Contents

Preface xiii

I Foundations

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>The Role of Algorithms in Computing</td>
<td>5</td>
</tr>
<tr>
<td>1.1</td>
<td>Algorithms</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Algorithms as a technology</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>Getting Started</td>
<td>17</td>
</tr>
<tr>
<td>2.1</td>
<td>Insertion sort</td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>Analyzing algorithms</td>
<td>25</td>
</tr>
<tr>
<td>2.3</td>
<td>Designing algorithms</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>Characterizing Running Times</td>
<td>49</td>
</tr>
<tr>
<td>3.1</td>
<td>O-notation, Ω-notation, and Θ-notation</td>
<td>50</td>
</tr>
<tr>
<td>3.2</td>
<td>Asymptotic notation: formal definitions</td>
<td>53</td>
</tr>
<tr>
<td>3.3</td>
<td>Standard notations and common functions</td>
<td>63</td>
</tr>
<tr>
<td>4</td>
<td>Divide-and-Conquer</td>
<td>76</td>
</tr>
<tr>
<td>4.1</td>
<td>Multiplying square matrices</td>
<td>80</td>
</tr>
<tr>
<td>4.2</td>
<td>Strassen’s algorithm for matrix multiplication</td>
<td>85</td>
</tr>
<tr>
<td>4.3</td>
<td>The substitution method for solving recurrences</td>
<td>90</td>
</tr>
<tr>
<td>4.4</td>
<td>The recursion-tree method for solving recurrences</td>
<td>95</td>
</tr>
<tr>
<td>4.5</td>
<td>The master method for solving recurrences</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>* Proof of the continuous master theorem</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>* Akra-Bazzi recurrences</td>
<td>115</td>
</tr>
</tbody>
</table>
5 Probabilistic Analysis and Randomized Algorithms 126
5.1 The hiring problem 126
5.2 Indicator random variables 130
5.3 Randomized algorithms 134
* 5.4 Probabilistic analysis and further uses of indicator random variables 140

II Sorting and Order Statistics

Introduction 157

6 Heapsort 161
6.1 Heaps 161
6.2 Maintaining the heap property 164
6.3 Building a heap 167
6.4 The heapsort algorithm 170
6.5 Priority queues 172

7 Quicksort 182
7.1 Description of quicksort 183
7.2 Performance of quicksort 187
7.3 A randomized version of quicksort 191
7.4 Analysis of quicksort 193

8 Sorting in Linear Time 205
8.1 Lower bounds for sorting 205
8.2 Counting sort 208
8.3 Radix sort 211
8.4 Bucket sort 215

9 Medians and Order Statistics 227
9.1 Minimum and maximum 228
9.2 Selection in expected linear time 230
9.3 Selection in worst-case linear time 236

III Data Structures

Introduction 249

10 Elementary Data Structures 252
10.1 Simple array-based data structures: arrays, matrices, stacks, queues 252
10.2 Linked lists 258
10.3 Representing rooted trees 265
11 Hash Tables 272
 11.1 Direct-address tables 273
 11.2 Hash tables 275
 11.3 Hash functions 282
 11.4 Open addressing 293
 11.5 Practical considerations 301

12 Binary Search Trees 312
 12.1 What is a binary search tree? 312
 12.2 Querying a binary search tree 316
 12.3 Insertion and deletion 321

13 Red-Black Trees 331
 13.1 Properties of red-black trees 331
 13.2 Rotations 335
 13.3 Insertion 338
 13.4 Deletion 346

IV Advanced Design and Analysis Techniques

 Introduction 361

14 Dynamic Programming 362
 14.1 Rod cutting 363
 14.2 Matrix-chain multiplication 373
 14.3 Elements of dynamic programming 382
 14.4 Longest common subsequence 393
 14.5 Optimal binary search trees 400

15 Greedy Algorithms 417
 15.1 An activity-selection problem 418
 15.2 Elements of the greedy strategy 426
 15.3 Huffman codes 431
 15.4 Offline caching 440

16 Amortized Analysis 448
 16.1 Aggregate analysis 449
 16.2 The accounting method 453
 16.3 The potential method 456
 16.4 Dynamic tables 460
V Advanced Data Structures

17 Augmenting Data Structures 480
 17.1 Dynamic order statistics 480
 17.2 How to augment a data structure 486
 17.3 Interval trees 489

18 B-Trees 497
 18.1 Definition of B-trees 501
 18.2 Basic operations on B-trees 504
 18.3 Deleting a key from a B-tree 513

