
Using the clrscode3e Package in LATEX 2"

Thomas H. Cormen
thc@cs.dartmouth.edu

February 20, 2018

1 Introduction

This document describes how to use the clrscode3e package in LATEX 2" to typeset pseudocode in the
style of Introduction to Algorithms, Third edition, by Cormen, Leiserson, Rivest, and Stein (CLRS 3/e) [1].
You use the commands1 in the same way we did in writing CLRS 3/e, and your output will look just like the
pseudocode in the text.

2 Setup

To get the clrscode3e package, download http://www.cs.dartmouth.edu/�thc/clrscode/clrscode3e.sty,
and put it where it will be found when you run LATEX 2". To use the package, include the following line in
your source file:

\usepackage{clrscode3e}

The clrscode3e package itself includes the line

\RequirePackage{graphics} % needed for \scalebox command

This line is necessary in order to get the right spacing for the == symbol that we use for equality tests.
Therefore, you will need to have the graphics package installed and available on your system.

3 Typesetting names

Pseudocode in CLRS 3/e uses four types of names: identifiers, procedures, constants, and fixed functions.
We provide commands \id, \proc, \const, and \func for these names. Each of these commands
takes one argument, which is the name being typeset. These commands work both in and out of math mode.
When used in math mode, and when the name given as an argument contains a dash, the dash is typeset as
a hyphen rather than as a minus sign.

1We use the term “command” rather than “macro” throughout this document, though “macro” would work just as well.

1

Identifiers: Use identifiers for variable names of more than one character. When a variable name is just a
single character, e.g., the identifier j in line 1 of INSERTION-SORT on page 18, we just typeset it in
math mode rather than using the \id command: j.

Do not typeset identifiers consisting of two or more characters, e.g., the variable key in line 2
of INSERTION-SORT, in this way. (See page 51 of Lamport [2].) Although LATEX 2" provides
the \mathit command for typesetting multiletter identifiers, use our \id command instead:
\id{key}, rather than \mathit{key} or—horrors!—key. Since the \id command may
be used both in and out of math mode, the source text

Line˜5 uses the variable \id{key} in the test $A[i] > \id{key}$.

will produce

Line 5 uses the variable key in the test AŒi� > key.

To see how a dash turns into a hyphen, consider line 1 of FIND-MAX-CROSSING-SUBARRAY on
page 71. It contains the variable left-sum. Typesetting this variable name by \id{left-sum}
produces a hyphen in the identifier, but typesetting it by \mathit{left-sum} would produce
left � sum, with a minus sign—rather than a hyphen—in the identifier.

Procedures: For procedure names, use the \proc command. It typesets procedure names in small caps,
and dashes (which occur frequently in our procedure names) are typeset as hyphens. Thus, the source
\proc{Insertion-Sort} produces INSERTION-SORT. Since you can use the \proc command
both in and out of math mode, the source text

We call \proc{Insertion-Sort} with an array A, so that the
call is $\proc{Insertion-Sort}(A)$.

will produce

We call INSERTION-SORT with an array A, so that the call is INSERTION-SORT.A/.

Constants: We typeset constants such as NIL, TRUE, and RED in small caps with the \const command,
e.g., \const{nil}, \const{true}, and \const{red}. The \const command typesets a
dash within a constant name as a hyphen, so that, as on page 409, \const{no-such-path} will
produce NO-SUCH-PATH.

Fixed functions: We typeset the names of fixed functions in plain old roman with the \func command,
e.g., level and out-degree. By a “fixed function,” we mean a function that is a specific, given function.
For example, the sin function is typically typeset in roman; sin x looks right, but wouldn’t sin x look
strange? Yet, on page 44, ‚.g.n// looks right, but ‚.g.n// would look wrong, since g is a variable
that stands for any one of a number of functions.

