
FG: A Framework Generator for Hiding Latency in Parallel Programs
Running on Clusters

Thomas H. Cormen∗

Elena Riccio Davidson †

Dartmouth College Department of Computer Science
6211 Sudikoff Laboratory

Hanover, NH 03755
{thc, laney}@cs.dartmouth.edu

Abstract

FG is a programming environment for asynchronous
programs that run on clusters and fit into a pipeline frame-
work. It enables the programmer to write a series of syn-
chronous functions and represents them as stages of an
asynchronous pipeline. FG mitigates the high latency in-
herent in interprocessor communication and accessing the
outer levels of the memory hierarchy. It overlaps separate
pipeline stages that perform communication, computation,
and I/O by running the stages asynchronously. Each stage
maps to a thread. Buffers, whose sizes correspond to block
sizes in the memory hierarchy, traverse the pipeline. FG
makes such pipeline-structured parallel programs easier to
write, smaller, and faster.

FG offers several advantages over statically scheduled
overlapping and dynamically scheduled overlapping via
explicit calls to thread functions. First, it reduces coding
and debugging time. Second, we find that it reduces code
size by approximately 15–26%. Third, according to exper-
imental results, it improves performance. Compared with
programs that use static scheduling, FG-generated pro-
grams run approximately 61–69% faster on a 16-node Be-
owulf cluster. Compared with programs that make explicit
calls for dynamically scheduled threads, FG-generated pro-
grams run slightly faster. Fourth, FG offers various design
options and makes it easy for the programmer to explore
different pipeline configurations.

∗Contact author. Supported in part by DARPA Award W0133940 in
collaboration with IBM and in part by National Science Foundation Grant
IIS-0326155 in collaboration with the University of Connecticut.

†Supported in part by DARPA Award W0133940 in collaboration with
IBM.

To appear in the 17th International Conference on Parallel and Dis-
tributed Computing Systems (PDCS-2004). Copyright c© 2004, The In-
ternational Society for Computers and Their Applications, Inc.

1 Introduction

Latency is a significant impediment to producing high-
performance parallel programs. Storage components far-
ther from the processor have significantly higher capacities,
but their access latencies increase greatly. Additionally, la-
tency results from interprocessor communication on a clus-
ter. This paper presents FG, a framework generator for
pipeline-structured computations on clusters that mitigates
latency—that is, it hides a portion of the latency by overlap-
ping high-latency operations with other operations—and
also reduces the burden on the programmer.

FG arose from prior work in out-of-core programming
on clusters. In out-of-core programs, the amount of data
exceeds the capacity of main memory and so must reside
on disks. Disk accesses are 4–5 orders of magnitude slower
than main-memory accesses, and interprocessor commu-
nication is also quite a bit slower than in-processor com-
putation. Hence, moving data between memory and disk
and between two different memories in the cluster are
high-latency operations. In order to achieve high perfor-
mance, therefore, out-of-core programs must accomplish
two goals: (1) overlap communication, computation, and
I/O; and (2) amortize the high latency of memory transfers
and communication by moving data in blocks.

Several out-of-core algorithms in the literature (e.g.,
[3, 10, 11, 14, 15]) make multiple passes over the data.
In many of these algorithms, each pass falls into a com-
mon framework: a pipeline of stages that may be run asyn-
chronously. Buffers, corresponding to blocks of data in
the memory hierarchy, traverse the pipeline. For example,
in one implementation of out-of-core columnsort [4], the
pipeline for one pass has the five stages shown in Figure 1.
A buffer enters the pipeline and then, in order, the stages
read into it from disk, sort it, perform interprocessor com-
munication with it, permute it, and finally write it back to
disk. Because each stage works on a single buffer, each

1



read
stage

sort
stage

communication
stage

permute
stage

write
stage

buffer 0buffer 1buffer 2buffer 3buffer 4

Figure 1: The stages of the pipeline for one pass of out-of-core columnsort. Each stage accepts a buffer from its predecessor, operates on the buffer, and
conveys it to its successor. Stages work asynchronously so that each one may be working on a distinct buffer (indicated by a black rectangle attached to the
stage) at any moment in time.

individual stage may be working on a distinct buffer at any
moment in time. Thus arises the opportunity to overlap the
actions of the individual stages, and in doing so, to mitigate
the latency of the read, communicate, and write stages.

