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Abstract

Virtual Private Network technology allows remote network users to benefit from

resources on a private network as if their host machines actually resided on the network.

However, each resource on a network may also have its own access control policies,

which may be completely unrelated to network access. Thus users’ access to a network

(even by VPN technology) does not guarantee their access to the sought resources. With

the introduction of more complicated access privileges, such as delegated access, it is

conceivable for a scenario to arise where a user can access a network remotely (because

of direct permissions from the network administrator or by delegated permission) but

cannot access any resources on the network. There is, therefore, a need for a network

access control mechanism that understands the privileges of each remote network user on

one hand, and the access control policies of various network resources on the other hand,

and so can aid a remote user in accessing these resources based on the user's privileges.

This research presents a software solution in the form of a centralized access

control framework called an Access Control Service (ACS), that can grant remote users

network presence and simultaneously aid them in accessing various network resources

with varying access control policies. At the same time, the ACS provides a centralized

framework for administrators to manage access to their resources. The ACS achieves

these objectives using VPN technology, network address translation and by proxying

various authentication protocols on behalf of remote users.

Keywords: Virtual Private Network, Access Control, Network Address Translation, and

Decentralized Delegation
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Chapter 1

Introduction

1.1 The Big Picture

Today, the world is considered a global village because of the extensive access

the Internet provides. Without the Internet, computer networks would be isolated clusters

of interconnected machines. The Internet provides communication between these

clusters, or Local Area Networks (LANs). However, connectivity comes at a price;

without secure measures in place to check access to networks, anybody and everybody

would have access, including malicious network users looking to corrupt data, try out a

new virus or worm, or simply steal private information. Access control can be defined as

all those security measures that dictate which users can or cannot gain access to a

network, a device on the network, or an application (a program) on a device on the

network. A network is said to be private when access control restricts which network

users can or cannot access it.  Typically, for a network to remain private the devices on

the network must be accessible only via a few administrative machines generally called
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gateways1; devices on a private network are connected to the rest of the Internet only

through these gateways. Similarly devices on the Internet (outside the network) can only

access network resources through these gateways.

Broadly speaking, a network resource is anything on a network that a user may

want to gain access to - a web server, a printer, a file system, an application, etc. A

network user who wishes to access resources on a private network must satisfy one or

more criteria before the gateway would grant her access. The set of criteria that the user

must satisfy is specified by the access control policy of the private network. The policy

might state that the user’s machine (called a host) should have a specific IP address (or

one of a range of IP addresses), or that the user should possess some credential (such as a

certificate) or be able to prove knowledge of some secret (a password or private key).

The process by which the gateway uses its access control policy to determine who a

network user is, in order to determine if the user should be allowed to access the private

network, is called authentication. Unfortunately, there is no uniform way by which a user

must authenticate with a gateway. While there are standards for authenticating called

protocols, there are a myriad of these.  Furthermore, most of those protocols require

software support on the network user’s machine.

                                                  
1 A gateway is not restricted to secure or private networks; in most LAN setups, not all devices on the network have
direct access to the Internet. Instead, there are a few devices that do (gateways) have direct access to the Internet, and
all other devices that do not have direct access communicate with the rest of the Internet through one of those that do.
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Figure 1.1-1: Resources on a network. Any device outside the cloud is considered a part of the

Internet.

More recently network users are witnessing a new class of private networks called

secure private networks or Virtual Private Networks (VPNs) [VPN04] [SBDG02]

[MSFT00] [Fra01]. Apart from using access control, the gateways to these networks

provide security to their users by encrypting information leaving or entering the network.

This security allows many devices and network users to become a part of a simulated (or

virtual) private network. These networks are ‘virtual’ or ‘simulated’ because the

resources on these networks may not be within the same LAN yet, like regular private

networks, the rest of the Internet may access these resources only through a gateway.

Similarly, devices and users that are part of the network must access the Internet through

a gateway. Because the various devices and network users of a VPN may not be on the
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same network, VPNs achieve privacy by using encryption. Even though the Internet

(generally consider public and so insecure) may exist between VPN users and resources,

the VPN gateway encrypts all network traffic that must cross the Internet. A VPN

gateway, thus, gives a network user network presence. This means that it creates the

illusion that the user’s machine is a part of some private LAN. Chapter 2 gives more

details on the technology that allows VPNs to operate.

Access control is not only restricted to network access; devices on a network, and

even the applications running on network devices may also enforce their own access

control. This can present a number of access control boundaries or network access rings.

Figure 1.1-2 below demonstrates how these rings interact. Each area within a ring

represents a network entity: for example the area in ring A may be a private network, the

area in ring B may be a machine running a network application (typically called a server

machine), and the area within ring C is the application itself.

Figure 1.1-2: Network access rings
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Each ring represents some access control policy that a network user must satisfy

to gain access to the region within it (but not necessarily beyond an internal ring). In

large networks, the manager of the network’s gateway (called the administrator) - and

thus the overseer of its access control policies  - may not be the manager of the servers on

the network. Because of this, access control policies are not typically synchronized. By

this, I mean that the ability of a network user to satisfy the access control policy of ring A

does not guarantee that she would be able to satisfy that of ring B as well. A sequence of

rings as described above creates a hierarchy of access control that a network user must

satisfy if she wishes to use an application in the region within ring C. The differentiation

of access control by the network gateway, individual server machines on the network,

and even applications on these machines, allows network resource administrators the

freedom to decide who can or cannot use their resources. For remote users, however,

these rings can be an impediment: because a remote network user may not be using the

same host each time she connects to the network, she is now faced with ensuring that the

host she uses at any one time can understand all the protocols and has all the credentials

needed for each ring of access control.

 Consider this scenario of a network user, Alice, and her colleague at work, Bob.

Bob is the administrator for some server machine on the work LAN. Alice would like to

be able to access some files on this machine, so Bob allows her to pick a username and

password, and installs a Kerberos [NT94] [KN93] client application on her desktop at

work. Kerberos is an authentication protocol that applications may use for access control.

Kerberos requires that a network user’s machine have a client application to present the
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user’s credentials – in this case the credentials are a username and password pair2. Alice

can now access these files from her desktop at work because Bob has authorized her to

do so. However, when she gets home later on and decides to continue the work she

started during the day she realizes that Bob’s Kerberos server would no longer allow her

to retrieve her files. Naturally, her desktop at home lacks the Kerberos client, and so she

realizes that her ability to access her files on Bob’s machine is not just a consequence of

who she is nor of the password and username she alone knows – it is also dependent on

whether the machine she chooses to work from has the right applications installed.

In some cases, administrators may not want users to access a resource from just

any host: within their own LANs these administrators may have some control over the

state of each machine (whether the machine has a keystroke logger3 installed for

instance!) but cannot possibly know that of any remote machine. Bob could not have had

such a measure in mind anyway because if Alice still wanted access from home she

would ‘only’ have to find and install the Kerberos client on her home computer. I quote

‘only’ because the difficulty of such a procedure depends on the availability of the

software and the ease of installation. For instance, even where the client support for a

protocol (such as Kerberos’ client applications) can be downloaded at no cost to a

network user, installing the application might be quite an inconvenience for the average

computer user.

Sometimes, it is not the case that administrators wish to restrict network users to

computers with particular applications and credentials, or to specific locations. Instead,

                                                  
2 The Kerberos client does not actually present the username and password for authentication with the server; it uses
them to obtain a digital ‘ticket’ that becomes the credential for authentication instead.
3 A keystroke Logger is the generic name given to a program that can record characters a user types in some other
application. Malicious users usually plant such programs onto machines with the intention of recording sensitive
information like usernames and passwords.
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some of these restrictions occur because access control policies depend on varying

protocols, all of which require some software support that not every computer might

have.

The following further illustrate current problems with access control. In most of these

examples an administrator has granted a user access (the user is ‘authorized’) but the user

is hindered by policy requirements. In others, access control policies simply do not

capture the range of things a user would like to be able to do with their privileges:

1. Alice belongs to a team of consultants on the second floor of her office building.

All of her team members keep their work files on the same file system server.

Bob, the system administrator for their server, knows that the second floor

computers all have IP addresses within a particular IP range. Each team member

may access their files only after successfully supplying her specific username and

password. Bob is an experienced administrator and understands that malicious

users can more easily compromise usernames and passwords than they can many

other authentication schemes. To improve the security of the server, he adds a

firewall4 that ensures that only connections originating from machines with one of

the second floor IP addresses will be allowed to further communicate with the

server. This is a typical IP-based (firewall) access control scheme for a device (in

this case the server machine). While this provides some amount of security, it is

really an inconvenience for the consulting team that would love to be able to work

                                                  
4 A ‘firewall’ is a set of access control rules that restrict access to a device based on information about a user’s network
traffic. Firewalls differ from other access control schemes in that they do not require the user to use an authentication
procedure or protocol. They are typically used for preliminary access control only as a first line of defense from
unwanted access.
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from home. Even though Alice can get onto her work VPN she cannot access her

team’s server, which is really the only reason she wants to get onto her office’s

network in the first place.

2. Alice and her colleagues can check their profiles (personal information accounts)

online. Charlie is the administrator for the web server that houses the profiles web

site. Charlie understands that Alice and the other consultants may need to access

their profiles outside work so he does not use IP-based firewalls. At the same time

he also wants these profiles to be as secure as possible so would rather not use a

username/password scheme. Instead, he sets up SSL authentication on his web

server, requiring that the consultants’ web browsers present a certificate, and

prove knowledge of an associated private key for authorization. This is a PKI5

(client-side SSL) access control approach for an application (in this case the web

server). This approach is probably more flexible than Bob’s but is an

inconvenience to Alice who uses Internet Explorer 5.2 (the latest version of IE on

Macintosh) on her Mac, which doesn’t support client-side SSL authentication.

What is more, it requires that the consultants have their private key and certificate

installed on every browser they wish to use for accessing the web site. Again in

this scenario, having access to their company’s VPN does not buy the team much

unless they meet the web server ’s access control requirements.

3. Alice’s team is currently dealing with a client, New Tech Co. New Tech has a

VPN and has granted the team temporary access to its network. New Tech is

using VPN access control for their network. Unfortunately New Tech’s VPN

                                                  
5 PKI stands for Private Key Infrastructure. It is a term used for authentication based on public/private key pairs,
certificates, and authorizing agents that issues these certificates.
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concentrator uses the SSL6 protocol for encryption. Alice’s machine at home only

has an IPSec VPN client because her workplace has an IPSec VPN and that is all

she is used to. Alice’s colleague, Denise, must deal with a different

inconvenience: Unlike Alice, the VPN client on Denise’s computer at home

supports both SSL and IPSec protocols. However, Denise’s VPN client can

connect to only one VPN at any given time. This is an inconvenience for her

because she would like to use some applications on her work VPN while

retrieving files from New Tech’s VPN.

4. Consider Eugene, a student at college. Eugene is going to be away in a foreign

country next term, and he will not have frequent access to email. At the same

time, he is expecting replies from potential employers and so would like to

monitor his college’s email account. What Eugene would like to do is have Felix,

his best friend, monitor his email and call him up if he receives word from a

potential employer. Now Eugene would really like Felix to be able to monitor the

account until he gets back, and no longer than that. How does he do this without

telling Felix his account password? Like most average web users, Eugene uses the

same password for so many other accounts and he really wouldn’t like Felix to be

able to access those as well. Like most web services, the college’s email access

control policy has no notion of temporary or guest access.

                                                  
6 Please see Chapter 2 for more details about both the SSL and IPSec protocols



10

In all of these examples7 the problems that the users face are not unsolvable:

Eugene could resolve to practice better password habits, and change his other accounts to

use different passwords, Denise and Alice could find and install another VPN client that

handled both IPSec and SSL protocols and could simultaneously connect to multiple

VPNs.  Alice could get a different browser, for her Macintosh, one that supports client-

side SSL. Charlie could issue portable USB tokens that carry the consultants PKI

credentials to make accessing the web site more flexible. The administrator for the

workplace’s VPN could set up the DHCP server to issue the consultants’ IP addresses

within the range of those for machines on the second floor.

However, most of these solutions can be an inconvenience to the parties involved:

How many accounts must Eugene fix-up and how many ‘strong’8 passwords can he

remember? How comfortable are Denise and Alice with installing applications and how

difficult would it be to install the client they need? How flexible is Alice at using another

browser, other than Internet Explorer? What would it cost Charlie to get those portable

tokens for the consultants and what learning curve must the consultants go through to

become comfortable with these devices?

Neither do most of the solutions scale very well: Eugene may get more accounts

in the future, just how many can he keep with unique passwords and will he ever have to

allow some other friend to access one of these in the future? What happens when VPN

technology requires some other protocol other than IPSec and SSL and where does the

introduction of new VPN protocols end? Which platforms or operating systems support

                                                  
7 Any technologies that might be unfamiliar to the reader are further explained in Chapter 2 and the
glossary section of this paper.
8 The definition for a ‘strong’ password is rather ambiguous, but generally passwords that have many
characters (8 or more), and include numbers and non-alphanumeric symbols are considered ‘stronger’ than
those that do not.
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Charlie’s tokens and do all of these have drivers already installed on them? What happens

if another administrator, Gina, decides to use IP-based filtering, and what if Alice

happens to be in the group that uses Gina’s server machine as well? From which IP

address range would the VPN administrator assign Alice’s address, the second floor’s or

that for the team that uses Gina’s server machine?

In this paper I introduce an access control solution, called the Access Control

Service, or ACS for short. The ACS provides a VPN service, so like other VPN gateways

it provides network presence for remote users. The ACS also manages user account

information and so is aware of what privileges each user has. The ACS provides a

centralized framework for resource administrators to autonomously control access to their

resources. The ACS is also able to facilitate remote-user access to resources on the VPN

by establishing connections to these resources on behalf of VPN users. The ACS is,

therefore, a mediator between a remote network user, and the resources that she is

authorized to access. Because the ACS mediates on behalf of the remote user, a remote

user will be able to access network resources for which she has permission irrespective of

the particular host she might be using at any time.

Also because the ACS is an intermediary, it becomes the ACS’s responsibility to

be able to interoperate between various protocol versions and machine capabilities; each

resource administrator only has to ensure that the ACS can satisfy the resource’s access

policies.