As with the other commands for names, a dash within a function name will typeset as a hyphen, so
that \func{out-degree} will produce out-degree rather than out � degree. Note that LATEX 2"
provides commands for many fixed functions, such as sin and log; Table 3.9 on page 44 of Lamport
[2] lists these “log-like” functions.

2

4 Typesetting object attributes

In the first two editions of the book, we used square brackets for object attributes. For example, we repre-
sented the length of an array A by lengthŒA�. Based on requests from readers, we switched to the object-like
dot-notation in the third edition, so that we now denote the length of array A by A: length.

You might think that you could typeset A: length by $A.\id{length}$, but that would produce
A:length, which has not quite enough space after the dot. Therefore, we created a set of commands to
typeset object attributes. Each one may be used either in or out of math mode.

Most of the time, we use the \attrib command, which takes two arguments: the name of the object
and the name of the attribute. Let’s make a couple of definitions:

� An i-string is a string that you would use in an \id command, typically one or more non-Greek
letters, numerals, or dashes.

� An x-string is a string that you would not use in an \id command, typically because it has a subscript
or one or more Greek letters.

� As a special, and very common, case, a single non-Greek letter can count as either an i-string or an
x-string.

The \attrib command works well when the object name is an x-string and the attribute name is an i-string.
For example, to produce A: length, use \attrib{A}{length}. Here, we treat the object name, A, as an
x-string. The attribute name, length, is of course an i-string.

If all your objects are x-strings and all your attributes are i-strings, then the \attrib command will
be all you need. We provide several other commands for other situations that arose when we produced
CLRS 3/e.

The four basic attribute commands are \attribxi, \attribxx, \attribii, and \attribix.
Each takes two arguments: the object name and the attribute name. The last two letters of the command
name tell you what type of strings the arguments should be. The next-to-last letter tells you about the object
name, and the last letter tells you about the attribute name. i indicates that the argument will be treated as an
\id, in which case the command calls the \id command and also puts the right amount of space between
the argument and the dot.

� You may use \attribxi precisely when you would use \attrib. In fact, \attrib is just a call
to \attribxi.

� Use \attribxx when both the object name and attribute names are x-strings. For example, you
would use \attribxx if the attribute name has a subscript, so that to produce y:ci , you would
use \attribxx{y}{c_i}. Another situation in which you would use \attribxx is when the
attribute name is a Greek letter: to produce v:� , use \attribxx{v}{\pi}.

� If both the object name and attribute name are i-strings, then you should use \attribii. For
example, \attribii{item}{key} produces item :key, and \attribii{prev-item}{np}
produces prev-item :np.

� If the object name is an i-string and the attribute name is an x-string, then use \attribix. (We
never had this situation arise in CLRS 3/e.) But if we had wanted to produce item :� , we would have
used \attribix{item}{\pi}.

3

For convenience, the clrscode3e package also contains commands for cascading attributes, such
as x: left:size. These commands string together calls to the appropriate \attribxi and \attribxx
commands. The number of arguments they take depends on how many attributes you are stringing together.

� When you have two attributes, use \attribb, which takes an object name and two attribute names:
\attribb{x}{left}{size} produces x: left:size. This command assumes that the object name
is an x-string and both attribute names are i-strings.

� For three attributes, use \attribbb, which takes an object name (an x-string) and three object
names (i-strings): to produce y:p: left:size, use \attribbb{y}{p}{left}{size}.

� For four attributes, use \attribbbb, which is like \attribbb but with one additional attribute
tacked on. We never needed to use this command in CLRS 3/e.

� The \attribbxxi command is for one level of cascading where the first attribute given is an
x-string. For example, \attribbxxi{x}{c_i}{n} produces x:ci :n.

If your cascading attributes do not fit any of these descriptions, you’ll have to roll your own command
from the \attribxx and \attribxi (or \attrib) commands. For example, suppose you want to
produce x: left:keyi. Because it has a subscript, keyi is an x-string, and so you should not use \attribb.
Instead, use \attribxx{\attribxi{x}{left}}{\id{key_i}}. (You could replace the call of
\attribxi by a call of \attrib.) Note that this call treats keyi as an attribute of x: left, which is correct,
rather than treating left :keyi as an attribute of x, which is not correct.