Producing asynchronous programs for the pipeline
framework requires a great deal of time and effort on the
part of the programmer and a substantial body of code. One
way to achieve asynchrony is to use explicit asynchronous
calls for disk I/O and interprocessor communication. Writ-
ing programs with asynchronous calls is particularly bur-
densome, due to the programmer’s having to preschedule
work to perform while waiting for I/O or communication
and then inserting blocking waits in the appropriate places.
Moreover, because the scheduling is static, it cannot adapt
to changing workloads in the various stages.

Another way to achieve asynchrony in the pipeline
framework is to locate each pipeline stage within its own
thread. Even more parallelism results if the cluster has an
SMP in each node, as we see in many high-end clusters;
then the threads can run in parallel. With explicit threaded
code, however, the programmer must write the code to cre-
ate, run, and kill the threads; to create, use, and destroy
the semaphores needed to coordinate the threads; and to
allocate, manage, and deallocate the buffers that traverse
the pipeline. The unfortunate consequence is that a sizable
portion of code is glue, which is unrelated to the algorithm
that the programmer is implementing. We estimate that
glue accounts for approximately 15–25% of the code for
a typical out-of-core program. The glue is often the most
difficult code to write and debug.

We have designed a programming environment that mit-
igates latency by means of overlapping communication,
computation, and I/O for programs with a pipeline struc-
ture that run on clusters. The stages of the pipeline run
asynchronously in threads, and they operate on buffers cor-
responding to blocks of data. In this environment, the
programmer specifies the stages of the pipeline frame-
work in order, and the environment generates the glue and
runs the pipeline. Hence, we call this environment Asyn-
chronous Buffered Computation Design and Engineering
Framework Generator (ABCDEFG), or FG for short. In
our experience, FG reduces source code size by approxi-
mately 15–26%. In addition, FG allows for easy experi-
mentation. There are several factors that may influence the

performance of a pipeline-structured program, and tuning
these factors is simple in FG, often entailing a line or two
of code changes rather than a complete redesign. A further
benefit of FG is that it improves performance.

The remainder of this paper is organized as follows. In
Section 2, we present an overview of FG. Section 3 de-
scribes some additional features of FG beyond its basic
structure. Section 4 presents experimental results that show
how FG both reduces code size and improves performance.
Finally, Section 5 offers some concluding remarks.

2 FG’s basic features

FG makes it easy for the programmer to define and run
a pipeline of asynchronous stages. The programmer pro-
vides the individual stages, and FG provides the glue and
manages buffers. This section describes the basic function-
ality of FG.

Stages and buffers

FG’s paradigm is a pipeline of stages. The program-
mer writes each stage as a C or C++ function, and FG
runs the stages asynchronously to overlap communication,
computation, and I/O. FG manages buffers as they tra-
verse the pipeline, and it also allocates and deallocates the
buffers. FG accomplishes asynchrony and mitigates la-
tency by mapping each stage to a thread.

With FG, the programmer is relieved of most of the bur-
den of making an out-of-core program run asynchronously,
including making explicit calls to functions in the pthreads
package. The programmer writes each stage as a syn-
chronous function. That is, no asynchronous calls for I/O,
communication, or anything else are needed. The program-
mer defines a simple, opaque object for each stage and
each thread and then associates each stage object with a
thread object. FG takes care of the rest. It creates and
spawns each thread, executes the function associated with
each stage, and manages semaphores for buffer transmis-
sion. FG also performs all the work associated with the
cleanup of a program, such as joining and killing threads,
destroying semaphores, and deallocating buffers. Without
FG, all this work would be the programmer’s burden.

2



FG manages buffers as they traverse the pipeline, allevi-
ating the programmer of the associated work. FG allocates
buffers of a fixed size at the start of execution. Each buffer
corresponds to the block size for the outermost level that
will be accessed in the memory hierarchy. Queues hold
buffers as they progress between stages; that is, a separate
queue sits between each pair of consecutive stages. A stage
conveys a buffer by placing it in a queue, and its succes-
sor stage accepts the buffer by removing it from the same
queue. The queue implementation is lock-free. Any given
stage need not know what its predecessor and successor
stages are, since FG will ensure that the buffers move ap-
propriately.