Some of the work of the Greenpass team at Dartmouth has shown that delegated

access to a network can be extended to VPNs as well [Goff04]. Unfortunately, in the light

of the problems highlighted above, and in the absence of any delegated access control
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schemes for individual network resources, delegated access to VPNs may not be of much

use. The previous work on delegated VPN access, however, points out that VPN users

may be authorized either by direct permission from an administrator or by delegated

permission from another authorized user. This suggests that resources on a VPN must be

able to accommodate both types of users if delegation should be seamless across the

network. The ACS framework provides a solution for this problem: the ACS can

incorporate Greenpass tools for determining delegated users’ privileges, establish

connections with resources on the VPN, and allow authorized delegated users to access

these resource via the established connections. Since the ACS is an intermediary between

delegated users and these resources, administrators may not have to make major to their

access control systems in order to accommodate decentralized delegated access.

Summary

While VPN technology offers authorized users network presence, it does not cater

for the varying access policies on the network. This means that being able to obtain

network presence via VPN access control may not benefit a remote user much because

the target resources may require further authentication that her remote host may not be

able to satisfy. These restrictions also mean that changes to the access policy of a

resource on a private network may suddenly prevent an authorized remote user from

accessing this resource. Thus user access no longer becomes based on who the user is but

on what the user’s host has or can do at any given time. Access protocols are typically

meant to establish a user’s identity and/or to ascertain a user’s privileges. However,
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where a user’s host does not correctly support an access protocol, these protocols end up

restricting access. Consequently, such restrictions present an inconvenience to both users

and resource administrators. At the same time simply changing the access control policies

for these resources cannot be the solution because: (1) network users are necessarily

restricted by the capabilities and possessions of their host machines. (2) access control

policies are designed with more than just authorized VPN users in mind. They are

therefore necessary for providing security to these resources. A solution lies in a

mediating service that understands the privileges of each remote user and the access

control policies of their target resources on the VPN. By proxying authorized access, the

ACS can alleviate the inconveniences caused by network access rings as well as provide

a platform for introducing other network-wide technologies including decentralized

delegated access.

1.2 Motivation

The motivation for this work arises from a rather interesting problem that exists

on the Dartmouth College network, but similar cases exist on many other networks that

use IP-based access control schemes for secured server machines. A secured server

machine is a computer that runs a number of services and is secured by some access

control policies; it only allows authorized users to make connections to the services it

runs. At Dartmouth, there exist a number of server machines that enforce access control

policies requiring that an authorized user possess an IP address within a particular
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address range. Thus, these machines perform preliminary authentication by IP-filtering

(firewalls), i.e. the access control policy allows only users with specific IP addresses to

connect to the server machine (or, alternatively, users with specific IP addresses are

disallowed access). The problem with IP-filtering is that it is not the most sophisticated

scheme for securing a computer; a malicious user need only spoof an IP address to be

considered authorized to make a connection. Alternatively, malicious users can thwart the

policy by employing a number of packet fragmentation attacks [ZRT95]. A network

packet is a unit of network data. Because these computers discriminate purely based on

the IP address of the connection requestor, a number of problems may arise:

1. Most host machines on the network use dynamically assigned IP addresses so in

order for the host to connect to one of these server machines it must be assigned

the appropriate IP address. A problem arises when a particular host desires to

access more than one of these machines with non-overlapping IP address ranges.

2. When a user has permission to access two of these machines, system

administrators may use overlapping IP address pools so that the overlaps

represent users with access to both machines. This obviously doesn’t scale well

when a user is authorized to access three or more of these server machines.

3. Network Administrators may then decide to split the local address space into

ranges corresponding to privilege classes, where each privilege class represents a

permutation of the permissions a user has. Here problems include scaling the IP

range to accommodate changes in the number of users in the corresponding class,
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and adding or removing server machines that work on this access protocol

scheme.

4. Alternatively, the administrator may create access control lists (ACLs) for each

server, listing some fixed IP addresses to which each server may grant (or deny)

access. This approach may reintroduce the problem of multiple permissions

identified in (1) if servers do not share IP addresses. Consequently, a number of

these servers may have overlapping IP addresses that represent the intersection of

their users. Again, this approach makes modifying user privileges rather

cumbersome because an administrator must modify the ACLs of each server for

which the user has access permissions.

5. Access control based purely on IP addresses does not work well with temporary

access permissions. It usually involves the administrator modifying ACLs for a

number of computers, or adding new IP addresses to secure server machines, and

then undoing the process when the privileges expire.

At the same time filtering connections by IP addresses has advantages that make

this approach a welcome choice even with the existence of more sophisticated ones.

Amongst these, perhaps one of the more motivating factors is that packet filtering by IP

addresses is done in the computer’s kernel (the part of the operating system that directly

interacts with hardware) so can be executed very quickly. Other approaches require user

authentication that may require userland applications (applications that run on top of the

operating system) and protocols that are considerably slower. Thus many of these server

machines only use IP-filtering for preliminary authentication; further application-level
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authentication might be carried out by individual services after the machine accepts a

network packet from a user. Thus IP-filtering serves to reduce the number of users a

server must authenticate in a slower way.

Nonetheless, because of its associated problems outlined above, and the

vulnerabilities mentioned earlier, the problems of maintaining access control by IP-

filtering can very quickly outweigh its use as a security measure in larger networks. For

many networks, including Dartmouth’s, administrators have not considered eliminating

IP-based access control or adopting more sophisticated schemes for a number of reasons:

1. The network does not yet have too many of these server machines, so

maintenances has not yet become unbearable. On the Dartmouth Network, there

are almost 20 such computers though administrators admit that this number is

growing.

2.  The network is still not so big that there are too many overlapping users or a lack

of IP address ranges to specify new overlaps.

3. Guest access has not yet become an issue or has never really been considered.

While these are valid arguments they all assume that the network will not expand or

require more sophisticated access control (like delegated access).

The Dartmouth network employs a VPN concentrator as a gateway to most of

these server computers. At the time of researching the above problems, I was also

researching VPN usage on the network and its integration with delegation tools [Goff04].

An approach to mitigating the problem of maintaining IP-based policies for secured
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server machines is presented in the ACS mentioned earlier. The ACS makes use of the

authentication provided by VPN technology, as well as network address translation

functionality to ensure that authorized users always meet the IP policy of the secure

server machine. All this functionality is configurable so can be modified to reflect the

correct freedoms and restrictions that remote users would experience had they been

locally present on the network.

1.3 Goals of the ACS project

The goals of the Access Control Service are:

1. To enhance VPN user access by reducing undesired access control restrictions to

network resources. These restrictions are those due to protocols that a remote host

may not be able to handle or policies the remote host cannot meet even though the

remote user has access privileges.

2. To facilitate maintenance of the access control systems for several resources,

perhaps under the supervision of several administrators, by providing a

centralized framework defining the privileges of users and user-groups in

accessing resources and resource-groups. Sine the ACS is an intermediary in the

network-access process administrators can modify user and user-group privileges
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on the ACS to reflect permission changes without having to change individual

access control policies on multiple network resources.

3. To provide a centralized framework for introducing network-wide access control

technologies and schemes such as decentralized delegation of resource access.

1.4 Organization, Style and Formatting of this document

Throughout this document the word ‘I’ is used in contexts where I am referring to

work I did ‘on my own.’ I quote this phrase because while I coded up, put components

together and wrote this document, I acknowledge the very helpful suggestions and input

of my advisor and others (see Acknowledgements section). I use ‘we’ when I mean to

engage the reader in discussion as in “we have previously identified a number of

issues…” Where I use ‘we’ in this context, I will make it as clear as possible that it refers

to the reader and I.

I will refer the reader to sections within the Background Chapter (Chapter 2)

each time I make reference to some technology that I believe the reader might not be

acquainted with. When I introduce a term for the first time I will italicize it. I will

endeavor to further explain the term almost immediately after its introduction. If I do not

immediately provide a definition for one of these terms, then a definition is included in

the Glossary section of this paper. I may also place a term in quotes if I believe the term
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is familiar to the average reader but might require further explanation in the particular

context. If I have to make an emphasis, I will underline a phrase to emphasize it.

I generally use the term ‘server machine’ to refer to the physical device that

accepts connections and provides a number of services (like the ACS). I use the term

‘server’ to refer to the specific service application on a machine. I will use the term

‘client’ in two ways: (1) the application on a host that can understand a protocol required

for connecting to a server. (2) A remote user who connects to a network server. I have

already used client in the first form in this chapter. The context will make either use

relatively unambiguous to the reader.

I use ‘public,’ ‘insecure,’ and ‘less trusted’ synonymously when referring to

networks. The underlying idea in all three cases is that any device on the Internet can

intercept traffic on such a network so there is no confidentiality. Second, in the absence

of encryption, the integrity of the data through this network cannot be guaranteed.

Likewise, I use ‘private’ and ‘trusted’ synonymously; devices on the Internet are less

likely to intercept traffic on such networks. Devices within these networks may, however,

be able to intercept the traffic.

The paper is divided into chapters based on the nature of the information I will be

presenting:

Chapter 2 highlights the main technologies employed by the ACS project. I strongly

encourage the reader to at least skim this chapter before reading about the project itself.
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Chapter 3 presents the model for the ACS as well as detailing the design and

implementation of my prototype for the framework.

Chapter 4 discusses some of my thoughts on the current implementation with regard to

security, usability and efficiency. These discussions also touch on my ideas for improving

the prototype as well as the overall model.

Chapter 5 presents other research pertaining to network access control management and

delegated access for network users.

Chapter 6 is the conclusion to the work presented in this paper.

1.5 Related Documents

This project was built upon Nick Goffee’s experiment on delegated access and

VPNs [Goff04]. His experiment was carried out as part of a larger thesis related to the

Greenpass Project at Dartmouth. The Greenpass team has submitted a number of papers

on this project [SGK+04a] [SGK+04b], and there have been two masters’ theses [Goff04]

[Kim04] on the development of the RADIUS server and Client Tools components, as

well as an undergraduate thesis [Pow04]. More information about Greenpass is provided

in Chapter 2.

Jacco De Leeuw [DeL02] has an online document about setting up Linux VPN

servers using open source tools.
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Chapter 2

 Background

2.1 Virtual Private Networks

2.1.1 Definitions

VPNs are private networks made by one or more connections over a public

network infrastructure (the Internet). VPNs are typically accessible by means of one or

more entry points called Points of Presence (POP). Figure 2.1.1-1 below shows a typical

VPN setup for an organization with access capabilities for a regional branch, a remote

business client, a partner and a remote employee.

In most organizations, a concentrator authenticates users before they gain VPN

access. In network terms, a concentrator is a device that “allows a number of stations to

be connected to a LAN” [Wob97]. In the case of a VPN concentrator, this ‘LAN’ is the

VPN, and the ‘stations’ are remote network devices. The term ‘VPN server’ defines

software on a machine (a gateway) that accepts connections from a remote host to enable

the host to access other services on a private network. VPN servers traditionally run on

PC and Mac server machines, Solaris workstations etc. As the machines running the

server are not specialized for routing traffic, or handling larger volumes of connections,

VPN servers are typically used on gateways to smaller subnets rather than the entire

networks. Traditionally, ‘VPN concentrators’ refer to devices specialized for VPN access

control; they may audit and monitor connections more efficiently and provide hardware

support for encryption and increased connection throughput.
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Figure 2.1.1-1: A VPN setup for a corporation, its employees, partners and clients.

VPN servers can be ‘inward-facing’, ‘outward-facing’, or both. Outward-facing

servers are the public interface to a virtual private network; they receive incoming

connections and forward data from remote machines to devices on the VPN and to the

rest of the Internet. Inward-facing servers are the gateways for devices within the VPN;

they forward packets from within the VPN to the rest of the Internet and tunnel packets

destined for other servers.

VPN connections are usually referred to by the traffic that is encrypted between

the two hosts on either ends of the connection. In the most basic form, a VPN connection

encrypts only those packets destined for one of the two hosts. This configuration is called

a host-to-host VPN. Second, a client may connect to a server for access to only the subnet

behind the server’s host (the gateway). In this configuration, called a host-to-subnet VPN,
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the client’s traffic to the rest of the world remains unencrypted, only packets destined for

hosts on the remote subnet get encrypted. The third type of configuration is the host-to-

anywhere VPN. Under this setup, all the client’s network traffic gets encrypted and sent

to the VPN server, even those packets that are destined for hosts outside the VPN subnet.

The VPN server will typically forward these packets to the rest of the Internet.

In all cases, VPN connections are considered to offer complete site-to-site

encryption [Hos04]. ‘Complete site-to-site encryption’ means that all data between the

VPN client’s host and the VPN server’s host is encrypted.

Closely related to VPNs are ‘virtual LANs’ (VLANs). VLANs are network

devices that are clustered based on logic rather than geographical location. These devices

maintain connections among themselves using software configurations. This allows a

device to remain a part of the VLAN even after its physical location is changed. The

fundamental difference between a VLAN and a VPN is that the definition of a VLAN

does not consider security or privacy.

In networking, ‘tunneling’ refers to “the practice of encapsulating a message from

one protocol in another, and using the facilities of the second protocol to traverse some

number of network hops” [CBR03]. The VPN Consortium’s white paper [VPN04]

defines three VPN tunneling technologies; trusted VPNs, secure VPNs, and hybrid VPNs.

• Trusted VPN tunneling is equivalent to private leased-lines technology; a corporation

that employs a trusted VPN makes use of a network provider’s private network nodes,

such as switches and routers, with the agreement that the provider ensures the

integrity and privacy of data through the network.
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• Secure VPNs make use of publicly-available circuitry and so they must employ

encryption to achieve the same effect as trusted VPNs.

• Hybrid VPNs, as the name suggests, make use of both private network circuits and

encryption.

Tunneling (with or without encryption) can be achieved by a number of protocols.

This section will cover four of these protocols: IPSec, L2TP, PPTP and SSL.

2.1.2 IPSec

The Internet Protocol Security (RFC 2401-2411, 2451 Standards Track) is an

Internet Draft Standard that was developed by the Internet Engineering Task Force

(IETF) to ensure secure transfer of information on a public IP network [Fra01]. IPSec is a

per-packet security implementation that consists of two independent protocols: The

Authentication Header (AH) [KA98a], and the Encapsulation Security Payload (ESP)

[KA98b]. Both protocols describe the IP header extensions for sending and receiving

protected datagrams.  ESP provides privacy through encryption (and optionally integrity)

while AH provides packet integrity and authentication [SBDG02]. The IPSec protocol

also specifies the Internet Key Exchange (IKE) protocol [HC98], which is used for

authenticating, and for establishing session keys between two sites before any other data

is transmitted.
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Figure 2.1.2-1: IPSec information part of IP packet

IPSec specifies two modes of applying protection:

1. Transport mode adds IPSec information (ESP or AH) between the IP header and the

remainder of the packet.