Edges of a graph can have attributes, too, and the clrscode3e package provides two commands for
attributes of edges. These commands assume that the edges are of the form .u; v/, where the vertices u

and v are x-strings. They take three parameters: the two vertices that define the edge and the name of the
attribute.

� When the attribute name is an i-string, use \attribe. For example, to produce .u; v/:c, use
\attribe{u}{v}{c}.

� When the attribute name is an x-string, use \attribex. For example, to produce .u; v/:c0, use
\attribex{u}{v}{c’}.

5 Miscellaneous commands

The clrscode3e package contains three commands that don’t really fit anywhere else, so let’s handle
them here. All three must be used in math mode.

� We denote subarrays with the “: :” notation, which is produced by the \twodots command. Thus,
the source text $A[1 \twodots j-1]$ will produce AŒ1 : : j � 1�.

� We use the \gets command for the assignment operator. For example, line 4 of INSERTION-SORT

on page 18 is $i \gets j - 1$, producing i D j � 1.

� We use the \isequal command to test for equality with the == symbol. For example, line 1 of
FIND-MAXIMUM-SUBARRAY on page 72 contains the test high == low, which we get by typesetting
$\id{high} \isequal \id{low}$.

4

You might wonder why we bother with the \gets command when we could just typeset an equals sign
directly. The answer is that in the first two editions of Introduction to Algorithms, we used a different symbol
(a left arrow) for the assignment operator, and it made sense to use a command for that. Many readers told
us that they preferred to use an equals sign for assignment—as many programming languages use—and so
we made this change for the third edition. But it’s a good idea to continue using the \gets command so
that we can easily change our assignment operator should we desire to do so in the future.

Once we decided to use the equals sign for assignment, we could no longer use it for equality tests. We
created the \isequal command for equality tests, and we decided to base it on the double equals sign used
for equality tests in C, C++, and Java. Typesetting it as == in math mode produces DD, which is too wide
for our tastes. Our \isequal command calls the \scalebox command from the graphics package
to narrow the symbol, and it puts a nice amount of space between the equals signs: ==.

6 The codebox environment

We typeset pseudocode by putting it in a codebox environment. A codebox is a section of code that does
not break across pages.

Contents of a codebox

Each procedure should go in a separate codebox, even if you have multiple procedures appearing consec-
utively. The only possible reason I can think of to put more than one procedure in a single codebox is to
ensure that the procedures appear on the same page. If you really need your procedures to appear on the
same page, then you should consider using other means in LATEX 2", such as the minipage environment.
Moreover, if you have written your procedures so that they have to appear on the same page, you should
probably be asking yourself whether they are too interdependent.

The typical structure within a codebox is as follows. Usually, the first line is the name of a proce-
dure, along with a list of parameters. (Not all codeboxes include procedure names; for example, see the
pseudocode on page 343 of CLRS 3/e.) After the line containing the procedure name come one or more
lines of code, usually numbered. Some of the lines may be unnumbered, being continuations of previous
lines. Lines are usually numbered starting from 1, but again there are exceptions, such as the pseudocode on
page 343.

Using nProcname to name the procedure

The \Procname command specifies the name of the procedure. It takes as a parameter the procedure
name and parameters, typically all in math mode. \Procname makes its argument flush left against the
margin, and it leaves a little bit of extra space below the line. For example, here is how we typeset the
INSERTION-SORT procedure on page 18:

5

\begin{codebox}
\Procname{$\proc{Insertion-Sort}(A)$}
\li \For $j \gets 2$ \To $\attrib{A}{length}$
\li \Do

$\id{key} \gets A[j]$
\li \Comment Insert $A[j]$ into the sorted sequence

$A[1 \twodots j-1]$.
\li $i \gets j-1$
\li \While $i > 0$ and $A[i] > \id{key}$
\li \Do

$A[i+1] \gets A[i]$
\li $i \gets i-1$

\End
\li $A[i+1] \gets \id{key}$

\End
\end{codebox}

Using nli and nzi to start new lines

To start a new, numbered line, use the \li command. To start a new, unnumbered line, use the \zi
command. Note that since a codebox is not like the verbatim environment, the line breaks within the
source text do not correspond to the line breaks in the typeset output.