FG keeps the information about a buffer in a thumbnail.
We shall see some of the information stored in thumbnails
later on, but for now we mention that a thumbnail contains
a pointer to its corresponding buffer. That is, there is a one-
to-one mapping of thumbnails and buffers. It is actually the
thumbnails that populate the queues.

Source and sink stages

In addition to the basic pipeline, FG adds some elements
to make programs work properly. To help manage buffers,
FG includes a source stage at the head of the pipeline and a
sink stage at the tail. The source stage collects the buffers
at the start of execution and passes them along to the first
programmer-defined stage. Each time the source stage
emits a buffer, we say that another round starts, and the
source stage places the next round number into the buffer’s
thumbnail. A stage may need to refer to a thumbnail’s
round number; for example, a stage that reads blocks from
disk may perform a seek based on the round number and
buffer size.

The sink stage works with the source stage to recycle
buffers. The number of rounds is typically far greater than
the number of stages in the pipeline. Although we could
allocate each buffer in the source stage and deallocate it in
the sink stage, doing so could cause performance problems
in the interaction between allocation and deallocation. In-
stead, when a buffer reaches the end of the pipeline, the
sink stages recycles it back to the source stage, which then
resends the buffer back into the pipeline but now with a
new round number.

Figure 2 shows how FG puts all of the above notions
together to overlap stages in a pipeline. Here, we have three
programmer-defined stages plus the source and sink. For
simplicity, this example assumes that each stage takes the
same amount of time. Once the pipeline is in full swing,
multiple stages can execute concurrently but on different
buffers. The sink recycles thumbnails and buffers back to
the source, where they re-enter the pipeline but with new
round numbers in the thumbnails.

step source stage 1 stage 2 stage 3 sink

1 buffer 0
round 0

– – – –

2 buffer 1
round 1

buffer 0
round 0

– – –

3 buffer 2
round 2

buffer 1
round 1

buffer 0
round 0

– –

4 – buffer 2
round 2

buffer 1
round 1

buffer 0
round 0

–

5 – – buffer 2
round 2

buffer 1
round 1

buffer 0
round 0

6 buffer 0
round 3

– – buffer 2
round 2

buffer 1
round 1

7 buffer 1
round 4

buffer 0
round 3

– – buffer 2
round 2

8 buffer 2
round 5

buffer 1
round 4

buffer 0
round 3

– –

Figure 2: The progression of three buffers through a pipeline over time.
The pipeline has three programmer-defined stages—stage 1, stage 2, and
stage 3—as well as the FG-supplied source and sink. Each buffer’s thumb-
nail has the number of a round, and the sink recycles buffers back to the
source. Here, we assume that each stage takes the same amount of time.
Multiple stages can execute concurrently.

Multistage threads

FG allows a thread to contain multiple stages, a design
that we call a multistage thread. We implemented this fea-
ture for two reasons. First, if there are fewer buffers than
threads, there would always be some thread making no
progress because it is waiting for a buffer to arrive. If some
thread has many stages, we can build a pipeline with the
same number of stages but fewer threads. Thus, without
increasing the number of buffers, we can keep all threads
busy. Second, there may be stages that cannot run simulta-
neously. For example, suppose that a pipeline has one stage
that reads from disk and another stage that writes to the
same disk. Of course, we cannot read and write the same
disk at the same time. A programmer might, therefore,
choose to map the read stage and the write stage to the same
thread. This setup means that the read and write stages will
run synchronously without the overhead of spawning two
separate threads and context-switching between them.

