracking
program be in Hard(n) for its size parameter n; this is what is necessary
for the user’s goals to be protected from an adversary’s intervention. The
feasibility requirements, if met, ensure that the primitive is usable; that is,
the functions that make up the primitive must be in Easy(n). In practice,
it is relatively quite easy to create systems that meet the feasibility require-
ments, though ensuring that systems meet the security requirements can be
tricky to impossible.

For each primitive we describe the size parameter and the particular fea-
sibility requirements, as well as restate the security requirement.

2.3.1 Complexity requiremens of Symmetric

Size parameter

The size parameter for Symmetric is n = |k|.

Feasibility

Symmetric is feasible if both f and g are in Easy(n).

Security

Symmetric is secure if crack[Symmetric]I is in Hard(n).

It is important to keep in mind that the actual computation times may
depend on more than just this size parameter—for example, computation
time for using Symmetric depends on the length of the message in some
way, though the size parameter is only the length of the key. But the size
parameters we focus on here are the significant ones for security: if using
Symmetric is in Easy(|k|) and breaking Symmetric is in Hard(|k|) then the
user can significantly increase security without significantly impacting time
of use by increasing |k|.

2.3.2 Complexity requirements of OneWayHash

Size parameter

The size parameter for OneWayHash is n = l.

21

Feasibility

OneWayHash is feasible if f(m) is in Easy(n)

Security

OneWayHash is secure if crack[OneWayHash]I is in Hard(n).

2.3.3 Complexity requirements of PublicKey

Size parameter

The size parameter for PublicKey is n = |ke|. Note that |ke| = O(|kd|).

Feasibility

PublicKey is feasible if f , g, and generating a valid key pair (kf , kg)
are all in Easy(n).

Security

PublicKey is secure if crack[PublicKey]I is in Hard(n).

2.3.4 Complexity requirements of DigitalSign

Size parameter

The size parameter for DigitalSign is n = |kv|. Note that |kv| = O(|ks|).

Feasibility

DigitalSign is feasible if f and g are in Easy(n).

Security

DigitalSign is secure if crack[DigitalSign]I is in Hard(n).

2.3.5 Complexity requirements of PseudoRandom

Size parameter

The size parameter for PseudoRandom is n = |k|.

Feasibility

PseudoRandom is feasible if f is in Easy(n).

22

Security

PseudoRandom is secure if crack[PseudoRandom]I is in Hard(n).

It is less than perfectly intuitive that the size parameter for PseudoRan-
dom be the length of the seeding key, but the key is the source for the
randomness that PseudoRandom expands into the pseudorandom sequence
it produces as output. The connection should be clearer upon consideration
of the fact that a brute-force search through the keyspace would find all
pseudorandom sequences and thus crack PseudoRandom.

23

Chapter 3

Quantum Computers

3.1 Introduction to quantum computation

In this section we will present a very basic overview of the concepts be-
hind quantum computing. Anyone wishing for a broader and quite readable
overview should seek out Reiffel and Polak’s introduction to the topic [19],
and for a thorough treatment the reader is directed to Nielsen and Chuang’s
text [17]. Additionally, Brassard gives a quick summary of the state of quan-
tum attacks on cryptography [3], and Fortnow takes a look at quantum com-
putation from the point of view of a complexity theorist [8].

3.1.1 Qubits and quantum properties

A quantum computer operates on qubits, or quantum bits. Conceptually, a
qubit is simply the quantum analog of a classical bit. The strange rules of
quantum mechanics, however, endow qubits with some interesting properties
that have no counterparts in the classical world. Two properties in particular
interest us. The first is that a qubit can exist not just in one state or another,
but in a superposition of different states. When we measure a qubit that is in
a superposition of states, we force the collapse of the wave function, and from
that point onward the qubit will be in only one of the states, which we will see
as the result of our measurement. Just which state the superposition collapses
into depends on the amplitudes of the various states in the superposition. In
order to convey this more clearly, we introduce a standard notation used to
represent these concepts.