Tabs

I find that it is best to set the tab stops in the text editor to every 4 characters when typing in and displaying
pseudocode source with the clrscode3e package. I use emacs, and to get the tabs set up the way I want
them, my tex-mode.el file includes the line (setq tab-width 4).

A codebox environment has a tabbing environment within it. Each tab stop gives one level of
indentation. We designed the indentation so that the body of an else clause starts at just the right indentation.
For the most part, you won’t need to be concerned with tabs. The primary exception is when you want to
include a comment at the end of a line of pseudocode, and especially when you want to include comments
after several lines and you want the comments to vertically align.

If you used the clrscode package from the second edition of the book, you might notice different
tabbing behavior when you port your pseudocode to the clrscode3e package. Where the clrscode
package used two tab stops for each level of loop indentation, the clrscode3e package uses just one tab
stop. We made this change in the clrscode3e package because the third edition eliminates the keyword
then and left-aligns else with its corresponding if.

Note that the tabbing environment within a codebox has nothing to do with tabs that you enter in your
source code; when you press the TAB key, that’s the same as pressing the space bar in the eyes of LATEX 2".

Commands for keywords

As you can see from the source for INSERTION-SORT, the commands \For and \While produce the
keywords for and while in boldface within a codebox.

Sometimes you want to include a keyword in the main text, as I have done in several places in this
document. Use the \kw command to do so. For example, to produce the previous paragraph, I typed in the
following:

6

As you can see from the source for \proc{Insertion-Sort}, the commands
\verb‘\For‘ and \verb‘\While‘ produce the keywords \kw{for} and
\kw{while} in boldface within a \texttt{codebox}.

The following commands simply produce their corresponding keywords, typeset in boldface: \For,
\To, \Downto, \By, \While, \If, \Return, \Goto (which does not appear in CLRS 3/e, but you
might wish to use), \Error, \Spawn, \Sync, and \Parfor (which produces the compound keyword
parallel for). Although you could achieve the same effect with the \kw command (e.g., \kw{for} in-
stead of \For), you will find it easier and more readable to use the above commands in pseudocode. The
\Comment command simply produces the comment symbol //, followed by a space. To get the com-
ment symbol without a following space, use \CommentSymbol. None of the above commands affects
indentation.

Loops

The INSERTION-SORT example above shows typical ways to typeset for and while loops. In these loops,
the important commands are \Do and \End. \Do increments the indentation level to start the body. Put
\Do on a line starting with \li, but don’t put either \li or \zi between the \Do command and the first
statement of the loop body. Use \li or \zi in front of all loop-body statements after the first one. \End
simply decrements the indentation level, and you use it to end any for or while loop, or otherwise decrement
the indentation level.

In the first two editions of the book, the body of a for or while loop began with the keyword do.
Responding to requests from readers to make pseudocode more like C, C++, and Java, we eliminated this
keyword in the third edition.

As you can see from the above example, I like to place each \Do and \End on its own line. You can
format your source text any way you like, but I find that the way I format pseudocode makes it easy to match
up \Do-\End pairs.