The initial design for FG allowed for the stages of a mul-
tistage thread to execute in any order, even one that is ran-
domly chosen. We quickly found a serious problem that
arose from this flexibility. Suppose that two stages of a
multistage thread perform interprocessor communication,
such as a broadcast or a scatter. Let the processors be A
and B, and let the stages be X and Y. Suppose that pro-

3



step source read sort write sink
1 0 – – – –
2 1 0 – – –
3 1 – 0 – –
4 1 – – 0 –
5 2 1 – – 0
6 2 – 1 – –
7 2 – – 1 –
8 3 2 – – 1

step source read sort write sink
1 0 – – – –
2 1 0 – – –
3 2 1 0 – –
4 2 – 1 0 –
5 2 – – 1 0
6 3 2 – – 1

(a) (b)

Figure 3: Multistage repeat. The read and write stages are in the same thread. The figure shows which rounds are in which stages at each step. Shaded
boxes indicate which of the read and write stages runs next. (a) A multistage repeat of 1. The read stage executes once and does not execute again until the
write stage finishes with the most recent buffer read. The buffer for round 1 does not get out of the source stage until step 5, and altogether it takes 8 steps
to get two buffers through the pipeline. (b) A multistage repeat of 2. The buffer for round 1 leaves the source stage at step 3, and altogether it takes only 6
steps to get two buffers through the pipeline.

cessor A chooses to execute stage X and that processor B
chooses to execute stage Y. Stage X does not complete on
any processor until all processors involved in the communi-
cation run stage X, and the same is true for stage Y. There-
fore, processor A waits for processor B to run stage X, and
processor B waits for processor A to run stage Y. In other
words, the two processors deadlock.

Rather than implementing mechanisms for deadlock de-
tection and recovery, FG requires that the stages of a mul-
tistage thread run in the same order on all processors. The
most straightforward scheme would be to run each stage
once in succession. That is, if stage X precedes stage Y
in our previous example, then our multistage thread would
run X then Y on one buffer, then it would run X then Y on
the next buffer, and so on, until the pipeline completes.

This restricted approach may slow down the pipeline,
however. Consider the pipeline in Figure 3(a). This
pipeline has a read stage as its first stage, a write stage as
its last, and these two stages reside in the same thread. As
Figure 3(a) shows, after the read stage has read into the
buffer for round 0, it cannot start to read into the buffer for
round 1 until round 0’s buffer has gone the entire length of
the pipeline. It takes 8 steps to get two buffers all the way
through the pipeline, and the buffer for round 1 does not get
out of the source stage until step 5. This scheme results in
a pipeline that is often underfull and consequently doesn’t
overlap work as much as it could. Therefore we introduce
the notion of multistage repeat.

Multistage repeat means that each stage of a multistage
thread may run several times before another stage in the
thread gets to run. Figure 3(b) shows the same pipeline as
in Figure 3(a), but with a multistage repeat of 2. Observe
that now the buffer for round 1 can leave the source stage
in step 3, and altogether it takes only 6 steps to get two

buffers all the way through the pipeline.

Flexibility

An important feature of FG is that it allows the pro-
grammer to explore changes in the design of the pipeline.
For example, the programmer might wish to put two stages
in a multistage thread, split a multistage thread into sepa-
rate threads, or increase the multistage repeat to determine
whether it yields a performance improvement. There are
also design changes that affect the structure of the pipeline,
such as adding or removing a stage. Moreover, the pro-
grammer may wish to change the number or size of the
buffers. Without FG, implementing these changes means
quite a bit of redesigning and debugging for the program-
mer. Furthermore, the payoff from a given change may be
relatively low compared to the effort required, though after
exploring enough options, the programmer may find a par-
ticularly good configuration. Since FG provides the glue,
however, the programmer need rewrite only a few lines of
code to try out each option.

3 Additional features

The structure of FG outlined above does not tell the
whole story. In this section we present two additional
features of FG. First we present buffer swapping, which
simplifies stages that cannot do work in-place. Then we
examine pipeline macros, which allow one pipeline to be
plugged into another. Due to space limitations, we omit
discussion of some other FG features: the caboose (a
special flag attached to the last buffer to go through the
pipeline), thread initialization and cleanup functions, and
barriers.

