CS 10:

Problem solving via Object Oriented
Programming

Relationships

2. Four common representations

3. Implementation

Graphs are a useful way to represent

relationships between Objects

My coworkers

The Metropolitan Dartmouth
Museum of Art
Lila Dave
Leslie Weijia
= e =
Nick Reza
Ellen Dan

Abby Kirby

Start up

Graphs are a useful way to represent

relationships between Objects

My coworkers

The Metropolitan Dartmouth
Museum of Art
Lila Dave
Leslie Weijia
= e =
Nick Reza

* | know everyone

Ellen Dan

Abby Kirby

Start up

Graphs are a useful way to represent

relationships between Objects

My coworkers

The Metropolitan Dartmouth
Museum of Art
tseu Lila Dave
Leslie Weijia
= e =
Nick Reza

* | know everyone

e Rezaand Dan do
not know each Ellen Dan
other directly

Abby Kirby

Start up 5

Graphs are a useful way to represent

relationships between Objects

My coworkers

The Metropolitan Dartmouth
M f Art
useum o Lila Dave
Leslie Weijia
s e =
Nick Reza

* | know everyone
e Rezaand Dan do

not know each Ellen Dan
other directly
 Butl could Abby Kirby

introduce them
(there is a path) Start up 6

Graphs are a useful way to represent

relationships between Objects

My coworkers

The Metropolitan Dartmouth
Museum of Art
tseu Lila Dave
Leslie Weijia
s e =
Nick Reza

* | know everyone

e Reza and Dan do
not know each Ellen Dan
other directly

* Nodes are said
to be reachable
if there is a path

between them

* But | could Abby Kirby * There may be
introduce them

(there is a path) Start up

nodes that are
unreachable

Graphs are a useful way to represent

relationships between Objects

My coworkers

The Metropolitan Dartmouth
M f Art |
useum o Lila Dave
Leslie Weijia
s e =
Nick Reza

* | know everyone

e Rezaand Dan do
not know each Ellen Dan
other directly

* Nodes are said
to be reachable
if there is a path

between them

e But ! could Abby Kirby * There may be
introduce them

nodes that are
i Start u
.mage;nbc.cg:fhere s a path) P unreachable

Two types of relationships: Undirected and

directed

facebook

g =4 ' B

M <@ |

Undirected (Symmetrical) Directed (Asymmetrical)
If Alice is friends with Bob, If Alice follows Bob, then
then Bob is friends with Bob does not necessarily

Alice follow Alice

mages: Facebook, Twitter, 1designshop.com

Graphs represent directed or undirected

relationships with nodes and edges

Graphs Undirected ed
* Connect objectsin facebook
both directions
/ ° ”TWO'Way Street” UndIrECtEd graph

C\ Only undirected edges
4

Directed graph
Only directed edges

C/ . \ Mixed graph
undirected edges

Nodes (vertices)

* Represent objects .

e Could be a person or
city or computer or
intersection of roads...

 Connect objectsina
single directions
“One-way street”

10

Both nodes and edges can hold

information about the relationship

Graphs

Nodes

e Represent an Object
* Can be as simple as a String

C\ * Could be more complex like an
4 Object from a Person Class
Edges
* Can hold information about
C/ @ relationship
* Distance between cities

e Capacity of a pipe

e Label of relationship type
(“follower”, “friend”, “co-
worker”)

11

Graph interface defines several useful

methods
Graph.java Create/alter graph structure
insertVertex (v)
\ Interface on Add node v to graph

course web page insertDirected (u, v) /Undirected (u, v)

Add edge to graph between node u and
O node v
removeVertex (v) /removeDirected (u, v) /
removeUndirected (u, v)
Remove node v or edge fromu to v

p- Use graph
<:// outDegree (v) /inDegree (v)

Count of edges out of or into node v
outNeighbors (v) /inNeighbors (v)

Other nodes connected from/to node v
haskEdge (u, v)

True if node u connected to node v
getLabel (u, v)

Return label on edge from node u to node v

We can use Graph ADT methods to answer

Interesting questions

The Metropolitan Dartmouth

Museum of Art Questions we can answer

Lila Dave

LeslieB Me Q Ron .