If you want your for loop to decrease the loop variable in each iteration, use \Downto rather than
\To. If you want the stride to be a value other than 1, use the \By command. For example, line 6 of
ITERATIVE-FFT on page 917 is typeset as

\For $k \gets 0$ \To $n-1$ \By m

Loops that use the repeat-until structure are a bit different. We use the \Repeat and \Until com-
mands, as in the HASH-INSERT procedure on page 270:

7

\begin{codebox}
\Procname{$\proc{Hash-Insert}(T,k)$}
\li $i \gets 0$
\li \Repeat
\li $j \gets h(k,i)$
\li \If $T[j] \isequal \const{nil}$
\li \Then

$T[j] \gets k$
\li \Return j
\li \Else

$i \gets i+1$
\End

\li \Until $i \isequal m$
\li \Error ‘‘hash table overflow’’
\end{codebox}

Note that the \Until command has an implied \End.

Typesetting if statements

As you can see from the above example of HASH-INSERT, we typeset if statements with the commands
\If, \Then, \Else, and \End. In the first two editions of the book, the keyword then appeared in
pseudocode, but—again mindful of requests from our readers to make our pseudocode more like C, C++,
and Java—we eliminated the keyword then in the third edition. The \Then command remains, however, in
order to indent the code that runs when the test in the if clause evaluates to TRUE.

We use \End to terminate an if statement, whether or not it has an else clause. For an example of an if
statement without an else clause, here’s the MERGE-SORT procedure on page 34:

\begin{codebox}
\Procname{$\proc{Merge-Sort}(A, p, r)$}
\li \If $p < r$
\li \Then

$q \gets \floor{(p + r) / 2}$
\li $\proc{Merge-Sort}(A, p, q)$
\li $\proc{Merge-Sort}(A, q+1, r)$
\li $\proc{Merge}(A, p, q, r)$

\End
\end{codebox}

Note: the command \floor is our own. It is defined as

\newcommand{\floor}[1]{\left\lfloor #1 \right\rfloor}

The HASH-INSERT procedure above shows how to typeset an if statement that has an else clause. For a
more complicated example, using nested if statements, here’s the CASCADING-CUT procedure on page 519:

8

\begin{codebox}
\Procname{$\proc{Cascading-Cut}(H,y)$}
\li $z \gets \attrib{y}{p}$
\li \If $z \neq \const{nil}$
\li \Then

\If $\attrib{y}{mark} \isequal \const{false}$
\li \Then $\attrib{y}{mark} \gets \const{true}$
\li \Else

$\proc{Cut}(H,y,z)$
\li $\proc{Cascading-Cut}(H,z)$

\End
\End

\end{codebox}

Note that \Then and \Else always follow an \li command to start a new numbered line. As with the
\Do command, don’t put either \li or \zi between \Then or \Else and the statement that follows.

As you can see, I line up the \End commands under the \Then and \Else commands. I could just
as easily have chosen to line up \End under the \If command instead. I also sometimes elect to put the
“then” or “else” code on the same source line as the \Then or \Else command, especially when that code
is one short line, such as in line 4 of CASCADING-CUT.

Sometimes, you need more complicated “if-ladders” than you can get from the \Then and \Else
commands. The TRANSPLANT procedure on page 296 provides an example, and it uses the \ElseIf and
\ElseNoIf commands:

\begin{codebox}
\Procname{$\proc{Transplant}(T, u, v)$}
\li \If $\attrib{u}{p} \isequal \const{nil}$
\li \Then $\attrib{T}{root} \gets v$
\li \ElseIf $u \isequal \attribb{u}{p}{left}$
\li \Then $\attribb{u}{p}{left} \gets v$
\li \ElseNoIf

$\attribb{u}{p}{right} \gets v$
\End

\li \If $v \neq \const{nil}$
\li \Then $\attrib{v}{p} \gets \attrib{u}{p}$

\End
\end{codebox}

For an if-ladder, use \Then for the first case, \ElseNoIf for the last case, and \ElseIf followed by
\Then for all intermediate cases. You use \ElseNoIf like you use \Else in that it follows an \li
command, you don’t follow it with \Then, and, because it terminates an if-ladder, it’s followed by \End.
I usually line up the terminating \End with \If, the \ElseIf commands, and \ElseNoIf, but the way
you line it up won’t change the typeset output.