Figure 2.1.2-3: IPSec using ESP in Transport Mode

2. Tunnel mode adds a new IP header to the original IP packet, and keeps the IPSec

information outside.
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Figure 2.1.2-2: IPSec using ESP in Tunnel Mode

A security association (SA) is a relationship between two or more entities that

defines how each entity will use security parameters and services to communicate

securely [KPS02].  An IPSec SA is a cryptographic key and other information including

the identity of the host on the other end of a connection, the sequence number currently

being used, and the ‘cryptographic services’ being used [KPS02]. The ‘cryptographic

services’ tell each end such information as whether to use integrity only (AH), or

encryption and integrity (ESP / AH + ESP), and which cryptographic algorithms to use.

The purpose of IKE is to establish an SA between two parties. SA information on each

IPSec connections is stored in an SA database and indexed by a security parameter index

(SPI) that is included in the header of each IPSec packet (see figure A.1) and is unique

for each connection to a given IPSec server.

2.1.3 PPTP

The Point-to-Point Tunneling Protocol (RFC 2637) is a layer-2 protocol built on

Point-to-Point protocol (PPP) and TCP/IP. PPP is a mechanism for creating and running

the Internet Protocol (IP) and other network protocols over a serial link – be that a direct



27

serial connection (using a modem cable), over a telnet established link, or a link made

using modems and telephone lines (or digital lines) [LDOC]. PPP allows authentication,

privacy and data compression, and is commonly used in dial-up Internet connections via

modem and phone lines. PPTP tunnels a PPP session through IP connections and so

benefits from the security provided by PPP while using IP infrastructure. PPTP thus

allows the transmission of packets that do not support IPv4 or IPv6 addressing standards.

The vendor consortium responsible for developing this protocol includes Microsoft, US

Robotics, and 3Com but the Microsoft implementation appears to be most widely used.

PPTP uses a variety of protocols for authentication and encryption. Authentication

protocols include Password Authentication Protection (PAP), Challenge Handshake

Authentication Protocol (CHAP), and MS-CHAP (A Microsoft adaptation of the original

CHAP). Encryption algorithms typically employed include RSA, RC4, and DES.

2.1.4 L2TP

Cisco Systems and Microsoft developed the Layer-2 Tunneling Protocol (RFC

2661) to combine the advantages of PPTP and an older Cisco layer-2 tunneling protocol

called Layer 2 Forwarding (L2F). L2TP enables the transmission of PPP datagrams over

IP, X.25, Frame Relay and ATM networks, and allows the establishment of multiple

tunnels between the same endpoints [Fra01].

A typical L2TP implementation consists of two services; the L2TP Access

Concentrator (LAC) and the L2TP Network Sever (LNS), and two tunneling modes;

Voluntary or Compulsory. The LNS is the endpoint of an L2TP connection and the LAC
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is the intermediate service that routes packets between the LNS and a remote host at the

other end of the connection. The LAC is able to receive non-IP connections and tunnels

PPP datagrams to the LNS for authentication. The LNS receives L2TP connections from

the LAC, processes PPP datagrams, uses PPP authentication to validate users, and assigns

IP addresses. In compulsory tunneling mode, a client dials into an Internet Service

Provider using a PPP connection. The ISP partially authenticates the client to establish

which account to open, and then the LNS validates the client and assigns an IP address.

Voluntary mode is very similar to compulsory mode only that the client already has a

pre-establish connection to an ISP so no partial authentication is required.

L2TP uses Network Control Protocol (NCP) for assigning IP addresses and

authenticates using PPP authentication schemes (CHAP or PAP) in order to control

network access. L2TP is primarily concerned with user authentication, and the

confidentiality and integrity of information between L2TP endpoints.  L2TP does not

provide replay protection.

2.1.5 Comparisons

Authentication provided by L2TP and PPTP is user-based and occurs during

tunnel establishment only. Neither provides authentication of a packet’s origin thus both

lack replay protection. IPSec authentication is host- rather than user-based, because IPSec

only identifies packets by IP addresses after a tunnel is established9 [KPS02]. IPSec

provides replay protection through origin authentication and by maintaining sequence

numbers of each packet in an SA database. However, IPSec does not support dynamic

                                                  
9 IPSec servers can potentially handle multiple connections between the same end points because they
identify connections by SPI rather than IP addresses. However, most IPSec clients do not allow this.
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configuration of parameters after the tunnel is formed [RS02] because once the SA is

established each end of the connection must remain true to initial agreement during the

IKE phase otherwise one end point will reject the others packets.

IPSec/L2TP (pronounced IPSec over L2TP) is typically used for VPN

implementations. IPSec over L2TP combines the replay protection advantage of IPSec

with the user-based authentication and routing ability of L2TP. This allows roadwarriors

(mobile devices with non-fixed IP addresses), which may not have IP addresses prior to

establishing a connection, to use IPSec/L2TP.

2.1.6 SSL

Netscape first introduced the Secure Socket Layer (SSL) protocol for securely

sending messages over the Hypertext Transfer Protocol (HTTP). HTTP is the native

protocol of the World Wide Web and so SSL was initially intended specifically for

browser use. The protocol has existed for several years now (Netscape released the first

official version, SSLv2 in 1994) and has developed in security and feature. Currently, the

IETF’s standard for SSL is the Transport Layer Security (TLS) protocol, which is a

modified version of SSLv3.

2.1.7 SSL VPNs

Unlike the previous protocols, SSL was not designed with layer 2 and 3

encryption in mind, but rather transport-layer encryption. There are four methods by
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which SSL VPNs may provide access: proxying, application translation, port forwarding

and network extension. Some implementations may use more than one of these:

I. Proxying

An application proxy is a service that sits between a client and remote server and acts as

an intermediary between the two for a particular application. The proxy usually receives

data from one end (client or server), may rewrite this data in some way (including

encrypting or decrypting it), and then forward the data on to the other end. These proxies

are commonly called Application Level Gateways (ALGs). A web proxy is an ALG that

handles HTTP requests between a client and server. ALGs typically proxy a small subset

of applications because they are protocol-dependent. Consequently, proxying cannot

offer complete site-to-site encryption that is desired in a VPN.

II. Application Translation

Protocols like FTP can be adapted to other protocols like HTTP (used by web browsers).

Proxy servers can do this translation on behalf of clients, in order to handle requests to

servers. However, more complicated protocols, like the one employed by Windows File

Sharing, are less readily translatable. This mechanism, like proxying, is protocol-specific

and cannot offer complete site-to-site encryption.

III. Port Forwarding
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Port forwarding is a type of network address translation typically used by servers to

balance load. A host machine may receive a packet on one port and forward it to a port of

another machine.

IV. Network Extension

This is the use of a tunnel to join two hosts at the network layer. Such tunnels do not

discriminate based on application protocols because they built below the application

layer.

SSL VPNs that use network extension can successfully encrypt all data between

two hosts and so are regarded as ‘true’10 VPNs [Hos04]. I will use OpenVPN, considered

a ‘true’ SSL VPN [Hos04], to explain how SSL VPNs work:

OpenVPN [Yon04] is an open source SSL VPN implementation created by James

Yonan. OpenVPN uses the OpenSSL libraries and is available on all the common

computing platforms (Windows XP, Mac OS X, and Linux). OpenVPN uses virtual

interfaces, much like PPP does. It supports two virtual interfaces, a tun interface, which is

a tunnel interface just like PPP’s, and a tap interface. The tun interface routes IP packets,

while the tap interface routes Ethernets packets. Each interface has a virtual device

driver. The device driver is a user-land application that processes packets sent to the

interface. Before the virtual interfaces are created, OpenVPN will perform a SSL

handshake with the remote host. This handshake is a client-SSL authentication handshake

so both ends of the tunnel get authenticated. Once the connection is established, packets

can be routed to the remote host. Because the tun and tap interfaces are network
                                                  
10 SSL VPNs are considered ‘true’ VPNS if they provide complete site-to-site encryption
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interfaces the host operating system sends them entire IP (or Ethernet packets), not just

application layer data as it would a regular process doing SSL encryption. The driver

receives these packets and encrypts them employing algorithms from the OpenSSL

library (DES, 3DES, AES, etc). It then re-encapsulates the new packet in a UDP packet,

addresses this packet to the remote host, and sends it onto the network.

Unlike IPSec servers, tunneling is done over UDP rather than plain IP. The reason

for this is that OpenVPN (and any other SSL VPN implementation for that matter) does

not have kernel support, so it must listen on a specific port to receive VPN packets.

Tunneling is done over UDP, as opposed to TCP, because the encrypted (tunneled)

packet may already be a TCP packet; tunneling TCP over TCP can cause network slow-

downs because each TCP layer must handle resending requests when a packet is lost, and

each layer must ensure that packets come in order.

SSL VPNs have a number of advantages over IPSec (or IPSec/L2TP) VPNs.

Perhaps most notable amongst these is that they do not require any modification to a host

machine’s kernel stack. This advantage appears to make them much easier to install and

configure, and allows them to operate more easily between different platforms [Yon04].

As a disadvantage, SSL VPNs are less common and less widely used by organizations.

Due to this SSL VPNs have a lot fewer router and hardware support than their IPSec

counterparts. One reason the public might have been so slow to pick up SSL VPN

technology is that there is a common misconception that SSL only works at the

application layer so cannot provide more than per application security [Hos04].
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2.2 Network Address Translation

The necessity of NAT arises from the inability of IPv4 to provide enough

addresses for the Internet [CBR03]. NAT tries to circumvent this limitation by

constructing a many-to-one mapping of IP addresses within a local network so that

machines on this network appear to be sharing the same IP address on the Internet. The

way a NAT box (the device doing Network Address Translation) achieves this varies from

implementation to implementation, but the common approach is to assign all outgoing

traffic (packets leaving the local network) the IP address of the NAT box, and multiplex

incoming traffic (packets entering the local network) by mapping destination ports to

machines on the local network.

2.2.1 Problems associated with NAT

Most of the problems with NAT arise from the fact that some application

protocols (e.g. FTP) use IP addresses in remote commands at the application layer. These

IP-address references are not readily obvious to a NAT box so may be left untranslated

and cause problems to the applications. NAT implementations must, therefore, handle

FTP packets specially in order to circumvent this problem. This introduces a system

where NAT boxes have to handle packets on a protocol-by-protocol basis, which is not

very scalable.



34

 Second, because the source IP addresses of outgoing packets are modified, hosts

behind a NAT box cannot readily act as servers; remote clients would not have a static

public address to which to connect. This particular problem also affects applications that

ignore server-client models in favor of ‘peer-to-peer’ connection (e.g. voice over IP, X-

windows) because such applications require that either side be able to accept a

connection (both sides of the connection are clients and servers at the same time).

Third, the process of translating IP headers introduces extra overhead to data

packet flow on the Internet. Furthermore, translating addresses violates the standards of

some security protocols such as IPSec; IPSec enforces packet integrity and under the AH

protocol IPSec requires that the IP header remains unchanged throughout the packets

transmission. NAT easily violates this standard because it requires that packets be

modified at least at the header level [KPS02]. While there are some implementations of

IPSec that permit NAT boxes to modify headers, such implementations introduce extra

complexity to IPSec usage and still cannot accommodate some packet tampering that

NAT requires. For instance, some NAT implementations handle FTP packets by

tampering with application layer information. Application layer data falls within the

payload of a typical IP packet and so is considered un-modifiable according to the IPSec

protocols.

2.2.2 Practical applications of NAT

NAT has become almost crucial in solving certain problems of security and

balancing load for servers and databases [Vep02].  A server may use NAT to hand off
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packets destined for it to clone servers on other machines to deal with. This allows a

server at a single IP address to balance client load. This scheme is used to handle high

volumes of database queries. Additionally, NAT is used to provide a single gateway to

multiple machines. Such a setup is called masquerading or ‘many-to-one natting11’. The

reasoning behind this configuration is that it is easier to secure one gateway to the

Internet than multiple ones. Thus firewall rules applied to the single gateway provide

security to all the masqueraded machines. Masquerading is also used to protect the

identity and activity of machines on a network.

NAT is becoming more and more popular in establishments like airports and

hotels. In such establishments, rather than register an entire subnet of public IP addresses,

the establishment offers the patrons local addresses (like 10.0.0.1) and a NAT box

masquerades outgoing traffic for them with a few public IP addresses. This setup is much

more cost effective for these enterprises. The Internet Assigned Numbers Authority

(IANA) has provided three IP address ranges for local network use [RMKGL96]. These

address ranges are given in Table 2.2.2-1.

Start address End address

10.0.0.0 10.255.255.255

172.16.0.0 172.31.255.255

192.168.0.0 192.168.255.255

Table 2.2.2-1 IANA assigned address spaces for local networks

                                                  
11 ‘Nat’ is sometimes used as a verb and means, “to do a network address translation.”
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2.3 Linux Packet Routing

2.3.1 Definitions

Packet routing allows a machine to discriminate between packets it receives or

transmits. This permits a host machine to behave like a regular network router. In many

cases, packet routing enables a host to also make other decisions about packets including

modifying packet header information such as time-to-live and type of service fields

(mangling), or changing source or/and destination addresses (network address

translation). Packet routing can be said to provide three main functionalities in Linux:

1. Denying or permitting packets (whether those entering, or leaving the host). This type

of discrimination allows a host to firewall traffic to and from it.  A firewall is a set of

rules a machine uses to make decisions on packets (whether to reject or accept), based

on network layer information. This information is typically which port or address the

packets originated from or to which port or address it is going. In Linux, tools such as

iptables [NTFLTR] provide this functionality.

2. Deciding which address or network device to use for transmitting a packet. A network

device can be a physical device, such as a Network Interface Card (NIC), or a virtual

device, which is the way systems like Linux represent tunnels (e.g. PPP or IPSec). On

a Linux machine, the route tool provides this functionality.

3. Changing some attribute about a packet entering or leaving the machine. This

includes mangling12 and network address translation, already discussed above.

                                                  
12 Mangling is the process of changing time-to-live and time-of-service information on a packet header.
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Firewalls may make decisions on packets by inspecting the packet header. This is

called static packet filtering [PCWEBa]. Another approach is to make decisions based on

the packet’s activity (and that of related packets) through the various interfaces of the

host machine. This approach is called dynamic packet filtering or stateful inspection

[PCWEBb]. Stateful inspection allows decision to be made on packets based on

previously established or related connections. The conntrack module of iptables is

responsible for this functionality.