24

The state of a single qubit alone can be thought of as a unit vector in
a two-dimensional vector space with basis {|0〉, |1〉}. Here |0〉 and |1〉 are
orthogonal vectors representing quantum states such as spin up and spin
down or vertical and horizontal polarization. A qubit can be in state |0〉 or
in state |1〉, but it can also be in a superposition x|0〉+y|1〉 of the two states.
The complex amplitudes x and y determine which state we will see if we make
a measurement. When an observer measures a qubit in this superposition,
the probability that the observer will see state |0〉 is |x|2 and the probability
of seeing |1〉 is |y|2. Note that because x|0〉 + y|1〉 is a unit vector, the sum
|x|2 + |y|2 must be equal to 1.

The second quantum-mechanical property that interests us is quantum
entanglement, which ties qubits inextricably to each other over the course of
operations. Because qubits can be entangled and interfere with each other,
the state of a multiple-qubit system cannot be represented generally as a
linear combination of the state vectors of each qubit; the interactions between
each pair of qubits is as relevant as the state of each qubit itself. The state of
the system, then, cannot be described in terms of a simple Cartesian product
of the individual spaces, but rather a tensor product. We will not go into the
mathematics behind tensor products here, but one significant consequence
of this fact is that the number of dimensions of the combined space is the
product rather than the sum of the numbers of dimensions in each of the
component spaces. For example, the Cartesian product of spaces with bases
{x, y, z} and {u, v}, respectively, has basis {u, v, x, y, z} with 2 + 3 = 5
elements. The tensor product of the spaces, however, has basis {u ⊗ x, u ⊗
y, u⊗ z, v ⊗ x, v ⊗ y, v ⊗ z} with 2 · 3 = 6 elements, where u⊗ x denotes the
tensor product of vectors u and x. We write the tensor product |0〉 ⊗ |0〉 as
|00〉, so the vector space for a two-qubit system has basis {|00〉, |01〉, |10〉,
|11〉} and the vector space for a three-qubit system has basis {|000〉, |001〉,
. . . , |111〉}, and so on.

One other property of quantum computers that is notable for its difference
from classical computation is that all operations are reversible. On one level,
this is due to the fact that classical computations dissipate heat, and with
it information, whereas quantum operations dissipate no heat and therefore
retain all information across each calculation. Since reversible quantum gates
exist that permit the full complement of familiar logical operations, however,
this point need not concern us.

25

3.1.2 The parallel potential of quantum computers

It is through entanglement and superposition that quantum computers offer
a potentially exponential speedup over classical computers. The fact that
entanglement implies a tensor product rather than Cartesian product means
that a system of multiple qubits has a state space that grows exponentially
in the number of qubits. Furthermore, because a qubit or system of qubits
can be in a superposition of states, one operator applied to such a system
can operate on all the states simultaneously. This gives quantum computers
enormous computational power: an operator can be applied to a superposi-
tion of all possible inputs, performing an exponential number of operations
simultaneously! The implications will be profound if a working quantum
computer can indeed be built.

There is a catch, however: since the result will be a superposition of the
possible outputs, a measurement of the result will not necessarily reveal the
desired answer. In fact, a simple measurement will find any one of the pos-
sible outputs, taken randomly from the probability distribution of the wave
amplitudes: in the näıve case, we are no better off than with a classical com-
puter, since we can measure only one randomly chosen result. The key to
designing quantum algorithms, then, is finding clever methods for manipulat-
ing probability amplitudes so that the desired answer has a high probability
of being measured at the end of the computation. This is far from easy in
general, though some clever techniques have been explored, such as using a
quantum Fourier transform to amplify answers that are multiples of the pe-
riod of a function (this is the technique Shor used in his factoring algorithm,
discussed in Section 3.2).

3.1.3 Decoherence

The main problem thus far prohibiting actual realization of a quantum com-
puter (unless, of course, the NSA or a similar organization has quietly build
one without public knowledge!) is decoherence, or the interaction of the quan-
tum system with the environment, disturbing the quantum state and leading
to errors in the computation. We will not discuss this problem further in this
paper, except to mention that techniques of quantum error correction have
been used successfully to combat some effects of decoherence, but there is
still a long way to go before building a large-scale quantum computer will be
possible. For a detailed look at quantum error correction and other issues in

26

quantum information, see part III of Nielsen and Chuang’s text [17].