As another example, here is the SEGMENTS-INTERSECT procedure on page 1018:

9

\begin{codebox}
\Procname{$\proc{Segments-Intersect}(p_1, p_2, p_3, p_4)$}
\li $d_1 \gets \proc{Direction}(p_3, p_4, p_1)$
\li $d_2 \gets \proc{Direction}(p_3, p_4, p_2)$
\li $d_3 \gets \proc{Direction}(p_1, p_2, p_3)$
\li $d_4 \gets \proc{Direction}(p_1, p_2, p_4)$
\li \If $((d_1 > 0 \mbox{ and } d_2 < 0) \mbox{ or }

(d_1 < 0 \mbox{ and } d_2 > 0))$ and
\Indentmore

\zi $((d_3 > 0 \mbox{ and } d_4 < 0) \mbox{ or }
(d_3 < 0 \mbox{ and } d_4 > 0))$
\End

\li \Then \Return \const{true}
\li \ElseIf $d_1 \isequal 0$ and $\proc{On-Segment}(p_3, p_4, p_1)$
\li \Then \Return \const{true}
\li \ElseIf $d_2 \isequal 0$ and $\proc{On-Segment}(p_3, p_4, p_2)$
\li \Then \Return \const{true}
\li \ElseIf $d_3 \isequal 0$ and $\proc{On-Segment}(p_1, p_2, p_3)$
\li \Then \Return \const{true}
\li \ElseIf $d_4 \isequal 0$ and $\proc{On-Segment}(p_1, p_2, p_4)$
\li \Then \Return \const{true}
\li \ElseNoIf \Return \const{false}

\End
\end{codebox}

This example also shows our first use of an unnumbered line: the second half of the tests on line 5. We
use \zi to indicate that we’re starting an unnumbered line.

Indentation levels

In the SEGMENTS-INTERSECT procedure, we indent the unnumbered line after line 5 by one level more
than the line above it. We do so with the \Indentmore command. The \End command following the
indented line decrements the indentation level back to what it was prior to the \Indentmore. If I had
wanted to indent the line by two levels, I would have used two \Indentmore commands before the line
and two \End commands afterward. (Recall that \End simply decrements the indentation level.)

Upon seeing the \end{codebox} command, the codebox environment checks that the indentation
level is back to where it was when it started, namely an indentation level of 0. If it is not, you will get a
warning message like the following:

Warning: Indentation ends at level 1 in codebox on page 1.

This message would indicate that there is one missing \End command. On the other hand, you might have
one too many \End commands, in which case you would get

Warning: Indentation ends at level -1 in codebox on page 1.

Whenever the indentation level is nonzero upon hitting an \end{codebox} command, you’ll get a warn-
ing telling you what the indentation level was.

10

Tabs and comments

Line 3 of INSERTION-SORT shows how to make a line that is only a comment. It’s a little more tricky
to put a comment at the end of a line of code. Using the tab command \>, explicitly tab to where you
want the comment to begin and then use the \Comment command to produce the comment symbol. When
several lines contain comments, you probably want them to align vertically. I just add tab characters, using
a trial-and-error approach, until I am pleased with the result. For example, here’s how we produced the
KMP-MATCHER procedure on page 1005:

\begin{codebox}
\Procname{$\proc{KMP-Matcher}(T,P)$}
\li $n \gets \attrib{T}{length}$
\li $m \gets \attrib{P}{length}$
\li $\pi \gets \proc{Compute-Prefix-Function}(P)$
\li $q \gets 0$\>\>\>\>\>\>\>\>\Comment number of characters matched
\li \For $i \gets 1$ \To n\>\>\>\>\>\>\>\>\Comment scan the text from left to right
\li \Do