2.3.2 Iptables

Linux provides packet routing through iptables on kernel versions later than 2.3

[Russ02]. Iptables is the successor of the userland tools ipfwadm, from Linux 2.0, and the

more recent ipchains, for Linux 2.2. Both of these were based on BSD’s ipfw. Iptables is

a part of the Netfilter framework, which is a set of modules for the Linux kernel (these

modules could optionally be built into the kernel). The Netfilter framework offers hooks

into the kernel’s packet processing mechanism. These hooks differentiate packets

destined for processes within the host, those leaving the host, and those being forwarded

to other network devices or back to the network. The framework also offers a series of

‘chains’ that mark the various stages a packet has reached in the kernel’s packet-

processing mechanism. Associated with these chains are two tables, nat and mangle. Nat

is the Network Address Translation table and is defined for only the PREROUTING and

POSTROUTING chains. Figure 2.3.2-1 below shows these chains and corresponding

tables.
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Figure 2.3.1-1: Iptables chains and tables

On each chain, the mangle table is visited before the nat table, if both exist. All

rules are processed sequentially. Each chain can also be assigned a default target

decision. A target, for most chains, is either ACCEPT or DROP. Other targets are

QUEUE and LOG. The QUEUE target causes the kernel to queue a packet that reaches

that rule. A process on the host machine that has a handle to the Netfilter queue may then

read the queued packet. Netfilter provides a library, ‘libipq,’ through which applications

may read and process queued packets. The LOG target uses syslogd to log packet
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information using the kernel facility (i.e. as kernel messages). The target allows

specification of a priority for these log messages. Iptables also allows the creation of

user-defined tables. In fact, Linux’ Lokkit [RHLa] uses this feature for creating firewalls.

Iptables provides a module, called ‘conntrack’, for tracking connection state. This

module identifies the start of a TCP connection when a SYN packet is transmitted from

one site to another. The connection is considered established when a reply SYN/ACK

packet is transmitted to the site that initiated the connection. The connection is considered

terminated (or closed) when a FIN/ACK – ACK communication is transmitted in both

directions [And03]. A RST packet can also be used for terminating the connection. For a

connection over UDP, the module considers the connection ‘new’ when the first UDP

packet is transmitted from one site to the other. The state of the connection changes to

‘established’ when a UDP packet is observed in the other direction. The connection

remains ‘established’ for a predefined amount of time and times-out (is considered

‘closed’) if no more activity is seen between the two sites.

The conntrack module can also handle ICMP: An echo request packet starts a new

connection and an echo reply packet ends it. Most other echo packets will end the

connection (e.g. ‘net unreachable’ or ‘net prohibited’ packets). ICMP connections also

have a default time out (about 30 seconds). Conntrack will consider a connection

‘related’ if there is already an established connection between the two sites. Thus an

ICMP packet sent by one site to another to confirm the state of a UDP connection will

not generate a new connection under iptables. If conntrack does not know the packet

protocol it uses a default behavior to track connection state. The default behavior is much

like the UDP connection approach explained above.
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Because chains, tables, and rules are traversed sequentially, complicated routing

systems can easily slow down traffic on the machine [And03]. One way of speeding up

rule-processing is to use sub-tables; rather than have all rules exist in one chain or table,

packets can be categorized, and each category assigned a different sub-table, thus

reducing the number of rules that have to be traversed for each packet. Categorizing

packets can be made easier by marking packets that arrive from various interfaces. For

example, packets arriving at a host via ipsec0 (ipsec0 is the virtual interface for an IPSec

tunnel on Linux 2.4 using KLIPS) could be marked to distinguish them from packets

arriving at other interfaces. Later, packets with this mark could be processed in a user-

defined table so that other packets do no have to traverse rules intended for a VPN client.

2.4 The Greenpass Project

Dartmouth’s Greenpass project seeks to enhance wireless access control to

networks by introducing decentralized delegated access [Goff04]. Decentralized

delegated access allows network access to be determined by a number of principals

rather than one central authority. In PKI terminology, a principal is any authority that

signs a certificate or vouches for a network user. In the Greenpass project, these

principals are regular network users with delegation privileges. A delegator [Goff04] is

such a privileged user. When a guest wishes to join a wireless network, the guest presents

a certificate that is signed by a trusted Certificate Authority (any certificate issuing agent)
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to the Access Point  (AP)13. The AP forwards this certificate to a RADIUS (Remote

Authentication Dial In User Service) server [Rig00] [RWC00] [RWRS00]. The RADIUS

server decides if the AP should accept the guest’s request and the AP responds to the

guest accordingly. Guests without the right credentials are shunted to a restricted VLAN

from which they can access only a single delegation website. Here, the guest must make a

request to be granted access by a delegator that they know. Once approved by the

delegator, the guest is given a token as proof of authorization. This token (a web cookie)

is actually a SDSI/SPKI [EFL+99] certificate chain (hereafter referred to as SPKI

certificates for simplicity) showing the relationship between the guest and their delegator.

SDSI/SPKI is a certificate specification (much like X.509) that has built-in support for

delegation in the form of certificate chains.

By restricting network access to permit only authorized guests, the project

enhances the wireless EAP-TLS authentication. The Extensible Authentication Protocol

(EAP) [BV98] is a standard that was originally created for authenticating PPP sessions.

EAP provides a standard for encapsulating various forms of authentication handshakes

including challenge-response schemes, password-based, Kerberos, and PKI-based

methods (like TLS) [SGK+04b]. EAP is a protocol that forms part of the standard called

802.1x for wireless control to Ethernet networks. The Institute of Electrical & Electronic

Engineers (IEEE) defined the 802.1x standards. The IEEE also defined 802.11, which is

the standard for wireless networks, also called Wireless Fidelity (or Wi-Fi). Security

standards for wireless networks are defined by 802.11i, a draft standard. A subset of

802.11i is currently used in networking devices as Wi-Fi Protected Access (WPA). WPA

client applications on host machines enable network users to communicate with APs to
                                                  
13 An AP is the point-of-presence for a wireless network.
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negotiate security protocols for authentication and authorization. Figure 2.4-1 below

shows the authentication and authorization process for a network user. The user

communicates to an AP via a WPA client using EAP-over-LAN (called EAPOL). The

AP consults a RADIUS server for approval using the RADIUS protocol. The RADIUS

server responds to the AP and the AP returns an EAP “success” or “failure” to the WPA

client.

Figure 2.4-1: A network user requests permission to join the network. In 802.1x terminology the network

user is a supplicant, the AP is an authenticator, and the RADIUS server as an authentication server. The

user and AP communicate by EAPOL while the AP and RADIUS use the RADIUS protocol. Both

protocols encapsulate EAP messages that, in turn, encapsulate some other authentication protocol such as

TLS. This figure is a re-creation of a diagram from Goffee’s thesis on the same subject [Goff04]. Kwang-

Hyun Baek put forward the concept for the diagram.

The Greenpass project can be broadly divided into two components: the RADIUS server,

and the client tools.
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2.4.1 Greenpass RADIUS Server

The Greenpass RADIUS server [Kim04] is built from the open source RADIUS

implementation, FreeRadius [FreeR]. Using an open source implementation has allowed

the Greenpass team to add extra functionality to the server to handle SPKI certificate

chains. Unfortunately EAP-TLS can handle the transmission of X.509 authentication

certificates but not SPKI certificates. This restriction means that in their unmodified

forms, neither AP, nor client machine, nor RADIUS server can handle SPKI

authentication certificates. Rather than require new software, the project presents a

solution in the form of a SPKI cache that the RADIUS server can consult for validating a

guest. Guests present SPKI certificate chains to the AP, via their browsers (a certificate

chain is sent as a cookie), and then present their X.509 Certificates by EAP-TLS. The

SPKI cert is added to the certificate cache mentioned earlier. When the Greenpass

RADIUS server receives a certificate, it first determines if it recognizes the CA for the

certificate. If it does not, it refers to the SPKI certificate cache. If the RADIUS server can

find a chain linking the requestor’s public key to some trust root (a certificate signed by a

trusted CA), then the RADIUS server considers the guest authorized, and informs the AP

that forwarded the request. If no valid chain is found for the guest, then the guest is

considered unauthorized so the AP redirects the guest to a restricted VLAN, as explained

previously.

2.4.2 Greenpass Client Tools
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The Greenpass Client Tools [Goff04] consist of all the interfaces that the

delegator and guest interact with before a guest is granted access onto the network. These

include the Greenpass web application and Python scripts that receive and process a

guest’s request, as well as the caches that hold the SPKI certificates for authorization.

The client tools component is outlined below:

1. Greenpass Web applications: This consists of a set of introductory web pages

accessible from the restricted VLAN; the delegation web page that allows delegators

to examine requests, compare guests’ public keys, and create new SPKI chains for

guests’ future authentication; and a front page that allows delegators and guests to

determine their status in the delegation process.  The front page tells guests where to

go to get authorization, as well as provides them with the option of seeing their SPKI

certificate chains in human readable form or deleting all Greenpass related cookies

from their browsers.

2. Enrollment CA: For guests who do not have public keys (do not have X.509

certificates), the introductory page works with a python CGI script to generate a

temporary X.509 certificate that the guest’s web browser installs in the browser’s

keystore. This ‘dummy’ certificate is created to provide the guest with a means of

transmitting a public key over EAP-TLS that can be used to authenticate the guest.

3. There are two caches provided as part of the client tools: an introductory cache and an

authorization cache. The introductory cache stores guests’ X.509 certificates until a

delegator views a guest’s request via the delegation page. The authorization cache

stores SPKI certificates and provides functions to the RADIUS server for verifying

trust paths (chain of certificates to some trust root) for guests’ public keys, verifying
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a guest’s status (authorized or unauthorized), and adding new certificates.  These

functions are available by XML-RPC, a set or protocols that allows an application on

one machine to call functions in another application, perhaps on some other machine.

2.4.3 Greenpass guest access procedure

The steps for providing guest access under the Greenpass approach can be

summarized as follows:

1. A guest attempts to join the network and must present an X.509 certificate to an AP.

If the guest has a certificate, the AP obtains this certificate via EAP-TLS and

forwards it to the Greenpass RADIUS server for authentication. If the RADIUS

server recognizes the CA for the certificate or can find a trust path in the

authorization cache it returns affirmative to the AP, which then lets the guest onto the

network. Otherwise either the RADIUS server cannot find a trust path or the client

has no certificate and is shunted off to a restricted VLAN.

2. On the restricted VLAN the client can only access the Greenpass front page (via a

web browser) that explains how the guest may obtain authorization, or the

introduction page where the guest may enroll for an X.509 certificate if they do not

have one. At the front page the guest’s browser is asked for an X.509 certificate. The

Greenpass web application passes this certificate to the introductory cache for a

delegator to review it.

3. A delegator views the guest request via a web browser and approves it. This creates a

SPKI chain from the delegator to the guest, and thus provides a trust path from the
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guest to the delegator’s trust root. The new SPKI chain is then added to the

authorization cache.

4. On the front page the guest is notified that her status is now authorized and is

presented with the SPKI chain as an HTTP cookie. The guest may then reattempt to

join the network. By this time, the guest has an X.509 certificate (it might be a

dummy one created from the Greenpass introduction page), and the AP forwards this

to the RADIUS server. The RADIUS server will find a new SPKI chain with a valid

trust path and so instruct the AP to allow the guest onto the network.

5. The SPKI chain on the guest’s machine (as an HTTP cookie) is used to refresh the

authorization cache when it expires.

The Greenpass project places a number of requirements on a wireless network user’s

machine but most of these should not be a problem for many network users:

1. The machine must support EAP-TLS wireless authentication and possess a WPA

client. While most operating systems (e.g. Windows XP) provide this application,

earlier versions of Mac OS X (< X.3) do not have a built-in WPA 802.1x client.

2. The user’s browser must have cookies enabled, and must support client-side SSL.

Most standard browsers support enabling and disabling cookies but not all support

client-side SSL (Internet Explorer 5.2 on Mac OS X still doesn’t for instance).

Fortunately, each platform has at least one freeware browser that supports client-side

SSL (Mozilla browsers support it).
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Chapter 3

 The Access Control Service

3.1 Objectives

In constructing the model for the ACS I considered the following ideals:

1. An implementation of the ACS should place few or no software constraints on users’

host machines, besides the need for a VPN client that they would use for network

access. This was desirable because one of the objectives of the project was to reduce

demands on remote network users to find machines that possess one capability or the

other.

2. An implementation should provide some means by which administrators could

specify policies and privileges. Furthermore, if an administrator was not trying to

restrict a resource’s users to a particular application, platform, or location then these

details about a user should be insignificant to the user’s ability to gain access.

3. An implementation should build on current technology (rather than attempt to replace

it). This objective means that implementing the ACS should be feasible and

affordable for an institution.
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3.2 The Model

The access control service  (ACS) is made of four primary components: a VPN service, a

database service, an accounting and mediating service, and a web service. The function of

each service is listed below:

I. VPN Service

• Provides a gateway to the VPN as well as authentication for remote users.

II. Database service

• Stores account information about each VPN user as well as their privileges, as

specified by administrators.

III. Accounting and mediating service

• Monitors VPN users’ traffic and identifies when users attempt to connect to

resources.

•  Establishes connections to resources on behalf of valid users.

• Logs users network activities.

IV. Web Service

• Provides an interface through which:

1. Network administrators may edit users and user groups

2. Resource administrators may edit user and group privileges for their resources

as well as specify how the accounting and mediating service would mediate

between the resources’ access control systems and the users.

3. Users may view their account information and privileges.
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Figure 3.2-1:  Various components of the ACS Framework.

The ACS’ components interact as follows:

1. The web service provides web pages for users and administrators. The web service

stores specifications made by administrators with the database service.

2. The VPN service accepts remote users’ network connections and notifies the

accounting and mediating service

3. The accounting and mediating service identifies the privileges and specification for

each connected user by querying the database service.

4. The accounting and mediating service then sets up rules to track the network user’s

traffic from the VPN gateway to specific resources on the network. These rules will

allow the service to be notified if the user tries to initiate a connection for which the

ACS has instructions to mediate.
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5. When the user initiates one of these connections, the accounting and mediating

service will establish a connection to the resource using the specifications associated

with that user. It will then route the users traffic to that resource through the

established connection.

6. The accounting and mediating service will then begin logging information about the

users activity on that connection (e.g. time of connection and time of disconnection).