3.2 Shor’s factoring algorithm

In 1994, Peter Shor discovered an algorithm to factor numbers in bounded-
probability polynomial time on a quantum computer, along with another to
compute discreet logarithms. The factoring algorithm uses a reduction of the
factoring problem to the problem of finding the period of a function, and it
uses the quantum Fourier transform in finding the period. Quantum paral-
lelism makes it possible to work with superpositions of all possible inputs,
which is the key to the increased power of this algorithm when compared
to classical algorithms. We do not present the algorithm here, as excellent
sources describing the algorithm already exist, and the curious reader is di-
rected to one of those sources. Shor detailed this algorithm, along with one
to find discrete logarithms, in his 1994 paper and its later, more complete
version [24]. For a clear, less technical explanation of the algorithm, see
Rieffel and Polak’s introduction [19].

3.3 Consequences

Shor’s algorithms have obvious and potentially catastrophic implications for
the field of cryptography. Many cryptosystems, including the popular RSA
cryptosystem, depend for their security on the assumption that factoring
large numbers is difficult; others depend on the difficulty of computing dis-
crete logarithms. The discovery of this polynomial-time quantum factoring
algorithm means that anyone with a quantum computer could easily crack
RSA and many other cryptosystems, and possibly much more. The full po-
tential of quantum computers is unknown. Though we will not address them
here, a few other quantum algorithms have been discovered, such as Grover’s
search algorithm [12], and there has been some work on quantum attacks
on cryptographic systems, such as the 1998 paper by Brassard, Høyer, and
Tapp on quantum cryptanalysis of hash functions [4].

In the next chapter we will look at the possible strengths of quantum
computers and assess their implications for the cryptographic primitives we
defined in Chapter 2.

27

Chapter 4

Cryptographic Implications of
Quantum Computers

Quantum computers may have much more in store for cryptography than
merely the demise of RSA; on the other hand, it may turn out that they have
no more power than classical computers after all and it is just coincidence
that the quantum polynomial-time factoring algorithm was discovered before
the classical one. Here we introduce the most relevant complexity class for
quantum computers and investigate how it might fit into classical hierarchies
of complexity classes. The implications for cryptography are then explored.

4.1 Complexity of quantum computation

In his seminal 1985 paper [6], Deutsch proposed a model for a universal quan-
tum computer with properties beyond those possessed by a classical Turing
machine. Bernstein and Vazirani formalized the definition of an efficient
quantum Turing machine, or QTM, in their 1997 paper [2], and went on to
discuss the computational power of a QTM. They introduced the complex-
ity class BQP, an analog to BPP on classical computers, to represent the
class of problems efficiently solvable on a QTM: BQP is the set of languages
accepted with probability at least 2

3
by a polynomial-time QTM.

It is common in complexity theory for the exact relationships between
complexity classes to be unknown. Because quantum computing is such a
young study and quantum effects introduce so much strangeness, even less is
known about BQP and its relationships to other complexity classes than is

28

common. Here we examine some possibilities and their consequences.

4.1.1 Known relationships

Definition 9 We use the notation ⊂ to indicate proper containment, while
⊆ means either containment or equality, as usual.

In 1977, Gill proposed the class BPP (defined in Section 1.4.1) and
showed that

P ⊆ BPP ⊆ PSPACE,

and while P ⊆ NP ⊆ PSPACE, it is not known whether either BPP ⊆ NP
or its converse is true [10]. Bernstein and Vazirani demonstrated that

BPP ⊆ BQP ⊆ PSPACE [2].

According to Johnson’s chapter in the Handbook of Theoretical Computer
Science [15],

P ⊆ UP ⊆ NP.

In their 1988 paper on public-key cryptosystems, Grollmann and Selman
proved that one-way functions exist if and only if P 6= UP [11] (see Sec-
tion 4.2.3). Their definition of a one-way function does not match our defi-
nition of a one-way hash function exactly, yet the result is significant. The
primary difference is that they require a one-way function to be one-to-one,
though we do not include that requirement; it does not make sense for hash
functions.