Nick Reza

Ellen Dan

Abby Kirby

Start up

Who is the most connected?
(most in edges)

Who are mutual acquaintances
(“cligues” where all nodes have
edges to each other)

Who is a friend-of-a-friend but

is not yet a friend? (breadth-
first search, next class)

13

1. Graphs
» 2. Four common representations

3. Implementation

14

Graphs are commonly represented in one

of four different ways

Common Graph representations
» 1. Edge List
O

2. Adjacency List

3. Adjacency Matrix

C/ @

4. Adjacency Map

15

Edge Lists create an unordered list of

vertex pairs where each entry is an edge

1. Edge List {E:(‘f;:;tnode#} { {0,1}, {0,4}, {1,2}, {1,3},
List of edges ’ 3}, {3,4} '}

Node O

Y

O

This approach is mainly used to explain
concepts, not used in production code

Notes:

* Number nodes 0..n-1

e Edge List stores pairs of indexes that
reference nodes

* Each Edge List entry represents an edge
between two nodes

* mtotal entries in Edge List

@

A . Node 3 * Can be ordered to show directed edges
Ssume: * Insert edge fast, just add to list

n nodes (here 5) * Everything else slow

m edges (here 7) e Example: removevertex is B(m), have to

remove all edges to/from node, so search
all edges leading to or from node 16

Graphs are commonly represented in one

of four different ways

Common Graph representations

1. Edge List
O

» 2. Adjacency List

3. Adjacency Matrix

C/ @

4. Adjacency Map

17

Adjacency Lists store adjacent nodes in a

List; gives improved performance

2. Adjacency List
List of Lists

O

C/ @&

Assume:
n nodes (here 5)

m edges (here 7) Trade

memory
for speed

0 +——={1]4
1| +—={0]|4]|2]3
2| 4+—=1]3
3| 4—=1]|4]|2
4| 4+—=3]0]1

Notes:

Two vertices are said to be adjacent
if there is an edge between them
Store List of nodes in or out of each
vertex (same if undirected graph)
Might keep two lists, one for in
neighbors and one for out neighbors
Faster to get neighbors than Edge

List, just iterate in 6(degree(v)) vs.
B(m)

18

Graphs are commonly represented in one

of four different ways

Common Graph representations

1. Edge List
O

2. Adjacency List

» 3. Adjacency Matrix

C/ @

4. Adjacency Map

19

Adjacency Matrices create an n x n array to

indicate existence of edges

3. Adjacency Matrix] IT°1) 4
(2

N X narray 0lo0 1 0 0 1
from L1 01 11
210 1 0 1 0
O 300 1 1 0 1
4111 0 1 0

Notes:

 Create n x n matrix A, set A[i,j] = 1 if edge
from node i to node j, else O

C/ p- * Works if no parallel edges

* Undirected graph Ali,j] == Al[j,]
hasEdge (u, v) is now O(1), whereas in

Assume: Adjacency List it was 6(degree(u))
n nodes (here 5) * Finding neighbors now 8(n) because have
m edges (here 7) to check entire row or column

* Adding/removing vertices 8(n?), have to
rebuild entire matrix 20

Graphs are commonly represented in one

of four different ways

Common Graph representations

1. Edge List
O

2. Adjacency List

3. Adjacency Matrix

C/ @

» 4. Adjacency Map

21

Adjacency Maps create a Map for each

node and a second Map to adjacent nodes
4. Adjacency Map

0
Map of Maps =1 i g
1 N |
2 | ——f 1 2
3 3
Lo SR
1L 4
3
Notes:
* Create Map with vertex names as Key
C/ & * Map Value is a second Map of adjacent
vertices with vertex name as Key
Assume: * Valuein second Map is edge label
n nodes (here 5) * No need to number nodes in order

hasEdge (u,v) now expected O(1)
 Look upuinMap O(1)
* Look up v in second Map O(1)

m edges (here 7)