19 Data Structures for Disjoint Sets 520
 19.1 Disjoint-set operations 520
 19.2 Linked-list representation of disjoint sets 523
 19.3 Disjoint-set forests 527
 ★ 19.4 Analysis of union by rank with path compression 531

VI Graph Algorithms

20 Elementary Graph Algorithms 549
 20.1 Representations of graphs 549
 20.2 Breadth-first search 554
 20.3 Depth-first search 563
 20.4 Topological sort 573
 20.5 Strongly connected components 576

21 Minimum Spanning Trees 585
 21.1 Growing a minimum spanning tree 586
 21.2 The algorithms of Kruskal and Prim 591

22 Single-Source Shortest Paths 604
 22.1 The Bellman-Ford algorithm 612
 22.2 Single-source shortest paths in directed acyclic graphs 616
 22.3 Dijkstra’s algorithm 620
 22.4 Difference constraints and shortest paths 626
 22.5 Proofs of shortest-paths properties 633
23 All-Pairs Shortest Paths 646
 23.1 Shortest paths and matrix multiplication 648
 23.2 The Floyd-Warshall algorithm 655
 23.3 Johnson’s algorithm for sparse graphs 662
24 Maximum Flow 670
 24.1 Flow networks 671
 24.2 The Ford-Fulkerson method 676
 24.3 Maximum bipartite matching 693
25 Matchings in Bipartite Graphs 704
 25.1 Maximum bipartite matching (revisited) 705
 25.2 The stable-marriage problem 716
 25.3 The Hungarian algorithm for the assignment problem 723

VII Selected Topics

Introduction 745

26 Parallel Algorithms 748
 26.1 The basics of fork-join parallelism 750
 26.2 Parallel matrix multiplication 770
 26.3 Parallel merge sort 775

27 Online Algorithms 791
 27.1 Waiting for an elevator 792
 27.2 Maintaining a search list 795
 27.3 Online caching 802

28 Matrix Operations 819
 28.1 Solving systems of linear equations 819
 28.2 Inverting matrices 833
 28.3 Symmetric positive-definite matrices and least-squares approximation 838

29 Linear Programming 850
 29.1 Linear programming formulations and algorithms 853
 29.2 Formulating problems as linear programs 860
 29.3 Duality 866

30 Polynomials and the FFT 877
 30.1 Representing polynomials 879
 30.2 The DFT and FFT 885
 30.3 FFT circuits 894
31 Number-Theoretic Algorithms 903
31.1 Elementary number-theoretic notions 904
31.2 Greatest common divisor 911
31.3 Modular arithmetic 916
31.4 Solving modular linear equations 924
31.5 The Chinese remainder theorem 928
31.6 Powers of an element 932
31.7 The RSA public-key cryptosystem 936
31.8 Primality testing 942

32 String Matching 957
32.1 The naive string-matching algorithm 960
32.2 The Rabin-Karp algorithm 962
32.3 String matching with finite automata 967
32.4 The Knuth-Morris-Pratt algorithm 975
32.5 Suffix arrays 985

33 Machine-Learning Algorithms 1003
33.1 Clustering 1005
33.2 Multiplicative-weights algorithms 1015
33.3 Gradient descent 1022

34 NP-Completeness 1042
34.1 Polynomial time 1048
34.2 Polynomial-time verification 1056
34.3 NP-completeness and reducibility 1061
34.4 NP-completeness proofs 1072
34.5 NP-complete problems 1080

35 Approximation Algorithms 1104
35.1 The vertex-cover problem 1106
35.2 The traveling-salesperson problem 1109
35.3 The set-covering problem 1115
35.4 Randomization and linear programming 1119
35.5 The subset-sum problem 1124

VIII Appendix: Mathematical Background

Introduction 1139

A Summations 1140
A.1 Summation formulas and properties 1140
A.2 Bounding summations 1145
Contents

B Sets, Etc. 1153
 B.1 Sets 1153
 B.2 Relations 1158
 B.3 Functions 1161
 B.4 Graphs 1164
 B.5 Trees 1169

C Counting and Probability 1178
 C.1 Counting 1178
 C.2 Probability 1184
 C.3 Discrete random variables 1191
 C.4 The geometric and binomial distributions 1196
 ★ C.5 The tails of the binomial distribution 1203

D Matrices 1214
 D.1 Matrices and matrix operations 1214
 D.2 Basic matrix properties 1219

Bibliography 1227
Index 1251