There have also been significant relativized results proved, most notably
that there exists an oracle relative to which P = BPP = BQP 6= (UP ∪
coUP) [9]. Also, there is some evidence that BQP is not as large as NP,
including that “relative to an oracle chosen uniformly at random with proba-
bility 1 the class NP cannot be solved on a quantum Turing machine (QTM)
in time o(2n/2)” [1].

4.1.2 Possibilities

The reader should keep in mind that none of the inclusions just discussed are
known to be proper. It is theoretically still possible that P = NP, or even
P = PSPACE, though these equalities are widely believed to be false.

29

Where is BQP? S
ym

m
et

ri
c

O
n
eW

ay
H

as
h

P
u
b
li
cK

ey

D
ig

it
al

S
ig

n

P
se

u
d
oR

an
d
om

Section
BPP = BQP ⊂ NP

√ √
≈ ≈

√
4.2.1

BPP ⊂ BQP
√ √

≈ ≈
√

4.2.2
UP ⊆ BQP

√
× × ×

√
4.2.3

NP ⊆ BQP × × × × × 4.2.4

Table 4.1: Summary of estimated implications.
√

denotes survival of the
primitive under that possibility (meaning that feasible, secure instances of
the primitive may still exist), × means no survival, and ≈ indicates limited
survival

One extreme possibility for placement of BQP and impact on cryptog-
raphy is

BPP = BQP ⊂ NP and UP 6⊆ BQP.

The other extreme end is
NP ⊂ BQP

We ignore classes above NP, in particular PSPACE, as being irrelevant to
the present discussion. It should be obvious to the reader that the former
possibility characterizes the possibility with the least impact on cryptogra-
phy, while the latter promises the most impact. In the following section,
we explore the various possibilities for placement of BQP in the complexity
hierarchies and the implications for cryptography. A summary of the possi-
bilities considered and the section in which each is discussed are compiled in
Table 4.1.

4.2 Implications

4.2.1 BPP = BQP ⊂ NP

The case where BQP = BPP and both are properly included in NP is
simple: BQP introduces no new consequences for cryptography not present

30

in BPP. Note that for this to be true, however, classical equivalents for
Shor’s algorithms would have to exist. This implies the consequences of the
next section, though coming from BPP rather than BQP.

4.2.2 BPP ⊂ BQP

In this scenario BQP properly contains BPP, so some problems are in BQP
but not in BPP. The most likely candidates for problems in BQP−BPP are,
of course, factoring and discrete logarithms. These problems form the basis
for the security of many public-key and digital signature cryptosystems in use
today. We have no reason to believe that no public-key or digital signature
schemes are possible at all, but construction of a quantum computer would
in any case herald the demise of at least the cryptosystems based on the
presumed difficulty of factoring and finding discrete logarithms.

4.2.3 UP ⊆ BQP

The possibility UP ⊆ BQP may be very closely related to UP ⊆ P. If
UP ⊆ P, one-way functions as defined by Grollmann and Selman [11] cannot
exist.

Theorem 1 (adapted from Grollmann and Selman [11]) The follow-
ing are equivalent:

1. P 6= UP

2. There exists a one-way function.

This theorem is based on Grollmann and Selman’s definition of one-way func-
tions, which includes that they are one-to-one, but the result suggests that
this possibility would affect at least some functions that fall under our defini-
tions. OneWayHash, PublicKey, and DigitalSign all depend on the existence
of some sort of one-way functions, so they could all potentially be affected. It
may be that UP ⊆ BQP implies that no one-way functions can exist using
quantum computation, which seems to indicate that OneWayHash, Pub-
licKey, and DigitalSign would be compromised. Further work could prove or
disprove this result.

31

4.2.4 NP ⊆ BQP

This result is highly unlikely, but it would have profound implications. As
long as we have an oracle to correctly identify a key, any of these primitives
can be cracked with nondeterministic guessing (in the case of OneWayHash,
we would guess and check messages rather than keys).

Theorem 2 If NP ⊆ BQP then crack[Symmetric]I is in Easy(n).