22

How a Graph is implemented has a big

impact on run-time performance

{{0,1}, o [F—{iT4] o2 3 2 L
(0,4}, (1,2}, 1[4 —folalzE (0,0 ‘E S
(1,3, 11,4y, 2t a0 =B -
(2,31, 340 H w0 .0 Nl
Method Edge Adjacency Adjacency Adjacency
List List Matrix Map
in/outDegree (V) B(m) O(1) B(n) O(1)
in/outNeighbors (v) §(m) 0(d,) B(n) 0(d,)
hasEdge (u, V) O(m) O(min(d,d,)) O(1) O(1)
insertVertex (v) 0O(1) O(1) B(n?) O(1)
removeVertex (v) B(m) O(d,) B(n?) 0(d,)
insertEdge (u, v, e) 0(1) 0(1) O(1) O(1)
removeEdge (u, v) B(m) O(1) O(1) O(1)

Best performance is shown in red

n = number of nodes (5), m = number of edges (7), d, = degree of node v »

1. Graphs

2. Four common representations

» 3. Implementation

24

Our implementation will allow a mixed

graph (directed and undirected edges)

friend
>
Bob Undirected edges
friend are two directed
%ﬁi edges, one in each
WO direction
Dartmouth P
Qs
\%ﬂ#
Charlie

25

AdjancyMapGraph.java tracks in and out

edges in two different Maps
AdjacencyMapGraph.java

12 public class AdjacencyMapGraph<V,E> implements Graph<V,E> {
13 protected Map<V, Map<V, E>>/out; // from vl to vZ2: { vl -> { vZ -> edge } }
14 protected Map<V, Map<V, E>% 1in; // to vl from v2: { vl -> { v2 -> edge } }

15

16+ /**

17 * Default constructor/ creating an empty graph
18 */

19= public AdjacencyMapGfaph() {

20 in = new HashMgp<V, Map<V, E>>();

21 out = new HashMap<V, Map<V, E>>();

22 }

22

Will normally declare something like:
Graph<String, String> relationships = new AdjacencyMapGraph<String, String>();

Vertices V will be Strings (e.g., someone’s name)
Edges E will be Strings (e.g., “follows” or “friend”)

26

out tracks edges leaving a vertex

AdjacencyMapGraph.java

12 public class AdjacencyMapGraph<V,E> implements Graph<V,E> {

13 protected Map<V, Map<V, E>> out; // from vl to vZ2: { vl -> { vZ -> edge } }
14 protected Map<V, <V, E>> 1in; // to vl from v2: { vl -> { v2 -> edge } }
15
16¢ /**
17 * Default constructor, creatifg.an empty graph
18 */ e out tracks edges leaving a vertex
19¢ public AdjacencyMapGraph() { * outis a Map with start vertex Key, Map Value
20 in = new HashMap<V, Map<V, E>>().; Value Mab h d t Kev. Ed Val
21 out = new HashMap<V, Map<V, E>>(); alue lviap has end vertex as Key, tdge as Value
22 }
77 friend
€
o= friend |] .
5:‘:-:' \ ol Key<String> Value<String>
§ .
LN Charlie Bob Friend
sollower _ Dartmouth Dartmouth Dartmouth Follower
& - lvi iend
____..---"7 T\f Elvis Elvis Frien
Elvis vertex edge
€ Eharlle 27
follower

in tracks edges entering a vertex

AdjacencyMapGraph.java

12 public class AdjacencyMapGraph<V,E> implements Graph<V,E> {

13 protected Map<V, Map<V, E>> out; // from vl to vZ2: { vl -> { vZ -> edge } }
14 protected Map<V, Map<V, E>> 1in; // to vl from v2: { vl -> { v2 -> edge } }
15
16 /**
17 * Default constructor, crea an empty graph
18 */ * in tracks edges entering a vertex
19¢ public AdjacencyMapGraph() { * inis a Map with end vertex Key, Map as Value
20 in = new HashMap<V, Map<V, E>>();. Value Mab h tart t Kev. Ed
21 out = new HashMap<V, Map<V, E>>(); alue lviap has star? vertex as Rey, kdge as
22 } Value
22

friend

qﬁ& Bob .
@ Charlie Bob Friend

___lﬂit" Dartmout q? Dartmouth vertex edge
N, Elvis

Elvis
€

-
f friend =I Key<String> Value<String>
= .-ﬁ
h

Cha rlle 28

follower

Inserting vertices and edges requires

updating both in and out

AdjacencyMapGraph.java * Adding new vertex adds Key to
both in and out

b * Value in both cases is set to

67= public void insertVertex(V v) { empty Map (e.g., new vertex

68 if (lout.keySet().contains(v)) { has no in or out edges)