4



predecessor
stage

permutation
stagebuffer B

thumbnail T

successor
stage

buffer B′′′′ thumbnail T′′′′

(a)

predecessor
stage

permutation
stage

buffer B

thumbnail T

successor
stagebuffer B′′′′

thumbnail T′′′′

(b)

Figure 4: Buffer swapping. (a) A permutation stage receives from its predecessor a pipeline buffer B pointed to by thumbnail T, and it requests auxiliary
buffer B′ pointed to by auxiliary thumbnail T′. (b) The permutation stage permutes the contents of B into B′, and it swaps the pointers to B and B′ in the
thumbnails. Buffer B′ is now pointed to by thumbnail T and is sent to the successor stage. Auxiliary thumbnail T′ points to buffer B, and they are released.

Buffer swapping

FG allows for buffers to be swapped within a stage.
Consider a stage whose work cannot be done in-place,
such as the permutation stage in Figure 4, which requires a
source buffer and a target buffer. In Figure 4(a), the source
buffer B arrives through the pipeline from the stage’s pre-
decessor in thumbnail T. This stage must request an ad-
ditional buffer to assume the role of the target buffer. The
stage, therefore, can ask FG for an auxiliary buffer. An
auxiliary buffer is similar to an ordinary buffer, but its
thumbnail does not traverse the pipeline. Figure 4(a) shows
the auxiliary buffer B′, which is pointed to by auxiliary
thumbnail T′. The permutation stage copies the contents
of buffer B into buffer B′, permuting the data along the
way. Now, as Figure 4(b) shows, it is buffer B′, not B,
that the permutation stage needs to convey to its succes-
sor. The pipeline thumbnail T, however, has information
in it that we do not want to lose, including its round num-
ber and the caboose flag. In order to keep this informa-
tion, we simply swap the addresses of the two buffers in
their thumbnails. Now the pipeline thumbnail T points to
buffer B′, which contains the result of the permutation, and
the auxiliary thumbnail T′ points to buffer B, whose con-
tents are no longer needed. The stage, then, can release
thumbnail T′ and buffer B so that another stage can use
them. The pipeline thumbnail T and the buffer B′ can make
their way to the next stage.

Pipeline macros

FG includes the ability to plug one pipeline into another,
a structure that we call a pipeline macro. This mechanism
is useful for a stage that expands into a pipeline. For ex-
ample, one stage of an FFT pipeline would typically be a
bit-reversal permutation, which on its own might require
several stages. When designing the pipeline for the FFT,
the programmer can designate one stage as the bit-reversal
stage, and FG substitutes the various stages that accomplish
the bit-reversal permutation. Macro expansion can occur
in any stage of any pipeline, giving rise to a tree structure.
The frontier of the tree corresponds to the pipeline stages
actually executed.

4 Experimental results

In this section, we show that FG makes parallel, asyn-
chronous programs easier to write, smaller, and faster. For
benchmarks we use programs operating on massive data
on a distributed-memory cluster with a disk at each node.
Such programs are rare, however. The other current sys-
tems of which we are aware, such as TPIE [1], operate
on just one processor with one disk. Therefore, we fo-
cus our FG comparison against previous Dartmouth out-of-
core programs written for clusters. We also compare FG to
UNIX pipes.

ViC* [7] was a software system designed to adapt
programs written in C* for massive datasets, and it was
the focus of out-of-core programming at Dartmouth start-
ing in 1994. ViC* used static scheduling to mitigate la-

5



Code size Seconds: 4 GB/proc Seconds: 8 GB/proc
Program non-FG FG improvement non-FG FG improvement non-FG FG improvement
BMMC 3204 2736 14.6% 1049 327 68.8% 1844 570 69.1%
FFT 7612 6290 17.4% 1996 722 63.8% 4245 1638 61.4%
Columnsort 7824 5820 25.6% 1029 979 4.9% 1893 1862 1.6%

Table 1: Code size and running times in seconds for three programs with and without FG. Each time shown is the average of three runs. The non-FG
programs for BMMC permutations and FFT use static scheduling. The non-FG columnsort program uses dynamic, thread-based scheduling.

tency, and it overlapped only I/O, not communication or
computation. We compare FG with two ViC* programs,
Fast Fourier Transform (FFT) [9, 11] and bit-matrix-
multiply/complement (BMMC) permutations [8]. Follow-
ing ViC*, researchers at Dartmouth made the pipeline ob-
servation from Section 1 and moved to dynamic scheduling
with threads [4, 5, 6]. We compare FG with one threaded
program, columnsort [12].