\While $q>0$ and $\Px{q+1}\ne \Tx{i}$
\li \Do $q \gets \pi[q]$\>\>\>\>\>\>\Comment next character does not match

\End
\li \If $\Px{q+1} \isequal \Tx{i}$
\li \Then $q \gets q+1$\>\>\>\>\>\>\Comment next character matches

\End
\li \If $q \isequal m$\>\>\>\>\>\>\>\Comment is all of P matched?
\li \Then

print ‘‘Pattern occurs with shift’’ $i-m$
\li $q \gets \pi[q]$\>\>\>\>\>\>\Comment look for the next match

\End
\End

\end{codebox}

All six comments align nicely.
Note: the commands \Px and \Tx are our own, with the definitions

\newcommand{\Px}[1]{P[#1]}
\newcommand{\Tx}[1]{T[#1]}

We used the command \RComment to justify a comment against the right margin. We used this com-
mand only in the RB-INSERT-FIXUP procedure on page 316 and the RB-DELETE-FIXUP procedure on
page 326. For example, here’s how we typeset line 5 of RB-INSERT-FIXUP:

\li \Then
$\attribb{z}{p}{color}\gets \const{black}$

\RComment case 1

Referencing line numbers

The source files for CLRS 3/e contain no absolute references to line numbers. We use only symbolic ref-
erences. The codebox environment is set up to allow you to place \label commands on lines of pseu-
docode and then reference these labels. The references will resolve to the line numbers. Our convention is
that any label for a line number begins with \li:, but you can name the labels any way that you like.

For example, here’s how we really wrote the INSERTION-SORT procedure on page 18:

11

\begin{codebox}
\Procname{$\proc{Insertion-Sort}(A)$}
\li \For $j \gets 2$ \To $\attrib{A}{length}$

\label{li:ins-sort-for}
\li \Do

$\id{key} \gets A[j]$ \label{li:ins-sort-pick}
\label{li:ins-sort-for-body-begin}

\li \Comment Insert $A[j]$ into the sorted sequence
$A[1 \twodots j-1]$.

\li $i \gets j-1$ \label{li:ins-sort-find-begin}
\li \While $i > 0$ and $A[i] > \id{key}$

\label{li:ins-sort-while}
\li \Do

$A[i+1] \gets A[i]$ \label{li:ins-sort-while-begin}
\li $i \gets i-1$ \label{li:ins-sort-find-end}

\label{li:ins-sort-while-end}
\End

\li $A[i+1] \gets \id{key}$ \label{li:ins-sort-ins}
\label{li:ins-sort-for-body-end}

\End
\end{codebox}

Note that any line may have multiple labels. As an example of referencing these labels, here’s the beginning
of the first item under “Pseudocode conventions” on page 19:

\item Indentation indicates block structure. For example, the body of
the \kw{for} loop that begins on line˜\ref{li:ins-sort-for} consists
of lines
\ref{li:ins-sort-for-body-begin}--\ref{li:ins-sort-for-body-end}, and
the body of the \kw{while} loop that begins on
line˜\ref{li:ins-sort-while} contains lines
\ref{li:ins-sort-while-begin}--\ref{li:ins-sort-while-end} but not
line˜\ref{li:ins-sort-for-body-end}.

Setting line numbers

On rare occasions, we needed to start line numbers somewhere other than 1. Use the setlinenumber
command to set the next line number. For example, in Exercise 24.2-2 on page 657, we want the line
number to be the same as a line number within the DAG-SHORTEST-PATHS procedure on page 655. Here’s
the source for the exercise:

Suppose we change line˜\ref{li:dag-sp-loop-begin} of
\proc{Dag-Shortest-Paths} to read

\begin{codebox}
\setlinenumber{li:dag-sp-loop-begin}
\li \For the first $\card{V}-1$ vertices, taken in topologically sorted order
\end{codebox}
Show that the procedure would remain correct.