69 out.put(v, new HashMap<V, E>()); // edges from v

70 in.put(v, new HashMap<V, E>()); // edges to -

71 }

72 } M Add directed edge from vertex u to

vertex v with edge label e

7’3
74¢ public void insertDirected(V . E e) {°* GetoutValue Map using vertex
7’5

out.get(u).put(v, e)¥ //out from u to v yasKey

76 in.get(v).put(u, e); //reversed for in, from v to u
77 }

78

79¢ public void insertUndirected(V u, V v, E e) {

80 // insert in both directions

81 insertDirected(u, v, e);

82 insertDirected(v, u, e);

83 }

oA
29

Inserting vertices and edges requires

updating both in and out

AdjacencyMapGraph.java * Adding new vertex adds Key to
both in and out

b * Value in both cases is set to

67= public void insertVertex(V v) { empty Map (e.g., new vertex

68 if (lout.keySet().contains(v)) { has no in or out edges)

69 out.put(v, new HashMap<V, E>()); // edges from v

70 in.put(v, new HashMap<V, E>()); // edges to -

71 }

72 } M Add directed edge from vertex u to

vertex v with edge label e

7’3
74¢ public void insertDirected(V . E e) {°* GetoutValue Map using vertex
7’5

out.get(u).put(v, e)¥ //out from u to v yasKey

76 in.get(v).put(u, e); //reversed for in, from v to u

;g } * Put new entry into Value Map
79= public void insertUndirected(V u, V v, E e) { W(;th destination vertex v and
80 // insert in both directions edge e

81 insertDirected(u, v, e);

82 insertDirected(v, u, e);

83 }

oA
30

Inserting vertices and edges requires

updating both in and out

AdjacencyMapGraph.java * Adding new vertex adds Key to

both in and out
b * Value in both cases is set to
67= public void insertVertex(V v) { empty Map (e.g., new vertex
68 if (lout.keySet().contains(v)) { has no in or out edges)
69 out.put(v, new HashMap<V, E>()); // edges from v
70 in.put(v, new HashMap<V, E>()); // edges to -
;_% } y M Add directed edge from vertex u to
73 vertex v with edge label e
74¢ public void insertDirected(V u, V v, E e) {°* Get out Value Map using vertex
75 out.get(u).put(v, e); //out from u to v yasKey
76 in.get(v).put(u, e);_//reversed for in, from v to u
;; ¥ * Put new entry into Value Map
79¢ public void insertUndirected(V u, E e) { with destination vertex v and
80 // insert in both directions edgee
31 insertDirected(u, v, e); * Repeat process, updating in for
82 insertDirected(v, u, e); incoming edge e into v from u

83 }

oA
31

We model undirected edges as directed

edges going in both directions
AdjacencyMapGraph.java

b
67¢ public void insertVertex(V v) {

68 1f (lout.keySet().contains(v)) {

69 out.put(v, new HashMap<V, E>()); // edges from v

70 in.put(v, new HashMap<V, E>()); // edges to -

71 }

72 }

73

74 public void insertDirected(V u, V v, E e) {

75 out.get(u).put(v, e); //out from u to v

76 in.get(v).put(u, e); //reversed for in, from v to u

77

78 d Adding undirected edge creates
79¢ public void insertUndirected(V u, V v, E e) { two directed edges

80 // insert in both directions * Oneedgefromutov

81 insertDirected(u, v, e); / * One edge fromvtou

82 insertDirected(v, u, e);

s 3 0—0

32

getLabel(u,v) returns the label on the edge

between u and v
AdjacencyMapGraph.java

0L
63= public E getLabel(V u, V v) {
64 return cut.get(u).get(v)i
65 }
b

getLabel(u,v) returns label on edge fromutov
e getlLabel(“Alice”, “Bob”) returns “Friend”
* First get Value Map for Key “Alice” from out

friend

£
f \ friend B=bl Key<String> Value<String>
o) .
< O Charlie Bob Friend
> Follower
ower Dartmouth Dartmouth Dartmouth _
_J--"‘"’ '\q‘? e Elvis —> Friend
Elvis - vertex edge
Charlie
follower

getLabel(u,v) returns the label on the edge

between u and v
AdjacencyMapGraph.java

0L
63= public E getLabel(V u, V v) {
64 return cut.get(u).get(v)i
65 }
b

getLabel(u,v) returns label on edge fromutov
» getLabel(“Alice”,”Bob”) returns “Friend”