3.3 Implementation

Figure 3.3-1:  Design for ACS prototype. The circled components are those installed or programmed in my

implementation. The dotted lines between components represent communication, usually by passing

messages.
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My implementation of the ACS (Figure 3.3-1) is not a fully functional version,

but a prototype of what I envision the actual service to be. I built this prototype to aid my

proof of concept and to better understand what issues its construction might present. I

implemented the access control service framework with a Pentium 4 Dell Inspiron

running the Fedora Core 1 distribution of Linux. I chose Linux because of the abundance

of open-source solutions for the various components that I thought would be necessary

for the service. I built Linux kernel 2.4.22 and downloaded and installed all the other

components discussed here. I configured a MySQL database for the database service and

installed and configured Openswan [SWANb] and OpenVPN [Yon04] for the VPN

service. My implementation of the ACS uses IP address to keep track of a user’s activity

and to identify resources on the network.

I wrote two programs to provide the accounting and mediating service (see Figure

3.3-1):

1. A Java database manager called the Accounts Manager (AM)

2. A C++ program called the mediator.

In all of the design choices I considered efficiency because I was aware that

packet processing at the application level (i.e. outside the kernel) could impact network

throughput [And03] [CB97]. It seemed necessary to use identification numbers, rather

than IP addresses or hostnames, because remote users might not connect from the same

site on each visit to the network. Additionally, unsigned integer comparisons were more

efficient than these alternatives. These ID numbers are primary keys in the MySQL

database and are used for comparisons and information retrieval within the mediator
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program as well. In the MySQL database these ids are mapped to usernames and public

key fingerprints. Each fingerprint is a message digest of a user’s public key. Message

digest functions, such as MD5 and SHA1, provide unique hashes for unique messages (in

this case, public keys). I used MD5 as the digest function for calculating a user’s

fingerprint. Once users have connected to the ACS and their id numbers have been

established, the ACS builds mappings between id numbers and IP addresses for the

duration of the users’ connections. These mappings allow the ACS to resolve packet

ownership for routing and mediating purposes.

3.3.1 The VPN Service

The VPN service supports IPSec, IPSec/L2TP and SSL VPN connections. My

implementation of the ACS uses two different open-source VPN servers to achieve this:

Openswan (for IPSec and IPSec/L2TP) and OpenVPN. A kernel module, called KLIPS,

provides IPSec support for traditional (IPSec) VPN tunneling. I used a user-land L2TP

daemon (l2tpd), and Linux’s pppd to add L2TP functionality to this service, if a user

needs it. Jacco De Leuuw has documented how to setup an IPSec/L2TP Linux VPN

server using open source tools [DeL02]. Figure 3.3.1-1 is a schematic of the interaction

between the various pieces that make up an IPSec VPN server.
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Figure 3.3.1-1: Linux VPN Server setup using pppd, user-land l2tp daemon and Openswan IPSec tool.

Reproduced from a similar diagram on De Leuuw’s website [DeL02].

There are several open source implementations of IPSec tools for Linux including

Freeswan [SWANa], Openswan [SWANb], and Strongswan [SWANc]. I chose

Openswan for my implementation though I also experimented with Freeswan and

Strongswan. Freeswan is the predecessor of Openswan and Strongswan so it lacks a few

features that make configuring the tool as a server a bit easier in its successors; it is

somewhat easier to set up Strongswan and Openswan to accept connections without prior

knowledge of client configurations. Strongswan and Openswan are very similar in their

core functionality but differ in parts of their security focus; Strongswan supports a few

more PKI and X.509 certificate functionalities than Openswan.  The documentation for

setting up a Linux VPN server [DeL02] tabulates the major differences between the

IPSec tools. For the purpose of my prototype, Openswan was as equally a good choice as

Strongswan.
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I built an Openswan 2.2-1 IPSec server for Linux kernel 2.4.22. Linux kernels

2.4.x and earlier require the KLIPS kernel patch in order to handle IPSec (for Kernel

2.6.x this functionality is built in as 26sec). KLIPS also provides a virtual device

interface for processing IP packets. This allows processes on the machine to refer to each

IPSec tunnel by a device name much like they would eth0 or eth1. KLIPS uses ipsec0,

ipsec1, etc for tunnels. The device driver can handle multiple tunnels under one device

name. In my implementation all client tunnels are accessible via ipsec0 (which

corresponds to eth0) and all tunnels within the private network are accessible via ipsec1

(which corresponds to eth1). My implementation uses Linux’s iptables [NTFLTR] for

routing packets from one service to another (e.g. for routing packets between Openswan

and l2tpd).

Openswan also provides an IKE daemon called Pluto, which handles the

encryption key exchange using a configurable set of algorithms and hash functions

(Openswan 2.2 defaults to 3DES-MD5). I configured Openswan to require user

certificates for authentication.

I created a certificate authority (CA) for the ACS and generated and signed

certificates for all the machines I used in with my prototype. I created the CA and

certificates with OpenSSL [OpenSSL]. On my iBook, I also tried out a free IPSec GUI

application, Ipsecuritas [LBTMO], which has support for certificates (The CISCO Mac

VPN client also supports certificates). Ipsecuritas does only IPSec VPN connections, and

the Panther (OS X.3) VPN client does only IPSec/ L2TP VPN connections. I used

Ipsecuritas to verify that the VPN service worked for either flavor of tunneling.



55

Additionally, I set up OpenVPN on the ACS so that the machine could accept SSL VPN

connections as well.

A traditional VPN sever has two network interface cards (NICs), one reachable

through the Internet (or over the less trusted network) and the other on the more trusted

network. Because L2TP/IPSec uses PPP, a client of the VPN server may be assigned a

local IP address after authentication (i.e. an address on the more trusted network) by a

DHCP server. With purely IPSec VPNs, the client can optionally be masqueraded14.

Iptables provides masquerading as part of its NAT package. Iptables’ NAT has fixes for

most of the common problems associated with NAT so protocols like FTP, IRC, and Real

Audio, can work with hosts doing NAT via iptables [NTFLTR].

Linux (and many other operating systems) allow users to enable IP forwarding15

between subnets. This functionality is at the core of most Linux open source VPN

implementations because it allows packets coming to the server from a less trusted

network (or the Internet) to be able to reach the more trusted one solely at the discretion

of the server. My ACS prototype has two NICs, each on a different Dartmouth subnet. In

my implementation neither subnet was more trusted than the other, and both were

reachable from the Internet. However, the same setup applies to the traditional set up (i.e.

where one NIC is on a more trusted network than the other).

3.3.2 The Accounts Manager

                                                  
14  Masquerading is a form of network address translation (NAT). Please see Chapter 2
for an explanation of masquerading and NAT.
15 IP forwarding is the same thing as ‘bridging’ in Windows (for readers familiar with the
‘bridged connections’ option in Window’s network configuration).
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I wrote a Java application to interface with the MySQL database. The accounts

manager (AM) is responsible for mapping a newly connected user’s information to a pre-

assigned id number and informing the mediator. For example, when Pluto concludes the

IKE phase of an IPSec authentication with a user it should forward the user’s IP address

and certificate to the accounts manager16. The AM retrieves the user’s public key from

the certificate and calculates the MD5 fingerprint of the key. It then queries the database

for an id-to-fingerprint mapping with the given fingerprint. If it can find such a mapping

then the user has an associated object in the mediator’s database. Once the AM has

resolved the user’s id it sends a message telling the mediator that the user is now

connected with the given IP address. The AM sends the message using the ACS syntax

explained in section 3.3.4.  An example is given below:

CLIENT 381 {

HOST 129.170.210.183

}

CLIENT 381 UP

Example 3.3.2-1: Sample notification message from AM to mediator service.

The message tells the mediator to update its database for a client with an id 381,

and assign that client an IP address of 129.170.210.183. The last line ‘activates’ the client

object. Upon receiving this message the mediator can add routing rules for the particular

client and perform a network address translation on the client’s traffic if needed.

Activating a client object is an indication that the mediator should monitor the ACS’

                                                  
16 Pluto does not naturally provide this functionality; it requires a patch to do this.
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network traffic for data from or to the corresponding network user, based on the

privileges of the user. Activating a resource object, on the other hand, indicates that the

mediator should consider the resource available for access on the network.

Under my current design, if the user connects using IPSec/L2TP then after the

IPSec server authenticates the user the l2TP server would forward the username and IP

address assigned to the user. The AM is able to look up the user’s id by username. If it

can find such a mapping, it would construct a message for the mediator as described

above. The same applies to OpenVPN.

3.3.3 The Mediator

The mediator manages the state of each user’s connections to various network

resources. In my prototype, the mediator loads up policies for each user from a file at

start time, and creates objects for users and resources to represent their current states at

any given time. During regular execution, the mediator is usually waiting for an event to

occur. It waits on two classes of events: (1) messages from either the AM for updates to

its objects. (2) Messages about clients’ attempts to connect to network resources. The

mediator has a dedicated port for receiving updates to its internal objects structure. The

mediator uses the conntrack module, provided by iptables, to identify a connection

request from a client (see Chapter 2 for an explanation of the iptables state tracking

module).

I designed the mediator with loadable policy-handling modules in mind. I felt this

approach would provide extensibility to the mediator’s current policy-handling
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capability. My implementation of the ACS handles IP-filtering policies and can proxy

other VPN connections to other subnets or hosts. When a policy-handler is invoked for

the first time, it applies iptables rules to queue client packets that are destined for target

secure servers. Iptables provides hooks for queuing packets for userland applications (the

mediator in this case) through the Netfilter library, libipq, and iptables’ QUEUE target

(See section 2.3.2: Iptables). I make all adjustments to the iptables rule-set using shell

scripts invoked by the mediator through system calls. These shell scripts receive

arguments for a particular client and modify one or more chains and tables with these

arguments.

iptables –t nat –A POSTROUTING –s $CLIENT –d $SERVER –j SNAT –to

$NAT_ADDRESS

Example 3.3.3-1: Sample iptables rule for ‘source’ natting. The $CLIENT parameter is the IP address of

the network user, the $SERVER parameter is the IP address of the target resource on the VPN, and

$NAT_ADDRESS is the IP address to which the ACS will map the user’s traffic for the target resource.

Once the mediator receives a user’s connection-request packet it identifies the

user and destination resource and checks its database to determine if a policy handler is

available for the user’s connection. If no policy handler exists then there is no authorized

connection for the user to the resource and the ACS simply removes the queuing rule so

that packets of this nature are left to the target resource’s discretion (i.e. the resource’s

access control policies). If, on the other hand, such a handler exists, then the mediator

calls the handler with arguments stored with the handler’s declaration, and instructs it to

execute because a connection attempt has been made. The arguments passed to the policy
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handler differ based on the particular handler and allow any policy handler to

discriminate between clients by specifying which credentials the ACS should use for

authentication. In all cases, the ACS has a pool of credentials (certificates and matching

private keys, IP addresses, etc), in its name. The policy handler uses one of these

credentials to authenticate with the target server. When the mediator program ceases

execution, or the C++ client objects are destroyed, the handler is called again to do the

necessary clean up (including removing Iptables rules). I will explain the operation of the

policy handler for two policies that the prototype currently handles:

I. IP-Filtering Handler

In this policy, the target server allows connections from hosts with a specific type of IP

address (or IP addresses from a specific range/pool). The server allows the ACS to use a

subset of its accepted IP pool for remote clients. The handler for this policy keeps a table

of these IP addresses and records those that are in use by a client at any given time. The

argument passed to the handler is a reference to the current table entries (as well as a C-

struct containing information on the user and server that is passed to all policy handlers).

When the handler is informed that a connection request has been made it finds the next

available IP address and adds an iptables rule so that all subsequent traffic from the user

to the server will be ‘natted’ with the selected IP address. If there are no more IP

addresses then the ACS has ran out of available connections to the target server and the
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handler will issue an NF_DROP17 directive for the packet. The ACS will, therefore, drop

all packets to that server from users without an established connection until other users

free up their connections. This behavior is configurable: alternatively the handler can be

instructed to reuse IP addresses when entries in the table ran out. The latter option allows

the ACS to create an unlimited number of connections to a resource. The former

configuration will limit the number of connections from the ACS and so can prevent

possible denial-of-service18 attacks through the service.

II. VPN Handler

In this policy, the target server is a VPN concentrator/server to some subnet, perhaps

within the same network as the ACS. The server machine could even be another ACS.

The ACS has a certificate that is signed by a trusted CA of this target server. The

mediator and uses this certificate to setup a VPN tunnel (IPSec or SSL) to the target

server. Before the tunnel is set up, the ACS blocks all forwarded packets from going

through the tunnel (without this initialization, other ACS clients may access the target

server and the restricted subnet behind it). When the handler is invoked (upon a

connection request by the client), the handler adds a routing rule to the route chain to

exempt the client’s forwarded traffic from the previous restriction rule. Subsequently,

these packets are automatically routed through the VPN tunnel, between the ACS and

target server, to the secure subnet behind the server.

                                                  
17 NF_DROP and NF_ACCEPT are flags that a process sends to the iptables queuing
handler to decided the fate of a queued packet (i.e. to drop or accept the packet).
18 Denial-of-service (DOS) occurs when a server can no longer accept connections from
users because it is already maintaining the maximum number of connections it can
support. By restricting the ACS to a number of connections at a time, a server will always
have connections available to users who are not requesting access through the ACS.
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The ACS maintains state on all users and resources through client and server

objects. Server and client objects can be ‘activated’ or ‘deactivated.’ A client object

corresponds to a particular network user. Activating such an object means that the user is

currently connected to the ACS. When the user disconnects, the AM informs the

mediator and the corresponding client object is deactivated. Server objects represent

resources on the more trusted (private) network. For these objects, activation means that

the resource is available to receive access requests from network users. It also means that

the administrator of the corresponding resource wants the ACS to mediate on behalf of

the resource’s authorized users. If a server object is ‘deactivated’ then the administrator

does not want the ACS to do any mediation for users accessing that resource. This might

also indicate that the resource is temporarily unavailable (or offline).

3.3.4 Specifying policies

I designed a simple grammar for describing resources, users, the privileges the

users have, the policies used for authenticating the user, and which credentials the ACS

would employ to proxy the user. In the absence of a web service in my implementation,

the grammar serves as a means for specifying policies. The syntax uses a few keywords

and delimiters to mark the start and end of the definition of an object. A parser for the

grammar recognizes three keywords for specifying objects: server, client, and conn. Each

of these implies the declaration of an object if the object does not already exist in the

database, or the modification of the object if the object has previously been created. The
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ACS parser recognizes the delimiters ‘{‘ and ‘}’ as markers for the start and end of the

attributes of an object, and the end of line character as a meta-symbol before a new

declaration. Example 3.3.4-1 presents an example of instructions using the ACS syntax.