We present experimental results on a Beowulf cluster
in terms of two metrics: source code size and running
time. As Table 1 shows, FG both reduces code size and im-
proves performance. We compare against programs written
for ViC*’s static scheduling and against a program written
for dynamic thread-based scheduling. Compared with the
static scheduling of ViC*, FG-based programs required ap-
proximately 15–17% fewer source lines, and they ran ap-
proximately 61–71% faster. Compared with the more ro-
bust, dynamic, thread-based scheduling, the FG-based pro-
gram required approximately 26% fewer source lines, and
it ran approximately 2–5% faster. We were unable to mea-
sure “time to solution,” but we plan to do so in our future
work.

The programs that use static scheduling in their non-FG
versions are for performing out-of-core BMMC permuta-
tions and computing out-of-core FFTs. The program that
uses dynamic, thread-based scheduling in its non-FG ver-
sion is one of our out-of-core implementations of column-
sort.

Source code size

As Table 1 shows, using FG reduces the number of lines
of source code. Compared with source code that uses static
scheduling, source code that makes FG calls has 14.6%
fewer lines in the BMMC-permutation program and 17.4%
in the FFT program. The reduction in source code size is
even better—25.6%—for the out-of-core columnsort pro-
gram, which uses dynamic, thread-based scheduling.

The code that uses static scheduling has to do all of
the following explicitly: read and write buffers asyn-
chronously, perform the appropriate blocking waits, and
start up and shut down the pipeline. When FG performs
these functions, that source code is omitted.

The program that uses dynamic, thread-based schedul-
ing has to do even more than its static counterparts. Specif-
ically, it has to do all of the following and do it in each
stage: spawn the thread associated with the stage; allo-
cate the necessary buffers; create the semaphores; accept
a buffer from the previous stage; pass the buffer to the next
stage; and, when the pipeline completes, join and kill the
thread, destroy the semaphores, and deallocate the buffers.
With FG, the programmer has none of these responsibili-
ties. Instead the programmer just needs to associate each
stage with a thread; FG shoulders the remaining tasks.

Running time

Reducing code size is pointless if programs written with
FG do not perform at least as well as those written without
it. Indeed, we find that FG improves performance.

We ran experiments on a Beowulf cluster of 16 dual
2.8-GHz Intel Xeon nodes. Each node has 4 GB of RAM
and an Ultra-320 36-GB hard drive. The nodes run Red-
Hat Linux 9.0 and are connected with a 2-Gb/sec Myrinet
network. We use the C stdio interface for disk I/O and
the pthreads package of Linux. Communication occurs via
MPI calls. We use the ChaMPIon/Pro implementation of
MPI because it works with the Myrinet network and it al-
lows multiple threads to make MPI calls. (We know of no
free versions of MPI that match what ChaMPIon/Pro can
do.)

We report here on experiments using all 16 nodes and
either 4 GB or 8 GB of data per processor. Experiments
that use fewer than 4 GB of data per processor are less
meaningful because file-caching effects mask the out-of-
core nature of the problem. We cannot use more than 8 GB
of data per processor due to disk-space limitations.

As Table 1 shows, FG yields huge improvements over
static scheduling. The improvement for FFT exceeds the
improvement for BMMC permutations because the FFT
program performs relatively less communication than the
BMMC-permutation program. Hence, the improvement
due to FG’s ability to overlap communication with other
functions is less. We believe that the advantage of using FG
for the FFT program diminishing with more data is due to
FFT’s O(n lg n)-time computation component, which FG

6



FG times UNIX pipe times ratio: FG / UNIX pipe
Program Data source User System Total User System Total User System Total
Columnsort file 23.83 0.83 12.53 22.97 2.28 12.93 1.04 0.37 0.97
Columnsort memory 18.08 0.09 9.27 19.16 1.58 10.66 0.94 0.06 0.87
FFT file 45.47 11.67 29.43 41.55 88.89 66.20 1.09 0.13 0.45
FFT memory 28.98 0.72 14.85 19.50 52.42 36.03 1.49 0.01 0.41

Table 2: Running times, in seconds, for columnsort and FFT programs using FG and UNIX pipes. Each time is the average of three runs on a single node of
the Beowulf cluster. Times are given according to the tcsh time command’s breakdown of user, system, and total time. Total times are approximately half
the sum of user and system times because the node has two processors.

may be less able to hide as n increases. (For the BMMC-
permutation program, the improvements due to using FG
in both the 4-GB and 8-GB per processor cases are similar
because the computation time, as well as the communica-
tion and I/O times, is linear in the problem size.)