* First get Value Map for Key “Alice” from out

* Next get use Key “Bob” to get Value String

=I Key<String> Value<String>
Bob .
Charlie Bob Friend

friend

nﬂﬂwﬂr Dartmouth Dartmouth Dartmouth FOI !Ower
--""'"-# T\q'? Elvis Elvis —>__ Friend
Elvis harl vertex edge
Charlie

getLabel(u,v) returns the label on the edge

between u and v
AdjacencyMapGraph.java

0L

63= public E getLabel(V u, V v) {

o4 t.get .get ;
65 ¥ return out.get(u).get(v); getLabel(u,v) returns label on edge fromutov
66 » getLabel(“Alice”,”Bob”) returns “Friend”
* First get Value Map for Key “Alice” from out
* Next get use Key “Bob” to get Value String
* Return “Friend”
friend
-
ai:-? ,;:\ friend =I Key<String>
P]
g Bob
ks) Charlie S
follower Dartmout %, Dartmouth artmou e
_____.--""7 \r" Elvis Elvis —> Friend
Elvis vertex edge
Charlle
follower

When removing edges and vertices, must

remove from both in and out Maps
AdjacencyMapGraph.java

Removing vertex v

o

-~ RBSe pub]_'i_c void removeVertex(V v) { ® RemOVE a" in Edges (Out frOm neighbor)
86 if (lout.keySet().contains(v)) return; o : .
87 //remove all edges to and from v / Remove all out edges.(ln from nelghbor)
88 // remove all in edges to v * Then remove v from in and out Maps
89 for (V u : inNeighbors(v)) { // u has an out edge to v
g? 3 out.get(u).remove(v); public Iterable<V> outNeighbors(V v} {
92 //remove all out edges from v — return out.get(v).keySet();
93 for (V w : outNeighbors(v)) {67;‘ w has an in ed }
94 in.get(w).remove(v); . . .
95 } public Iterable<V> inNeighbors(V v} {
96 //remove node from outer map return in.get(v).keySet();
97 in.remove(v); }
98 out.remove(v); .
99 } Iterable must have an iterator method
190
2101= public void removeDirected(V u, V v) {
102 //remove edge from u to v in both in and out maps

103 in.get(v).remove(u); //remove Wom in to v
104 out.get(u).remove(v); //remove Wom out of u
o } * Removing directed edge from u to v

2107 public void removeUndirected(V u, Vv) { * Remove from both in and out Maps
108 // remove in both directions . . .
«—— * Removing undirected, call removeDirected|)

109 removeDirected(u, v);
110 removeDirected(v, u); twice
111 }

112 36

RelationshipTest.java: create graph with

both directed and non-directed edges

RelationshipTest.java

4 public class RelationshipsTest {

Declare graph:
Vertices V are Strings

friend

Se public static void main(S args) { Edges E are Strings Alice
) Graph<String, String> relationships = new AdjacencyMapGrar €
/ > q; friend t
8 relationships.insertVertex("Alice"); EF' E
9 relationships.insertVertex("Bob"); — Add nodes 9 %;*
10 relationships.insertVertex("Charlie");
11 relationships.insertVertex("Dartmouth"); D“nwﬂf Dartmuuth G
12 relationships.insertVertex("Elvis"); ____.--""7 \
13 relationships.insertDirected("Alice", "Dartmouth", "follow Elvis
14 relationships.insertDirected("Bob", "Dartmouth", "follower P Charhe
15 relationships.insertDirected("Charlie"”, "Dartmouth", "foll follower
16 relationships.insertDirected("Elvis", "Dartmouth", "follower);
17 relationships.insertUndirected("Alice"”, "Bob", "friend"); // symmetric, undirected edg
18 relationships.insertDirected("Alice", "Elvis", "friend"); // not symmetric, directed e
19 relationships.insertDirected("Charlie"”, "Elvis", "follower");
20
21 System.out.println(“The graph:"); N\
22 System.out.println(relationships); Add edges
Output (from implicit toString() call):
The graph:
Vertices: [Bob, Dartmouth, Alice, Elvis, Charlie]
Out edges: {Bob={Dartmouth=follower, Alice=friend}, Dartmouth={},
Alice={Dartmouth=follower, Bob=friend, Elvis=friend}, Elvis={Dartmouth=follower}, -