The DAG-SHORTEST-PATHS procedure is

12

\begin{codebox}
\Procname{$\proc{Dag-Shortest-Paths}(G,w,s)$}
\li topologically sort the vertices of G \label{li:dag-sp-topo-sort}
\li $\proc{Initialize-Single-Source}(G,s)$ \label{li:dag-sp-init}
\li \For each vertex u, taken in topologically sorted order

\label{li:dag-sp-loop-begin}
\li \Do

\For each vertex $v \in \attrib{G}{Adj}[u]$
\label{li:dag-sp-inner-begin}

\li \Do $\proc{Relax}(u,v,w)$ \label{li:dag-sp-loop-end}
\End

\End
\end{codebox}

Even more rarely (just once, in fact), we needed to set a line number to be some other line number plus
an offset. That was in the two lines of pseudocode on page 343, where the first line number had to be one
greater than the number of the last line of LEFT-ROTATE on page 313. Use the setlinenumberplus
command:

\begin{codebox}
\setlinenumberplus{li:left-rot-parent}{1}
\li $\attrib{y}{size} \gets \attrib{x}{size}$
\li $\attrib{x}{size} \gets \attribb{x}{left}{size}

+ \attribb{x}{right}{size} + 1
\end{codebox}

Here, the last line of LEFT-ROTATE has \label{li:left-rot-parent}.

Indenting long argument lists in procedure calls

You might find that you have to call a procedure with an argument list so long that the call requires more than
one line. When this situation arises, it often looks best to align the second and subsequent lines of arguments
with the first argument. The only place we did so was in the SUM-ARRAYS0 procedure in Problem 27-1 on
page 805.

To get this style of alignment, use the \Startalign and \Stopalign commands, in concert with
the \> command of LATEX 2". The \Startalign command takes an argument that is the text string that
you wish to align just to the right of. Start each line that you want to indent with \>. Use the \Stopalign
command to restore indentation to its state from before the \Startalign command.

The source code for SUM-ARRAYS0 shows how to use these commands:

13

\begin{codebox}
\Procname{$\proc{Sum-Arrays}{$’$}(A, B, C)$}
\li $n \gets \attrib{A}{length}$
\li $\id{grain-size} \gets\ \ ?$ \>\>\>\>\>\>\Comment to be determined
\li $r \gets \ceil{n/\id{grain-size}}$
\li \For $k \gets 0$ \To $r-1$
\li \Do

\Spawn $\proc{Add-Subarray}(A, B, C, k\cdot\id{grain-size}+1,$
\Startalign{\Spawn $\proc{Add-Subarray}($}
\> $\min((k+1)\cdot\id{grain-size}, n))$
\Stopalign

\End
\li \Sync
\end{codebox}

The second line of arguments in the call to ADD-SUBARRAY starts right under the first parameter, A, in the
call.

7 Reporting bugs

If you find errors in the clrscode3e package, please send me email (thc@cs.dartmouth.edu). It would be
best if your message included everything I would require to elicit the error myself.

The clrscode3e.sty file contains the following disclaimer:

% Written for general distribution by Thomas H. Cormen, March 2009.

% The author grants permission for anyone to use this macro package and
% to distribute it unchanged without further restriction. If you choose
% to modify this package, you must indicate that you have modified it
% prior to your distributing it. I don’t want to get bug reports about
% changes that *you* have made!

I have enough trouble keeping up with my own bugs; I don’t want to hear about bugs that others have
introduced in the package!

8 Revision history

� 20 February 2018. Included definitions for the commands \floor, \Px, and \Tx. Changed
\procdecl and \procdecltag commands to \proc.

� 27 January 2010. Corrected an error in the documentation. The first line after a \Repeat command
should begin with \li.

� 23 March 2009. Initial revision of document and code.

14

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algo-
rithms, third edition. The MIT Press, 2009.

[2] Leslie Lamport. LATEX: A Document Preparation System User’s Guide and Reference Manual. Addison-
Wesley, 1993.

15