We also see from Table 1 that FG yields a modest im-
provement over dynamic, thread-based scheduling. How
can this be when FG itself uses dynamic, thread-based
scheduling? We believe that FG’s advantage comes from
its ability to manage queues of several buffers between
stages, compared to the non-FG code, which allows only
one buffer at a time between stages. Like FFT, the column-
sort program has an O(n lg n)-time computation compo-
nent, and so the benefit of using FG diminishes for ex-
tremely large problem sizes.

That FG yields only a small improvement over non-FG
code in the dynamic thread-scheduling case is of no great
concern. What is important is that FG is competitive with,
and even beats, hand-tuned code that is difficult to write.

FG vs. UNIX pipes

Like FG, UNIX pipes [2, Section 5.12] act on data
streams. UNIX pipes transfer buffers between processes,
however, and not between threads. Hence, they are a more
heavyweight mechanism than the queues that FG uses. The
implementations are similar, except that UNIX pipes re-
quire memory to be shared between processes. Moreover,
because the programmer accesses UNIX pipes as if they
were files, the implementation of pipes also needs to in-
teract with the file-system interface. Finally, although it
is possible to have multistage processes with UNIX pipes,
it is much more convenient to use FG’s multistage thread
mechanism.

We implemented a small suite of pipeline-structured
programs using FG and using UNIX pipes to compare their
running times. The programs performed columnsort and
FFT. All computations were on buffers that fit in memory,
but some programs generated the data in memory whereas
others read data from disk and wrote the results back to
disk. The programs performed no interprocessor commu-

nication and ran on one node of the Beowulf cluster. We
obtained user, system, and total times via the built-in tcsh
time command.

Table 2 summarizes the results. The FG implementa-
tion ran faster than the UNIX pipe version in all cases. In-
deed, FG took under half the time of UNIX pipes for the
FFT programs. The pipeline for the FFT programs has 16
stages, 13 of which compute levels of the FFT butterfly
graph. The UNIX pipe FFT programs spend much system
time synchronizing pipes and copying buffers between pro-
cesses. The columnsort programs have only 7 stages, and
so the relative inefficiency of UNIX pipes is not quite so
pronounced.

5 Conclusion

We conclude by summarizing FG’s benefits, discussing
some related work, and looking toward FG’s future.

FG provides a programming environment for asyn-
chronous programs that run on clusters and fit into a
pipeline framework. It mitigates latency by overlapping
communication, computation, and I/O. FG makes such
programs easier to write, smaller, and faster. Programs
written with FG run approximately 61–69% faster than
equivalent programs with static scheduling that do not
overlap communication with other operations. Moreover,
programs written with FG run approximately 2–5% faster
than equivalent programs that explicitly use threading to
achieve asynchrony.

Perhaps the closest match to FG is the TPIE project at
Duke [1]. TPIE provides the abstraction of streams of out-
of-core data, where each stream is a C++ object. Object
methods perform I/O and handle asynchrony in the I/O op-
erations. TPIE provides a lower-level interface that allows
the programmer to read and write blocks of data explicitly.
It also provides methods to merge and partition streams.
To the best of our knowledge, TPIE runs only on a single
processor and with a single disk.

StreamIt [13] is a Java-like language that allows the pro-
grammer to manipulate in-core streams of data. The lan-

7



guage is architecture-independent, and the StreamIt com-
piler and run-time system run the stream-based program
efficiently on the target architecture. StreamIt allows
fork/join and loop constructs within streams. We plan to
investigate how to incorporate these constructs into FG.