Charlie={Dartmouth=follower, Elvis=follower}}

RelationshipTest.java: create graph with

both directed and non-directed edges

RelationshipTest.java

o ° . . .
: Ssten.au printng e o inDegree(u) gives count of friend
ystem. out.println(relationships);
2 edges coming into u Al "
124 System.out.println("\nLinks to Dartmouth = " + relationships.inDegree("Dartmouth")); ce
25
26 System.out.println("\nLinks from Alice:"); Sy
27 for (String to : relationships.outNeighbors("Alice")) "'EI':? E'l,.--" f"E"d
28 System.out.println(to + " ("+relationships.getlLabel("Alice", to)+")"); = ':."
29 i
130 System.out.println("\nLinks to Dartmouth:"); E-'_ 4‘5."
31 for (String from : relationships.inNeighbors("Dartmouth"))
32 System.out.println(from + " ("+relationships.getlLabel(from, "Dartmouth")+")");
i wE:T Dartmouth
134 System.out.println("\nElvis has left the building"); G'.-";-"'
35 relationships.removeVertex("Elvis");
36 System.out.println("\nLinks from Alice:"); EI '
37 for (String to : relationships.outNeighbors("Alice")) VIS i
38 System.out.println(to + " ("+relationships.getLabel("Alice", to)+")"); < Ch-ElrllF_!
39
40 System.out.println("\nAlice & Charlie work together"); fﬂ”ﬂWEf
41 relationships.insertUndirected("Alice", "Charlie", "co-worker™);
42 System.out.println("\nLinks from Alice:");
43 for (String to : relationships.outNeighbors("Alice™))
44 System.out.println(to + " ("+relationships.getLabel("Alice", to)+")");
45 System.out.println("\nLinks from Charlie:");
46 for (String to : relationships.outNeighbors("Charlie™))
47 System.out.println(to + " ("+relationships.getLabel("Charlie”, to)+")"); Output:
48
149 System.out.println("\nAlice unfrieds Bob"); 1 —
50 relationships.removeDirected("Alice"”, "Bob"); Llnks to DartmOUth 4
51 System.out.println("and Charlie gets fired");
52 relationships.removeUndirected("Alice", "Charlie");
53 System.out.println("\nLinks from Alice:");
54 for (String to : relationships.outNeighbors("Alice™))
55 System.out.println(to + " ("+relationships.getLabel("Alice", to)+")");
56
157 System.out.println("\nThe final graph:");
58 System.out.println(relationships);

38

RelationshipTest.java: create graph with

both directed and non-directed edges

RelationshipTest.java] _
E; System.out.println("The graph:"); ¢ OUtNElghbors(u) glves ﬁ"iend

22 System. out.println(relationships);

23

neighboring vertices fromu . .

I

124 System.out.println("\nLinks to Dartmouth = " + r ionships.inDegree("Dartmouth™)); - B{]b

25 o . » getla eI(u,vi gets edge :

26 System.out.println("\nLinks from Alice:"); Sy A -f"E"d 4,

27 for (String to : relati hi tNeighb "Alice" L/ T ¥ &
g to : relationships.outNeighbors("Alice") La'a(e)l- tr mu tO Vv "'EI"' .-;f-"

28 System.out.println(to + " ("+relationships.getLaf®1("All h ")(,) = % ':-:lﬁ

29 S

130 System.out.println("\nLinks to Dartmouth:"); E-'_ "Eﬁ 4‘\&

31 for (String from : relationships.inNeighbors("Dartmouth"))

32 System.out.println(from + " ("+relationships.getlLabel(from, "Dartmouth")+")");

i follower Dartmouth .