Proof. For this proof, we do differentiate between NP and FNP and be-
tween BQP and FBQP (which is the obvious analogue to FNP). Easy(n)
is a class of functions, not decision problems, so we must show essentially
that NP ⊆ BQP implies that crack[Symmetric]I ∈ FBQP.

Define an arbitrary ordering over the keys k1, k2, . . . , k2n ∈ K, where n is
the length of a key, which is also the size parameter.

Let M be an NTM that takes two integers m and n, such that m < n, as
input and runs the following algorithm:

• guess a key kj

• if j < m or n < j

• then reject

• else if I(kj) = True

• then accept

• else reject

Since M is an NTM, it will accept whenever there is a key kj in the range
km, km+1, . . . , kn such that I(kj) = True. Because I is an oracle, it takes
constant time. To make this a real system (i.e. non-relativized), I could be
replaced by any equivalent test in Easy(n), as discussed in Section 2.2.1.

Now consider the following algorithm C:
Perform a binary search over the keyspace to find the correct key k to

crack Symmetric. To do this, first call M with the arguments m = 1, n =
2n−1. If M accepts, k is in the lower half so the search iterates with m = 1,
n = 2n−2. If M rejects, k is in the upper half so the search iterates with
m = 2n−1 + 1, n = 2n−1 + 2n−2. The binary search proceeds normally and
will find k in O(log 2n) = O(n) iterations. Return k.

32

C implements crack[Symmetric]I since it returns the key k such that
I(k) = True. The quantum computer will have made O(n) calls to M ,
which is an NTM and so recognizes a language in NP, which is in BQP by
assumption. C makes O(n) calls to polynomial-time M , so it is obviously
in Easy(n). Therefore NP ⊆ BQP implies that crack[Symmetric]I is in
Easy(n). 2

Similar proofs can be constructed for the other primitives using very
similar algorithms, since each primitive has one type of key or another or a
message that can be nondeterministically guessed.

33

Chapter 5

Conclusions

5.1 Complexity-generalized cryptography

We have attempted to define five cryptographic primitives in such a way
that we can discuss their complexity without mentioning specific complexity
classes or cryptographic algorithms. This gives us the framework in which
to explore the possible positions of BQP within complexity class hierarchies
and apply the exploration directly to the cryptographic primitives.

5.2 Philosophical and practical implications

Should quantum computers ever become a reality, there is the potential for a
large paradigm shift to take place in the field of cryptography. It is unknown
how BQP is related to other classes such as BPP, UP, and NP. The results
for cryptography depend on the various possibilities for relationships between
classes here. At the very least, RSA and other popular cryptosystems will
be compromised against any adversary with access to a quantum computer,
though some cryptosystems would not be affected and perhaps suitable re-
placements could be found for the compromised schemes. At worst (or best,
if one is the adversary!), all five primitives discussed would be affected and
current algorithms implementing them compromised.

34

5.3 Open questions and future work

The topics explored and results obtained in this thesis could potentially be
the starting points for research in a number of different directions.

• This thesis presents a summary of possibilities for the future in Chap-
ter 4 but does not rigorously prove many bounds or results. This leaves
an obvious gap to be filled in by future research: formally prove the
remaining results from Table 4.1.

• Here we discuss cracking in absolute terms, but in reality it may be
possible for an adversary to recover, say, half of all messages encrypted
with a particular key for a particular instance of Symmetric. This would
not fall under the definition of crack[Symmetric]I that we present here,
but it certainly would be a problem for the users of that cryptosystem!
It remains to be seen how this framework of complexity-generalized
cryptography can be applied to such incomplete crackings.

• We assume when discussing quantum computers, as has every other
researcher we have encountered, that “quantum computers” are full-
fledged full-sized computers capable of factoring very large numbers.
But are there perhaps interesting quantum effects we can make use of
to solve significant problems with, say, a 20-qubit quantum computer?

35

Acknowledgments

I would like to extend a hearty thanks to Tom O’Connell, who gave me very
constructive comments especially on the theorems of Chapter 4. And I am
greatly indebted to my advisor Sean W. Smith, who guided me through the
whole process with encouragement and helpful criticism alike. He was much
more than reasonably patient as I pushed back draft deadlines again and
again, and he helped me to find a vision for this thesis and make it a reality.