We plan for future versions of FG to include the capa-
bilities to monitor performance and make adjustments on
the fly. Although the current version of FG makes perfor-
mance tuning easy, we wish to eliminate the programmer’s
need to experiment with various combinations of parame-
ters to see how they affect performance. This enhancement
would relieve the programmer of some of the burden re-
lated to performance tuning. It would be up to FG, and
not to the programmer, to make such changes as altering
the number of threads or the mapping of stages to threads.
Many factors may have an impact on performance, and we
plan for FG to tune these factors dynamically without the
programmer’s having to rewrite any code at all.

Finally, we would like to determine how much FG re-
duces time-to-solution. We plan to conduct controlled ex-
periments to quantify FG’s productivity benefits. One ob-
stacle is finding programmer subjects who have sufficient
experience writing threaded programs.

Acknowledgments

Elizabeth Hamon produced an early implementation of
FG and helped us find several flaws in our original de-
sign. Geeta Chaudhry wrote the columnsort program and
advised us when we converted it to use FG. Tim Tregubov
set up our Beowulf cluster and answered myriad questions.
Finally, we thank MPI Software Technology, Inc., for their
assistance in installing and using ChaMPIon/Pro.

References

[1] Lars Arge, Rakesh Barve, David Hutchinson, Octa-
vian Procopiuc, Laura Toma, Darren Erik Vengroff,
and Rajiv Wickremesinghe. TPIE User Manual and
Reference. Department of Computer Science, Duke
University. Draft of August 29, 2002.

[2] Maurice J. Bach. The Design of the UNIX Operating
System. Prentice-Hall, 1986.

[3] Lauren M. Baptist and Thomas H. Cormen. Multi-
dimensional, multiprocessor, out-of-core FFTs with
distributed memory and parallel disks. In Proceed-
ings of the Eleventh Annual ACM Symposium on Par-
allel Algorithms and Architectures, pages 242–250,
June 1999.

[4] Geeta Chaudhry. Parallel Out-of-Core Sorting: The
Third Way. PhD thesis, Dartmouth College, 2004.

[5] Geeta Chaudhry and Thomas H. Cormen. Getting
more from out-of-core columnsort. In 4th Work-
shop on Algorithm Engineering and Experiments
(ALENEX 02), pages 143–154, January 2002.

[6] Geeta Chaudhry, Thomas H. Cormen, and Eliza-
beth A. Hamon. Parallel out-of-core sorting: The
third way. Cluster Computing. To appear.

[7] Thomas H. Cormen and Alex Colvin. ViC*: A pre-
processor for virtual-memory C*. Technical Report
PCS-TR94-243, Dartmouth College Department of
Computer Science, November 1994.

[8] Thomas H. Cormen and Melissa Hirschl. Early ex-
periences in evaluating the Parallel Disk Model with
the ViC* implementation. Parallel Computing, 23(4–
5):571–600, June 1997.

[9] Thomas H. Cormen and David M. Nicol. Performing
out-of-core FFTs on parallel disk systems. Parallel
Computing, 24(1):5–20, January 1998.

[10] Thomas H. Cormen, Thomas Sundquist, and
Leonard F. Wisniewski. Asymptotically tight bounds
for performing BMMC permutations on parallel disk
systems. SIAM Journal on Computing, 28(1):105–
136, 1999.

[11] Thomas H. Cormen, Jake Wegmann, and David M.
Nicol. Multiprocessor out-of-core FFTs with dis-
tributed memory and parallel disks. In Proceed-
ings of the Fifth Workshop on I/O in Parallel and
Distributed Systems (IOPADS ’97), pages 68–78,
November 1997.

[12] Tom Leighton. Tight bounds on the complexity of
parallel sorting. IEEE Transactions on Computers,
C-34(4):344–354, April 1985.

[13] StreamIt Language Specification, Version 2.0.
http://www.cag.lcs.mit.edu/streamit/papers/
streamit-lang-spec.pdf, February 2003.

[14] Jeffrey Scott Vitter. External memory algorithms
and data structures: Dealing with MASSIVE DATA.
ACM Computing Surveys, 33(2):209–271, June 2001.

[15] Jeffrey Scott Vitter and Elizabeth A. M. Shriver. Al-
gorithms for parallel memory I: Two-level memories.
Algorithmica, 12(2/3):110–147, August and Septem-
ber 1994.

8