SERVER server-id {

HOST IP-address

CLIENT client-id {

CONN {

TYPE IP-FILTER {

SUBNET first-IP-address last-IP-address

UNIQUE

}

}

}

}

Example 3.3.4-1: Sample Server Declaration for ACS input file. All italicized words are variables; an

actually policy file (or message) would have numeric constants in their place. The variables are included

here to clarify the meaning of these constants. All terms in bold face are keywords that the ACS parser

recognizes. Subnet and unique are underlined because a ‘special’ parser is required to recognize these

keywords. These ‘special’ parsers are explained later in this chapter.

The specification in Example 3.3.4-1 declares a server with a particular

identification number and IP address. It then declares a client, also with a particular ID

number, and specifies that the client will be authenticated by an IP-based filtering policy

and so should be assigned an IP address from a range between first-IP-address and last-

IP-address. Like the policy-handling mechanism of the mediator, the mediator’s parser
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was also designed with modules in mind. The parser itself must invoke special, more

specific parsers for various policies. Thus when the parser encounters the type keyword.

It looks up the appropriate special parser (in this case the IP-Filter parser), which parses

further specification between the ‘{‘ and ‘}’ delimiters. Again this modularity is intended

to provide extensibility to the ACS, allowing it to parse other policies that may be added

to its capabilities in the future.

In Example 3.3.4-1, the IP-Filter parser recognizes the subnet keyword and stores

the upper and lower bounds that define the address pool. The ACS has a table with

entries for all the IP addresses it can use for its clients and the IP -Filter handler will

search this table within the specified bounds when it needs to assign a user an IP address.

The unique keyword tells the policy handler not to use an IP address that is already in

use. This might be desirable if an administrator wishes to restrict the number of

connections the ACS can make on behalf of its users. Without this keyword, the handler

will first try to assign a client an available IP address and then pick any non-unique one if

all are in use. If a handler picks an IP address for a client object that uses ‘unique’

keyword then a flag is set against the IP address in the ACS’ global table so that other

handlers do not reuse the address until it is freed.

3.3.4.1 The ACS Grammar

The parser uses a grammar of the form given in Table 3.3.4-1 below. A more

accurate grammar is given in Appendix A. I give this simplified version because it

captures the essence of ACS grammar and is much easier to explain.
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<Input File>

<Declarations>

<Declarations>

<Server Declaration> <Declarations>

<Client Declaration> <Declarations>

NIL

<Server Declaration>

SERVER uint

SERVER uint {<Server Definition>}

<Client Declaration>

CLIENT uint

CLIENT uint {<Client Definition>}

<Server Definition>

<Client Declaration> <Server Definition>

<Host Declaration> <Server Definition>

NIL
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<Client Definition>

<Conn Declaration> <Client Definition>

<Host Declaration> <Client Definition>

NIL

<Host Declaration>

HOST string

<Conn Declaration>

CONN {<Conn Definition>}

<Conn Definition>

TYPE uint {<Type Definition>}

<Host Declaration> <Conn Definition>

Table 3.3.4-1: Simplified ACS Grammar for policy specifications. The actual ACS grammar is

defined for files and messages (passed between processes).

Each rule of the grammar consists of a variable (left justified) followed by several

variables and/or terminals that can be substituted for it19. Phrases between ‘<>’ represent

variables of the grammar, and words in bold face represent terminals. Italicized words

represent an entire class of terminals. Thus uint is the class of integers greater than or

equal to 0 (and no greater than 232). NIL means no input text. Each variable begins on a

                                                  
19 I first came across formatting grammar in this particular way after taking a class with Prof. Bill
McKeeman at Dartmouth College.
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new line. Thus if ‘<A> <B>’ is the right-hand of a rule, then it represent instructions that

take up at least two lines in a valid input file (or message).

The mediator accepts an input file if it can be parsed with the grammar given in

Table 3.3.4-1. Parsing is done ‘top-down’ in the order the file is read. A valid input file

contains 0 or more declarations at the top-level (i.e. outside of any curly braces) of the

file. Each declaration is either for a server or client. Consequently, at the top level the

grammar only permits the creation and modification of client and server objects (the

complete grammar also allows the deactivation and activation of these objects). Both

client and server declarations must begin with the appropriate keyword, and be followed

by an identification number. Optionally, these declarations may include a definition for

the object that must be between two curly braces. The definitions of both types of objects

(servers and clients) may include a host declaration, specifying the IP address of the

object.

The definition for a server may include the declaration of one or more client

objects. Similarly, the definition for a client may include the declaration of one or more

conn objects, which are specifications for the authentication policy the client must satisfy

when connecting to a given server. A conn declaration must include the definition of the

conn object between curly braces. A conn definition may also include an IP address

assignment. The IP address within a conn definition specifies the server; the client of the

conn object is already known from the scope in which the declaration occurs (conn

objects are defined within client object definitions). If the enclosing client definition is

within a server definition then the host declaration is optional; the server for the conn

object defaults to the server in which the client is being defined. This exclusion is not
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specified in the grammar in Table 3.3.3-1 but the parser will reject the input file at

runtime if it cannot resolve a server for any given connection. Appendix A presents a

more complete grammar that my implementation uses.

A conn definition must include a type definition, which is the set of arguments

and details for the particular policy. There are no rules for the variable <type definition>

in the ACS grammar because the parser does not resolve this variable. As previously

explained, the parser invokes a special parser for each specific policy type. The parser

maintains a database of parsers that it may invoke to resolve each specific policy. Thus

when the main parser encounters the ‘type’ keyword, it reads the subsequent unsigned

integer token as an index into its database of policy parsers. The specialized policy parser

will parse the type definition and return control to the main parser. The specialized parser

also returns an indication of success, if it is able to obtain a valid type definition, and

failure otherwise. Example 3.3.4-1 demonstrates the type definition for an IP-filtering

policy.

3.3.4.2 The Web Service (not implemented)

In a full-scale implementation, the web service would provide several web pages

for both administrators and network users. Administrators’ web pages would allow them

to select their resources via web-form objects (e.g. drop down boxes). Administrators

would be able to add new resources or modify the policies for those already displayed by

the website. They would also be able exclude resources from the ACS’ mediation. The

web pages would identify each policy by type (e.g. IP-Filter or VPN) and for each type

would allow the administrator to edit configurations. For example, for configuring a
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VPN’s access policy, the website would present an admin with a form to upload a

certificate and private key file that the ACS may use to establish a tunnel, and select what

type of protocol the resource required for VPN access – IPSec, IPSec/L2TP, or SSL. For

each resource, the Administrator would also be able add or drop which network users she

has authorized to access the resource, and perhaps what type of access privileges these

users may have: For example a user might have administrative access or restricted access,

etc. In this case the administrator would have to provide the ACS with a different set of

credentials for each access privilege type.

I created the ACS syntax for specifying policies in the absence of a web service.

However, I could have added the web service to my implementation by providing scripts

to translate specifications made on a web form into ACS syntax; once the web service

generates the messages, it would send these messages to the mediator the same way the

AM currently does.

Web Form Specification ACS Syntax equivalent

Prevent the ACS from mediating between

users and a particular resource

SERVER 32 DOWN

Add a server as a network resource.

Specify the name and IP address of the

server. State that the server uses SSL VPN

access control.

Upload a private key file. Upload a

certificate file (The ACS will present these

to gain access for a privileged user)

SERVER 35 {

     HOST 129.170.214.90

     TYPE VPN_SSL {

          CERT /usr/share/acs/certs/cert.pem

          KEY /usr/share/acs/secrets/key.pem

     }
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to gain access for a privileged user)

State that the resource is active (i.e. its

available to receive connections for

network users)

}

SERVER 35 UP

Authorize the ACS to mediate on behalf of

a client to obtain access to the server

defined above. The client will use the

default settings for establishing a tunnel to

the server.

CLIENT 62 {

     CONN {

               HOST 129.170.214.90

              TYPE VPN_SSL {

               }

      }

}

Table 3.3.4.2: The web service could generate ACS syntax messages from information gathered from the

web forms. The entries above are examples of this translation.

The web service would also provide web pages for network users to view their

privileges and any other relevant account information.

3.4 Putting it Together

My prototype does not include the web service component identified in the model

for this framework. Instead, specifications are made by means of a syntax that I designed

for allowing the various components to communicate. My prototype also implements the

accounting and mediating service as two separate programs: the Accounts Manager and

the mediator.

The prototype is designed as follows:
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1. The VPN services comprise of OpenVPN, Openswan, l2tpd, and ppd. When a

user connects to the VPN service, it will give the AM some identifying

information about the client (username or X.509 certificate) and current IP

address.

2. The AM looks up the id number of the user with the given identification

information (username or public key fingerprint) by querying the MySQL

database.

3. The AM constructs a message, using ACS syntax, telling the mediator that the

corresponding client object should be activated, as well as providing the user’s

current IP address.

4. With the given IP address, the mediator can add routing rules to queue certain

packets from the user’s traffic based on the destination of these packets (which

resources the client is trying to access).  These packets represent connection

attempts.

5. When the mediator detects a connection attempt (i.e. it receives a queued packet)

it establishes a connection with the resource and allows the user to access the

resource through this established connection. The mediator establishes

connections on behalf of a user based on the resource administrator’s

specifications.

6. When a network user disconnects from the ACS, the VPN components will send

another message to the AM with some identifying information for the user (in this

case an IP address). The AM looks up the user’s id with the given information and

constructs a message telling the mediator to deactivate the corresponding client
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object. The VPN services disconnect idle connections automatically so inactive

users do not remain connected to the system.

3.5 Summary

The ACS model presented in this chapter and my prototype implementation have

demonstrated the following:

1. The ACS is able to reduce unintended access denial of authorized users by

mediating connections between users and resources.

2. The ACS endeavors to maintain the security standards of the various network

resources20 because it uses VPN technology, which provides authentication,

confidentiality, and data integrity; users that benefit from the ACS are not only

authenticated but are also authorized to access the resources that the ACS enables

them to.

3. Because the ACS forms an intermediary between resources and network users, it

provides a centralized system for administrators to control access to their

resources in a way that captures the administrator’s intentions for securing the

resource. This point also suggests that resources network-wide may benefit from

new technology introduced to the ACS framework. Chapter 4 discusses how ACS

could be upgraded to work with Greenpass tools and so enable resources on the

VPN to support decentralized delegated access without further configuration.

                                                  
20 In the sense that it provides direct access to only authorized users. This does not
guarantee the integrity of the data after the host receives it; the ACS cannot vouch for the
security of the host the user is using (see Chapter 4 for further discussions)
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3.6 Concluding Remarks

My prototype deviates somewhat from the model presented at the beginning of

this chapter. This discrepancy is due to the fact that I was able to refine the model only

after considering some of the decisions and their effects on the prototype. For this reason,

the prototype could have had a single program for the accounting and mediating service.

With a single program, the service could read specifications directly from the database

service and there would be no need for a policy specification grammar; while the web

service and the accounting and mediating service would have agree on a format for

storing and retrieving specifications, this format would be a lot simpler than the ACS

syntax that my prototype currently uses.

Besides establishing a proof of concept, I embarked on implementing a prototype

as a way to better understanding what putting together a framework like the ACS would

entail. I believe that my prototype has accomplished just that.
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Chapter 4

  Discussions

This chapter answers some of the questions that arise from my implementation. I

will focus on the issues of usability, efficiency, and security, as well as discuss the

improvements to the model, which are necessary for addressing these issues. Before this,

I will explain how the ACS may be made to work with Greenpass tools for introducing

delegated access on the network.

4.1 Delegation

The ACS framework allows multiple resources to be managed centrally. In

particular, enabling the ACS framework to understand delegated access will enable all

services on the network to benefit from delegated access. The ACS model can be

upgraded to support Greenpass tools including RADIUS authentication to the VPN

service and implementing the accounting and mediating service to work with the

authentication cache. These suggestions can also be directly applied to my prototype and

sections 4.1.1 and 4.1.2 explain what modifications need to be made to enable

decentralized delegated access for network resources.
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4.1.1 Adding RADIUS-server support

1. Openswan supports Xauth . Xauth is a program used to edit and display

configuration information for connecting to an X server [Ful05]. Xauth can be

made to use PAM (Pluggable Authentication Modules), an authentication system

that controls access to Red Hat Linux [RHLb]. PAM can also be configured to use

RADIUS authentication so that client certificates can be forwarded to a RADIUS

server for validation. It should be noted that Openswan developers do not

consider the use of PAM with Xauth very safe [SWANd]; only recently, iDefense

published a buffer-overflow vulnerability in Openswan when compiled for

Xauth/PAM authentication [iDFNS05]. In light of this I hope to find an

alternative for authenticating IPSec VPN connections.

2. Linux PPP can be configured to do RADIUS authentication. This functionality is

built-in for pppd 2.4.2 and later versions [DeL02]. For earlier versions of pppd

there are plug-ins available. Because the L2TP/IPSec VPN setup uses Linux’s

pppd, configuring pppd to use a RADIUS server will provide RADIUS

authentication for the VPN connection.

OpenVPN also has a PAM plug-in that can be configured to use RADIUS. This is similar

to approach (1) above. Alternatively, the OpenVPN configuration file provides a number

of instructions that allow scripts to handle user authentication [Yon04]. These scripts can

be used to send a certificate to a RADIUS server for authentication.

4.1.2 Adding delegated-access support
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In order to extend the prototype’s service to delegated users, the AM and mediator

must be modified to understand delegated access: If the AM receives a certificate and

cannot find an id assignment for the user, for instance, then it should query the Greenpass

RADIUS server’s authentication cache [Goff04] (see section 2.4 for information about

the authentication cache). The Greenpass authentication cache API can be modified to

return entire SPKI chains for a given user’s public key. Greenpass currently does not

support delegating a subset of a user’s privileges21, however, there have been plans to

incorporate such a scheme and it is likely that the tag extensions of a guest’s SPKI chain

will convey information about delegated privileges

The prototype’s grammar can be extended to use three keywords, guest, until and

like for representing transient users and privileges. Table 4.1.1-1 shows how these

keywords would work.

Syntax Interpretation

GUEST 5 {

LIKE CLIENT 82

      UNTIL 05/01/2005 18:00:00

HOST 190.181.183.14

}

Create a client object that should be treated

as transient; it will ‘expire’ at the end of

the date given by the ‘until’ instruction.

Assign this client the IP address

190.181.183.14 and accord it all the

privileges of the client with id 82 until it

expires.