134 System.out.println("\nElvis has left the building"); -_____.--'* ,,.";,r

35 relationships.removeVertex("Elvis"); \%

36 System.out.println("\nLinks from Alice:"); EI ' "-'-‘],.h

37 for (String to : relationships.outNeighbors("Alice")) VIS

38 System.out.println(to + " ("+relationships.getLabel("Alice", to)+")");

39

40 System.out.println("\nAlice & Charlie work together"); fﬂ”ﬂWEf

41 relationships.insertUndirected("Alice", "Charlie", "co-worker™);

42 System.out.println("\nLinks from Alice:");

43 for (String to : relationships.outNeighbors("Alice™))

44 System.out.println(to + " ("+relationships.getLabel("Alice", to)+")");

45 System.out.println("\nLinks from Charlie:");

46 for (String to : relationships.outNeighbors("Charlie™))

47 System.out.println(to + " ("+relationships.getLabel("Charlie”, to)+")"); Output:

48

149 System.out.println("\nAlice unfrieds Bob"); 1 1 .

50 relationships.removeDirected("Alice"”, "Bob"); Llnks from Allce'

51 System.out.println("and Charlie gets fired");

52 relationships.removeUndirected("Alice", "Charlie"); Dartmouth (fO”OWEF)

53 System.out.println("\nLinks from Alice:"); .

54 for (String to : relationships.outNeighbors("Alice")) BOb (frlend)

55 System.out.println(to + " ("+relationships.getLabel("Alice", to)+")");

56 1 1

157 System.out.println("\nThe final graph:"); EIVIS (frlend)

58 System.out.println(relationships);

P

Charlie

39

RelationshipTest.java: create graph with

both directed and non-directed edges

RelationshipTest.java

e . . . o .
: Ssten.au printng e o inNeighbors(u) gives friend
ystem. out.println(relationships);
2 neighbors on incoming Al "
124 System.out.println("\nLinks to Dartmouth = " + relatighships.inDegree("Dartmouth")); ce
25
26 System.out.println("\nLinks from Alice:");
27 for (String to : relationships.outNeighbors("Ali

e e - edges . rond
-out. Links. ce: _ rien
: . bl "'EI':? t;:l.-"""
28 System.out.println(to + " ("+relationships @etlLabel("Alice", to)+")"); =y '::,
29 oy
130 System.out.println("\nLinks to Dartmouth:") 2 "IEE:'

31 for (String from : relationships.inNeighbors("Dartmouth"))

32 System. .println(from + " ("+relationships.getLabel(from, "Dartmouth")+")");

i Y out.p ((ps.g () 2+")"; wE:T Dartmuuth

134 System.out.println("\nElvis has left the building"); G'.-";-"'
35 relationships.removeVertex("Elvis");

36 System.out.println("\nLinks from Alice:"); EI '

37 for (String to : relationships.outNeighbors("Alice")) VIS i
38 System.out.println(to + " ("+relationships.getlLabel("Alice", to)+")"); f‘ ” ChﬂrIIE
39

40 System.out.println("\nAlice & Charlie work together"); ollower

41 relationships.insertUndirected("Alice", "Charlie", "co-worker™);

42 System.out.println("\nLinks from Alice:");

43 for (String to : relationships.outNeighbors("Alice™))

44 System.out.println(to + " ("+relationships.getLabel("Alice", to)+")");

45 System.out.println("\nLinks from Charlie:");

46 for (String to : relationships.outNeighbors("Charlie™))

47 System.out.println(to + " ("+relationships.getLabel("Charlie”, to)+")"); Output:

48

149 System.out.println("\nAlice unfrieds Bob"); 1 .

50 relationships.removeDirected("Alice"”, "Bob"); Llnks to DartmOUth'

51 System.out.println("and Charlie gets fired");

52 relationships.removeUndirected("Alice", "Charlie"); BOb (fO”OWGF)

53 System.out.println("\nLinks from Alice:"); .

54 for (String to : relationships.outNeighbors("Alice")) AI|Ce (fO”OWEr)

55 System.out.println(to + " ("+relationships.getLabel("Alice", to)+")");

56 s)

157 System.out.println("\nThe final graph:"); EIVIS f0|lower

58 System.out.println(relationships);

Charlie (follower)