36

Bibliography

[1] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazi-
rani. Strengths and weaknesses of quantum computing. SIAM J. Com-
put., 26(5):1510–1523, October 1997. arXiv:quant-ph/9701001.

[2] Ethan Bernstein and Umesh Vazirani. Quantum complexity theory.
SIAM J. Comput., 26(5):1411–1473, October 1997.

[3] Gilles Brassard. Quantum information processing: The good, the bad
and the ugly. In Burton S. Kaliski, Jr., editor, CRYPTO ’97, volume
1294, pages 337–341. Springer, 1997.

[4] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum cryptanalysis
of hash and claw-free functions. In Claudio L. Lucchesi and Arnaldo V.
Moura, editors, LATIN ’98, volume 1380, pages 163–169. Springer, 1998.

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press and the McGraw-Hill Book
Company, second edition, 2001.

[6] David Deutsch. Quantum theory, the Church-Turing principle and the
universal quantum computer. In Proceedings of the Royal Society of
London Ser. A, volume A400, pages 97–117, 1985.

[7] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, IT-22(6):644–654, 1976.

[8] Lance Fortnow. One complexity theorist’s view of quantum computing.
In David Wolfram, editor, Electronic Notes in Theoretical Computer
Science, volume 31. Elsevier Science Publishers, 2000.

37

[9] Lance Fortnow and John Rogers. Complexity limitations on quantum
computation. In 13th Annual IEEE Conference on Computational Com-
plexity, pages 202–209. IEEE Computer Society, 1998.

[10] John Gill. Computational complexity of probabilistic Turing machines.
SIAM J. Comput., 6(4):675–695, December 1977.

[11] Joachim Grollmann and Alan L. Selman. Complexity measures for
public-key cryptosystems. SIAM J. Comput., 17(2):309–335, April 1998.

[12] Lov K. Grover. A fast quantum mechanical algorithm for database
search. In ACM Symposium on Theory of Computing, pages 212–219,
1996.

[13] Juris Hartmanis and Richard E. Stearns. On the computational com-
plexity of algorithms. Transactions of the American Mathematical So-
ciety, 117:285–306, May 1965.

[14] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to Automata Theory, Languages, and Computation. Addison-Wesley,
second edition, 2001.

[15] David S. Johnson. A catalog of complexity classes. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, chapter 2, pages 68–
161. Elsevier Science Publishers B.V.: Amsterdam, The Netherlands,
1990.

[16] Ralph C. Merkle. Secure communications over insecure channels. Com-
munications of the ACM, 21(4):294–299, 1978.

[17] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and
Quantum Information. Cambridge University Press, 2000.

[18] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley,
1994.

[19] Eleanor Rieffel and Wolfgang Polak. An introduction to quantum com-
puting for non-physicists. arXiv:quant-ph/9809016, 1998.

[20] Ronald L. Rivest. Cryptography. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, chapter 13, pages 718–755. Elsevier
Science Publishers B.V.: Amsterdam, The Netherlands, 1990.

38

[21] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Communi-
cations of the ACM, 21(2):120–126, 1978.

[22] Bruce Schneier. Applied Cryptography. John Wiley & Sons, Inc., second
edition, 1996.

[23] Claude E. Shannon. Communication theory of secrecy systems. Bell
Systems Technical Journal, 28:656–715, 1949. Originally in confidential
report “A Mathematical Theory of Cryptography” dated Sept. 1 1945,
which has since been declassified.

[24] Peter W. Shor. Algorithms for quantum computation: Discrete loga-
rithms and factoring. In Proceedings of the 35th Annual IEEE Sym-
posium on Foundations of Computer Science, pages 124–134. IEEE
Computer Society Press, 1994. Updated 1996 version at arXiv:quant-
ph/9508027 with title ’Polynomial-Time Algorithms for Prime Factor-
ization and Discrete Logarithms on a Quantum Computer’.

[25] Michael Sipser. Introduction to the Theory of Computation. PWS Pub-
lishing Company, 1997.

39