GUEST 6 { Create a transient client object that is valid

until 6pm on May 1st 2005 and with IP

address 190.181.183.15. Use specifications

for client object 82 only for connections to

a server object with IP address

129.170.253.74.

                                                  
21 It has not been necessary to do this yet since until now the only privilege in question has been network
access and a user either has it or does not
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HOST 190.181.183.15

UNTIL 05/01/2005 18:00:00

CONN {

HOST 129.170.253.74

LIKE CLIENT 82

}

}

until 6pm on May 1st 2005 and with IP

address 190.181.183.15. Use specifications

for client object 82 only for connections to

a server object with IP address

129.170.253.74.

Table 4.1.1-1: Interpretation of syntax using GUEST, UNTIL, and LIKE keywords.

The ‘guest’ keyword is much like the ‘client’ keyword introduced in Chapter 3.

The difference is that the client object created by a ‘guest’ instruction persists only until

the date and time specified by the ‘until’ instruction. After this time, the corresponding

user’s privileges expire. The client object is, therefore, transient.

The ‘like’ keyword instructs the mediator to use the specifications of some other client

object for the current client object. The other object corresponds to the delegator for the

user whose object uses the ‘like’ keyword.

The recommendations presented in this section would allow ACS to work with

Greenpass tools for delegated access. With this enhancement to the model, users will be

able to delegate their access authorization if they have delegation privileges. The end

result would be a system whereby users can grant temporary access to network resources

in a decentralized fashion.
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4.2. Usability and Efficiency

4.2.1 Handling larger client load

The ACS does not discriminate based on a user’s location, i.e. it can accept user

connections from within the VPN.  This could allow local (internal) network users to

benefit from the ACS’ services as well. Figure 4.2.1-1 shows a network topology with

internal (local) and remote users benefiting from the ACS’s services.

Figure 4.2.1-1: ACS supporting remote and local network users.

At the same time the ACS might potentially have to serve as many people as there

are network users. A network may, therefore, need to support multiple clones of the

various components; an overloaded accounting and mediating service, for instance, could

use port forwarding to reroute all connections to a less busy clone and so balance user

load.
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Large user populations may also create an inconvenience if administrators have to

add and remove users one at a time for each of their resources. Therefore, another logical

improvement to the current implementation would be to include support for user and

resource groups.

4.2.2 Increasing the protocol working set

My prototype of the ACS has been concerned with IPSec, SSL, IPSec/L2TP VPN

policies and IP-based firewall policies. These policies all control access at the network

layer (or lower). However, the ACS model does not restrict service to only network layer

access. Consequently, above the network layer (specifically at the application layer), it

might be necessary to proxy access on an application-by-application basis in order to

extend the implementations working set of policies. I currently have plans to provide a

web proxy approach to handling client-side PKI policies for web servers on the network.

I hope to have enough information about a solution, and a possible implementation,

shortly.

4.3 Security Considerations for the ACS Framework

In my research, I identified that the ACS must be secured against two primary

classes of adversaries: unauthorized network users, and malicious authorized users. The

former have no permission to access the VPN. The latter have authorization to connect to



79

the VPN but may misuse their privileges on the network. Alternatively, a malicious

network user could hijack other users’ authorizations and misuse their network privileges.

I also identified that the ACS stores two classes of sensitive information (1) Account

information for administrators and users (2) Private keys and shared secrets that belong to

the ACS. In the ACS model this sensitive information is stored with database service.

This makes the database service an integral part of the framework’s trusted computing

base (TCB) – i.e. the security policies that govern the database service determine the

reliability of sensitive information within framework.

4.3.1 Securing access to the ACS

First, a number of policies could be used for securing access from the web service

and VPN service. For instance, the web interface for administrators could require client-

side SSL authentication as well as usernames and password because client-side SSL

authentication uses PKI, which is considered more secure than server-only SSL

authentication or username-password schemes [Hos04].

Second, all network ports accessible from the less trusted network (except those for

the web server and VPN server) could be firewalled. This would leave the VPN and web

services as the only entryway for access from the less trusted network. Because both

services authenticate connections that they receive, all access from the less trusted

network to the ACS or the resources on the network would be authenticated.

Consequently, any malicious user who attacks from the less trusted network must have
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authorization, either hijacked from another user or provided by a network administrator22.

With ‘best practices’23, the probability of a malicious user hijacking another’s

authorization (by stealing their credentials or sessions) could be minimized:

• The ACS could rely more on PKI (private key and certificate) authentication than

passwords. Where passwords are used, certificates could also be required for

additional security. For example, for authenticating administrators on the web

service.

• Users should not leave open sessions idle on public machines when they are done

accessing resources. The ACS could help out by causing idle sessions to time-out

(OpenVPN and Openswan already provide this functionality).

• ‘Strong’ passwords could be used for accessing accounts on the web server; the

ACS could ensure that when users and administrators create passwords, the

chosen passwords would not be easily susceptible to dictionary attacks.

Attacks may also be initiated from within the more trusted network or by taking

control of processes within the ACS framework. Various policies could be employed to

limit such attacks as well. For instance, in order to reduce the damage that an attacker

could exact by taking control of a process, the various components of my implementation

ran at user privileges on the Linux box. For example, the MySQL database runs under

user ‘mysql’ privileges, while the web server runs as user ‘www’. This means that even if

both are compromised, they cannot be used to access a substantial amount of system

                                                  
22 In practice it is virtually impossible to claim that a system can only be compromised by some means and
not by others because the tools and capabilities of malicious network users are constantly improving.
23 ‘Best practices’ refers to security measures that are considered most effective in reducing the risk of
attacks. Even the most effective measures are not foolproof.
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resources. Additionally, on the web interface, the ACS would reduce direct interaction

with the database service by providing HTML form-objects to users. It would be the

results from these objects that would be used for database queries rather than users’

inputs.   All processes that send requests to the database service could also escape (i.e.

quote) their queries first. In my implementation, I followed a few other security measures

including removing the ‘test’ database from MySQL (this is a default database that is

usually unprotected), and configuring the server to allow ‘root’ access from only within

the host (i.e. disallowing remote ‘root’ access). There are several other best practices and

security policies for securing a database server [ISS] and any implementation of the ACS

should consider employing these.

4.3.2 Auditing network activity

The ACS framework must provide a way for administrators to audit resource

access activity. The ACS can trivially log each user’s activity because it always maintains

state on the connection of each user. Administrators could be provided with these logs,

upon request, from their web accounts. Additionally other monitoring tools can be used

to filter the logs for inconsistency and suspicious behavior so that administrators might be

notified.

4.3.3 Concerns about binding IP addresses to privileges

My prototype of the ACS authenticates a user, determines the user’s IP address

and creates rules for routing the user’s traffic based on this IP address. Similarly, the
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mediator looks up privileges based on the IP address of an access request packet that it

receives. There are a number of problems with such a design:

• In the introduction to this paper (chapter 1), I mentioned that there were packet

fragment attacks and IP spoofing schemes to thwart systems that make decisions

based on IP addresses. The current design suggests that malicious users could

employ one of above-mentioned techniques to gain access to resources for which

they did not have authorization.

• It is not clear how the ACS would differentiate between users connecting from

behind a NAT box under the current design; to the mediator, such users would

appear to have the same IP addresses.

These potential problems arise from the fact that IP addresses are not uniquely

identifying, as are public keys or usernames. Therefore, a mapping from public keys or

usernames to IP addresses loses some information about a user. If the ACS is to continue

using IP addresses for identifying users then some other information must be available

for differentiating between users with the same IP address. I have identified a number of

feasible solutions:

Approach 1:

Users connecting from behind the same NAT box usually have different source

ports associated with them. NAT boxes typically use these ports to uniquely identify each

host (see section 2.2). The ACS could associate users with both IP addresses and port

numbers as unique identification.
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This approach does not prevent a malicious user from spoofing another user’s port

number along with the IP address. However, the ACS’ VPN sever cannot correctly

maintain two tunnels with identical remote IP addresses and port numbers because it

would not know which to use for sending reply packets. It is, therefore, arguable that a

malicious user cannot successfully spoof both another user’s IP address and port number

so this approach may be adequate for uniquely identifying network users.

Approach 2:

Netfilter provides a connection-tracking module that can differentiate multiple

connections between the same endpoints. The module identifies individual connections

based on IP addresses, protocols, ports and other unique identifying information. The

module can be modified to include a unique identification number for each related

connection (i.e. all connections from the same unique user). The ACS always knows

when two users have conflicting IP addresses because two active client objects will map

to the same IP address in its database. In such a situation, the ACS could resolve conflicts

by consulting the connection-tracking module’s logs. The ACS could then determine

which user made the request from the unique identification number in the log.

Approach 3:

Netfilter can mark packets at almost every stage of a packet’s journey through the

kernel’s routing system (see section 2.3). The ACS’ VPN servers are able to uniquely

identify each user even if two users share the same IP address. VPN servers are able to do

this because each VPN protocol must necessarily use some unique identification, other
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than IP-header information, for each user’s traffic. For example, the IPSec protocol

identifies each client’s packet based on an SPI number, which is resolved before any

other header information is used. Similarly, the SSL protocol uses session ids to uniquely

identify connections. Thus, of the various components that make up the ACS, the VPN

servers can best differentiate between packets coming off the VPN tunnel. In light of this,

the servers can be patched to call Netfilter’s mark module to mark each packet based on

the identified user. The servers will communicate this mark as part of the identification

information sent to the AM. This way, the mediator can use both the IP address and the

identification mark of each packet to uniquely identify a user.

4.4 Summary

The implementation employed in this research raises a number of security,

efficiency and usability concerns. In this chapter, I have presented answers to most of the

identified concerns, with a call for further research into any that might not have been

addressed here. In many cases, these concerns are specific to the design decisions of my

current implementation and not the project’s concept (the model) itself. This suggests a

need for more rigorous analysis of each design decision and, perhaps, further research

into alternative designs for the ACS.
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Chapter 5

Related Work

5.1 Napoleon Tools

Napoleon [TOB98] is a policy specification tool for application developers.

Napoleon is built on the Role Based Access Control (RBAC) framework, and is primarily

for CORBA applications. RBAC is designed to aid administrators and developers in

specifying network-wide access control policies. Napoleon provides a set of tools that

integrate the RBAC functionality. While RBAC provides a way for defining and

controlling resource access for network users, it does not work well with legacy

applications that were not built with the RBAC model [TOB98]. Such applications

require RBAC object representation under Napoleon, and this may be sometimes

infeasible. For example, it is not trivial to create an object that captures the complete

functionality of an FTP server [TOB98].

5.2 Integrated Secure Communications System (ISCS) Project

The ISCS [Open+05] is an on-going project that aims to provide easy network

security management. The ISCS will manage firewalls, VPN tunnels, intrusion detection,

virus scanning, application proxying, and user authentication. It currently manages some
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but not all of these security features. The ISCS is not a security tool itself; instead it is a

management system for other open source security tools. Currently, the underlying tools

used are Openswan, Freeswan, Strongswan, iptables, OpenCA, Linux Advanced Routing,

OpenSSH, the ISC DHCP server, and the Strongsec DHCP relay. Because of its

integrated environment and centralized control to network security, measurements show

that the ISCS can cause as much as a 90% reduction in the time taken to configure a

network-wide security system.

The ISCS provides a GUI24 Security Policy Manager (SPM). The GUI allows

administrators to write high-level security policies that are translated into low-level rules

used in firewalls, at VPN gateways, etc.  The SPM maintains a database of Accessors

(users) and Accessor Groups on one hand, and Resources and Resource Groups on the

other. High-level administrative policies define how Accessor and Accessor Groups may

access Resources and Resource Groups [Sull04]. The project is fairly new; pre-alpha

releases for ISCS have been available since August 2004 and one white paper is available

on line [Open+05]. No full release is available at the time of writing this paper.

The ISCS promises to provide some of the same services as the ACS:

(1) Both provide a centralized solution for resource administrators to specify policies for

multiple resources.

(2) Both identify resources on one hand, and users on the other, and allow many-to-many

mappings between these sets, where the mappings are access control specifications.

(3) Both can provide more modern and technologically superior security to legacy

systems that may have little or no security at all.

                                                  
24 GUI stands for Graphical User Interface.
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The fundamental differences lie in the focuses of the two projects: The ACS aims

to make access control management easier for administrators, with an emphasis on

facilitating accessibility for users (even where advanced security is employed). The ISCS

aims at making it easier for administrators to configure policies for large numbers of

security tools, with a focus on allowing corporations to integrate their networks in the

event of mergers, partnerships, and acquisitions. The ISCS project appears to target

businesses more than any other institutional field, identifying that network security

systems of growing businesses undergo large modifications and frequent changes.

Additionally, the ACS allows decentralized network access management: Different

administrators can specify policies on it that affect only their resources. The ISCS does

not provide this kind of decentralized management. Because of this and the differing

focus of the project’s objectives, the ISCS cannot directly provide solutions to the issues

of network accessibility that the ACS seeks to address.

5.3 Globus Project

The Globus Alliance is a consortium of organizations and individuals developing

fundamental technologies for the “Grid” [Glob05].  The Grid is a distributed computing

infrastructure that enables coordinated resource sharing and problem solving among users

across corporate, institutional, and geographic boundaries without sacrificing local

autonomy [FKT01] [Fos02].  The Globus Alliance makes all its technology available in

the form of the Globus Toolkit. The Toolkit provides a framework for building Grid
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applications by providing basic mechanism of communication, security, and data access

[FKT97]. It currently contains C and Java libraries, as well as Java and Python web

services, for resource monitoring, discovery, and management. The toolkit also provides

tools for security and file management across networks.

The Globus project introduced X.509 Proxy Certificates [WFK+04] as part of its

security infrastructure. Proxy Certificates are similar, in structure, to regular X.509

certificates; the main difference is that an end user of a regular X.509 can be the issuer of

a proxy certificate. This allows users to delegate privileges to other users, machines and

services.

The Globus toolkit and Proxy Certificates provide a means for privilege

delegation but do not work with legacy network systems that cannot process Proxy

certificates. In the absence of other infrastructure, therefore, the toolkit cannot provide

solutions to the issues of network access control that this research identifies.

5.4 Now User Filtering Works (NuFW) Project

NuFW is an authentication firewall software suite for Linux [NuFW]. The suite is

built on top of the Linux Netfilter package (see Chapter 2), and uses the connection-

tracking capabilities at its core. NuFW provides authentication for each connection to a

machine. It identifies new connections using the connection-tracking module, and so can

differentiate between sessions, and multiple users from the same host or from behind a
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common NAT device. This functionality may enhance security of most firewall systems

that discriminate solely based on IP addresses.

While the suite can provide added security to a gateway, it does not provide any

policy-configuration benefits to administrators. Neither does it appear to enhance

network accessibility. Additionally, the NuFW suite does not work well with destination

network address translation.
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Chapter 7

Conclusion

This research has considered several issues regarding VPN access control and

managing multiple resources on a network. As a solution to these problems, this research

offers an access control framework that facilitates VPN user access as well as providing

centralized management for network resources. At the same time this framework, called

the Access Control Service (ACS), provides a means by which legacy access control

systems network-wide can benefit from newer access control technology (such as

decentralized delegated access) with minimal modification. As a proof of concept for the

functionality of the framework, this research also presented a prototype that successfully

facilitates VPN user access to resources using firewall and VPN access control.  The

prototype has also served to refine the model for the ACS framework.

A number of concerns about the current implementation have been raised in this

paper, but for each of these the research presented here has offered a practical solution.

Additionally, this work has identified ways of improving the framework while inviting

more research on the identified issues of VPN access control, as well as the solution

presented by the Access Control Service.
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Appendix A

The Complete ACS Grammar

This appendix gives the ACS grammar currently in use by my implementation.

The input may be a file or a message received on the mediators dedicated port. A

message or file is considered ‘valid’ if it contains one or more object declarations at the

top level (outside of any curly braces). The complete grammar includes syntax for

activating or deactivating client and server objects (using UP or DOWN keywords after

identifying the object).

The complete ACS grammar also enforces that a conn object declared within a

client that is defined at the top level of an input must include an IP address assignment

for the server on the other end of that connection.

In this grammar, a server object may include a type declaration. This allows an

administrator to specify a template by which future conn objects can be created for clients

authorized to access the particular resource (the resource corresponding to the server

object).

<Input>

<Declarations>

<Declarations>

<Server Declaration> <Declarations>

<Client Declaration Sans Server> <Declarations>

<Server State Change> <Declarations>
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<Client State Change> <Declarations>

NIL

<Server Declaration>

Server uint

Server uint {<Server Definition>}

<Server State Change>

Server uint up

Server uint down

<Client State Change>

Client uint up

Client uint down

<Client Declaration>

Client uint

Client uint {<Client Definition>}

<Client Declaration Sans Server>

Client uint

Client uint {<Client Definition Sans Server>}

<Server Definition>

<Client Declaration> <Server Definition>

<Host Declaration> <Server Definition>

Type uint {<Type Definition>} <Server Definition>

NIL

<Client Definition>

<Conn Declaration> <Client Definition>
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<Host Declaration> <Client Definition>

NIL

<Client Definition Sans Server>

<Conn Declaration Sans Server> <Client Definition Sans Server>

<Host Declaration> <Client Definition Sans Server>

NIL

<Host Declaration>

Host string

<Conn Declaration>

Conn {<Conn Definition>}

<Conn Declaration Sans Server>

Conn {<Conn Definition Sans Server>}

<Conn Definition>

Type uint {<Type Definition>}

<Host Declaration> <Conn Definition>

<Conn Definition Sans Server>

<Host Declaration> <Conn Definition>
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Glossary

26sec – The native IPSec module of the 2.6 family (2.6.x) of Linux kernels.

ATM – Stands for Asynchronous Transfer Mode. This is a network architecture that uses

fixed-length units (53-byte frames) for data transmission. Because ATM frames are

fixed-length they can be processed quickly. This allows ATM to be used for data transfer

that where speed is a priority (e.g. Audio and Video data).

AH – Stands for Authentication Header. The AH protocol encrypts the payload and some

fields in the header of a packet. It provides integrity for an IPSec packet.

Buffer-Overflow – When a computer program receives input it typically writes this in a

buffer before working on it. Because buffers are fixed chunks of memory, a program that

does not correctly check the size of its input can write beyond the end of a buffer and into

other regions in memory. This scenario is called buffer-overflow. Well-crafted buffer-

overflows can cause a program to write new instructions into its memory that can be

executed later.

CHAP – Stands for Challenge Handshake Authentication Protocol. CHAP is a standard

for verifying a user’s identity much like PAP. Unlike PAP, CHAP uses encryption for the

username and password by sending the user an encryption key before any further

information is exchanged. CHAP may periodically request re-authentication to ensure

that the user at the other end of the connection has not changed.

CORBA – Stands for Common Object Request Broker Architecture. CORBA is a

specification for an architecture by which applications may communicate in a distributed

computing environment.

Datagram – See Frame.
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DSN – Stands for Dedicated Secure Network. This is a synonym for a leased line.

EAP – Stands for Extensible Authentication Protocol. EAP is a standard used for

transmitting access requests and credentials between devices. EAP provides a framework

by which one device may select certain security parameters (e.g. which encryption

algorithm to use) for communicating with another device. It also supports the

transmission of simple messages to indicate acceptance or rejection. For example, a

wireless device may request network access from an Access Point using EAP, and

receive a ‘success’ or ‘failure’ decision for the request. Similarly, using EAP, one server

may forward an access request to a remote server for authentication and approval.

ESP – Stands for Encapsulation Security Payload. The ESP protocol offers encryption

for the payload of an IPSec packet. It optionally offers integrity if the entire underlying IP

packet is encrypted rather than just the transport-layer data (TCP, UDP, etc).

Eth0 – The name of given to one of the Ethernet network interface cards (NICs) in Linux

systems. Other cards may be assigned eth1, eth2, etc.

Fedora – A distribution of Linux. See http://fedora.redhat.com.

Firewall – A firewall is a set of rules that a device uses to make decisions about packets

based on network-layer information.

Frame – A unit of data transmitted across a network. Depending on the network

protocol, a frame may also be called a ‘packet’ or a ‘datagram’.

Frame Relay – A fast data transfer protocol. Frame Relay avoids accounting and error

checking of data in favor of increased throughput. It is based on X.25 technology but is

not restricted to analog circuitry.
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Freeswan – An IPSec VPN server implementation for Linux. The project has been

discontinued. Openswan and Strongswan have succeeded Freeswan. See

http://www.freeswan.org

GUI – Stands for Graphical User Interface. It usually refers to all that part of an

application that includes windows, buttons, etc, and responds to mouse clicks and key

presses as input to the application.

HTML – Stands for Hyper Text Markup Language. HTML defines parameters (called

tags) for formatting documents displayed in a web browser.

HTTP – Stands for Hyper Text Transfer Protocol. This is the standard used by the World

Wide Web for requesting and transmitting documents over the Internet.

ICMP – Stands for Internet Control Message Protocol. ICMP is used for communicating

errors and control messages. These control messages are typically information about the

state of a host or a connection. Some common ICMP control messages are the echo-

request and echo-reply messages. A host sends an ICMP echo-request to determine if

another host is available on the network. The site that receives this message responds

with an echo-reply in acknowledgment.

IETF – Stands for Internet Engineering Task Force. The IETF is an open international

community of network users, organizations, and researchers that is responsible for the

technical management of the Internet. The community publishes standards for protocols

and best practices as RFCs.

IP – Stands for Internet Protocol. IP is a protocol that network-layer devices us to

communicate. Under this protocol, a packet is divided into two main parts, a header and a

payload. The header contains information such as the source and destination addresses of

the packet, as well as the payload length. The payload is the actual data that the packet

transmits.
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IP Filter – This is a policy that makes decisions based on the header information of an IP

packet.

IPSec – Stands for Internet Protocol Security. This describes a standard for tunneling and

encrypting IP packets using two protocols, AH and ESP.

Ipsec0 – the name of the virtual interface assigned to the first IPSec tunnel created in a

Linux system. It may also correspond to eth0. Subsequent tunnels may be assigned

‘ipsec1’, ‘ipsec2’, etc. Linux kernels using 26sec do not provide this interface.

Iptables – A Linux application for controlling the Kernel’s routing mechanism. Iptables

was created as part of the Netfilter project.

Kerberos – A network authentication protocol developed at the Massachusetts Institute

of Technology (MIT). Under Kerberos, a user is authenticated by a trusted third-party

and issued a ticket as proof of authentication. All servers that recognize the third party

will honor this ticket.

KLIPS – Stands for KerneL Internet Protocol Security.  KLIPS is a module, distributed

as part of FreeSwan, which provides kernel support for IPSec on Linux kernel versions

earlier than 2.6.

L2F – Stands for Layer 2 Forwarding. L2F is a standard that Cisco Systems® developed

for tunneling link-layer (layer 2) frames over a point-to-point connection.

L2TP – Stands for Layer-2 Tunneling Protocol. L2TP is an IETF standard that combines

PPTP and L2F.
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LAC – Stands for Layer-2 Tunneling Protocol Access Concentrator. As part of the L2TP

standards, a LAC is a server that tunnels PPP datagrams to another server for

authentication.

LAN – Stands for Local Area Network. A LAN is a cluster of devices that covers a small

geographical area (such as a room or building) where communication between these

devices is not done over the Internet.

Leased Line – Private physical network infrastructure that is managed by an ISP for its

customers. This infrastructure usually comprises of cable, routers, and optical fiber.

LNS – Stands for Layer-2 Tunneling Protocol Network Sever. As part of the L2TP

standards, the LNS receives tunneled PPP datagrams for authentication.

Masquerade – This is a form of Network Address Translation, also called ‘many-to-one

NAT,’ where multiple devices with different IP addresses are made to appear as if

sharing the same IP address.

MS-CHAP – Stands for Microsoft Challenge Handshake Authentication Protocol. MS-

CHAP is Microsoft’s implementation of CHAP.

NAT – Stands for Network Address Translation. This is a mapping of the fields of a

packet header to another set of fields in which a subset of the source, destination, or port

addresses of the original packet is changed.

Netfilter – An open source project for Linux that provides a framework for managing

firewalls, network address translation, and packet mangling. See http://www.netfilter.org.

Network Address Translation – See NAT.

Network Interface Card – See NIC.
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NIC – Stands for Network Interface Card. A NIC is a device that serves as a computer’s

interface to a network; it is the first part of the computer to receive packets from the

network and the last part to handle packets before they are sent off onto the network.

Openswan – A successor of Freeswan. A company called Xelerance actively maintains

Openswan. See http://www.openswan.org

OpenVPN – An SSL VPN server implementation for Linux, Windows and Mac OS X.

See http://openvpn.net

Packet – See Frame.

PAM – Stands for Pluggable Authentication Modules. PAM is an authentication system

that controls access to Linux.

PAP – Stands for Password Authentication Protection. PAP is a method of verifying a

user’s identity by transmitting a username and password over the Internet to be compared

with a stored username and password on another machine. The username and password is

transmitted unencrypted.

PKI – Stands for Public Key Infrastructure. It is a system that defines a number of

entities (end-users, principals, trusted authorities, and issuers), and provides a framework

for identifying these entities, maintaining confidentiality, and verifying the integrity of

data.

End-User – The entity that owns a key-pair (public and private key), and a

certificate containing this public key.

Principal – The entity that signs some data with a key.

Trusted

Authority – The entity that endorses an end-user’s certificate.

Issuer – The entity that gives an end user a certificate.
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The system uses structures such as certificates, and revocation lists as part of this

framework.

POP – Stands for Point of Presence. It is the first device (switch, AP, router, etc) on a

network to which a user connects even before authenticating with the network’s gateway.

PPP – Stands for Point-to-Point Protocol. PPP is a standard for creating and running

network protocols over a dial-up connection (e.g. modem cable, telephones lines or any

other serial links).

PPTP – Stands for Point-to-Point Tunneling Protocol. PPTP is a tunneling standard,

invented by Microsoft®, which encapsulates PPP in other networking protocols such as

IP.

Process – If a computer program is a set of instructions that a computer can execute then

a process is an execution of that program. As this definition suggests, a computer can

usually create many processes from one program.

Python – An open source object-oriented interpreted language. Python can be interpreted

in most of the common platforms.

RADIUS – Stands for Remote Authentication Dial In User Service. RADIUS is an

authentication, accounting, and authorization protocol for network access.

RFC – Stands for Request For Comments. The RFCs are a series of documents covering

issues concerning the Internet and its usage. The IETF is responsible for gathering and

published these documents.

SA – Stands for Security Association. A security association is a relationship between

two or more entities (i.e. devices, processes, etc) that defines how each entity will use
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security parameters (e.g. number of bits for encryption) and services (i.e. encryption,

hashing, and padding algorithms) to communicate securely.

SDSI/SPKI – Stands for Simple Distributed Security Infrastructure / Simple Public Key

Infrastructure. SDSI/SPKI is a certificate standard that was developed to overcome some

of the shortcomings of X.509. The SDSK/SPKI standard includes support for delegation

and certificate chains.

SSL – Stands for Secure Socket Layer. The SSL protocol defines a method for

authenticating one end of a connection (or optionally both), establishing a number of

shared secrets, and encrypting data between both end-points for the duration of the

connection.

Strongswan – A successor to Freeswan. The Strongswan project differs from the

Openswan project in its goals; Strongswan focuses more on using strong security

authenticating IPSec connections. For this reason Strongswan provides more

sophisticated PKI capabilities than Openswan. See http://strongswan.org.

TCP – Stands for Transmission Control Protocol. The protocol provides a means for

guaranteeing that IP packets are not only delivered, but that these packets are received in

the correct order. The TCP header also allows the specification of source and destination

ports.

TCB – Stands for Trusted Computing Base. The TCB includes all components of a

system that have policies for securing sensitive information that the system uses.

TLS – Stands for Transport Layer Security. The TLS protocol is the IETF’s standard for

SSL.

UDP – Stands for User Datagram Protocol. Unlike TCP, UDP does not provide

confirmation on the receipt of an IP packet. Neither does it guarantee that packets are
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received in the correct order. Like TCP, UDP also provides port specification in its

header.

VLAN – Stands for Virtual Local Area Network. A VLAN is much like a LAN with the

exception that the devices on the network are not necessarily in proximity with one

another (i.e. there are no geographical constraints).

X.25 – A data transmission protocol for analog circuitry. The Consultative Committee on

International Telephone and Telegraph (CCITT) developed the X.25 standard.

X.509 - A digital certificates standard developed by the International

Telecommunications Union (ITU).

X server – This is the part of the X Windowing System that interacts with the graphics

hardware to draw windows and receive input from the user on behalf of an application.

X Windowing System – This is a windowing system found on most modern operating

systems. It is used for bitmap display by interfacing with the graphics hardware on behalf

of applications. The system is commonly used over networks with an application running

on one machine but its graphical output appearing on another machine.
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