40

RelationshipTest.java: create graph with

both directed and non-directed edges

RelationshipTest.java

21 System.out.pr‘?ntln("The gr‘qph':"); ﬁ"iend

22 System. out.println(relationships); h

23

124 System.out.println("\nLinks to Dartmouth = " + relationships.inDegree("Dartmouth")); AIICE -

25

26 System.out.println("\nLinks from Alice:"); Sy

27 for (String to : relationships.outNeighbors("Alice")) "'EI':? E'l,.--" f"E"d E'.‘"
28 System.out.println(to + " ("+relationships.getlLabel("Alice", to)+")"); = ':."
29 i
130 System.out.println("\nLinks to Dartmouth:"); E-'_ 4‘5."
31 for (String from : relationships.inNeighbors("Dartmouth"))

32 System. .println(from + " ("+relationships.getLabel(from, "Dartmouth")+")");

i Y out.p C C ps.g C) H""; UWET Dartmuuth

134 System.out.println("\nElvis has left the building"); Remo‘['ng nOde EI\"S G'.-";-"'

35 relationships.removeVertex("Elvis"); \

36 System.out.println("\nLinks from Alice:"); '

37 for (String to : relationships.outNeighbors("Alice")) also removes Ilnk from EI“IE € |:h I'
38 System.out.println(to + " ("+relationships.getlLabely jAlice" ") drig
39 Alicg aifd’others follower

40 System.out.println("\nAlice & Charlie work together");

41 relationships.insertUndirected("Alice", "Charlie", "co-worker™);

42 System.out.println("\nLinks from Alice:");

43 for (String to : relationships.outNeighbors("Alice™))

44 System.out.println(to + " ("+relationships.getLabel("Alice", to)+")");

45 System.out.println("\nLinks from Charlie:");

46 for (String to : relationships.outNeighbors("Charlie™))

47 System.out.println(to + " ("+relationships.getLabel("Charlie”, to)+")");

48

149 System.out.println("\nAlice unfrieds Bob");

50 relationships.removeDirected("Alice"”, "Bob");

51 System.out.println("and Charlie gets fired");

52 relationships.removeUndirected("Alice", "Charlie");

53 System.out.println("\nLinks from Alice:");

54 for (String to : relationships.outNeighbors("Alice™))

55 System.out.println(to + " ("+relationships.getLabel("Alice", to)+")");

56

157 System.out.println("\nThe final graph:");

58 System.out.println(relationships);

41

RelationshipTest.java: create graph with

both directed and non-directed edges

RelationshipTest.java

21 System.out.pr‘?ntln("The gr‘qph':"); ﬁ"iend

22 System. out.println(relationships); 3

23 "

124 System.out.println("\nLinks to Dartmouth = " + relationships.inDegree("Dartmouth")); AIICE B{]b
25

26 System.out.println("\nLinks from Alice:"); A H

27 for (String to : relationships.outNeighbors("Alice")) U,.;..- f"E"d E'.‘"
28 System.out.println(to + " ("+relationships.getlLabel("Alice", to)+")"); % ':-:lﬁ
29 oy
130 System.out.println("\nLinks to Dartmouth:"); "Eﬁ 4‘5."

31 for (String from : relationships.inNeighbors("Dartmouth"))

32 System. .println(from + " ("+relationships.getLabel(from, "Dartmouth")+")");

i Y out.p C (ps.g C) 2+""); Dartmuuth P

134 System.out.println("\nElvis has left the building"); Remo‘['ng nOde EI\"S G'.-";-"'

35 relationships.removeVertex("Elvis"); \ %
36 System.out.println("\nLinks from Alice:"); 1 ol
37 for (String to : relationships.outNeighbors("Alice")) also removes Ilnk from |:h I'
38 System.out.println(to + " ("+relationships.getlLabely jAlice" ") drig
39 Amﬂﬁ aﬁ)d dthers

40 System.out.println("\nAlice & Charlie work together");

41 relationships.insertUndirected("Alice", "Charlie", "co-worker™);

42 System.out.println("\nLinks from Alice:");

43 for (String to : relationships.outNeighbors("Alice™))

44 System.out.println(to + " ("+relationships.getLabel("Alice", to)+")");

45 System.out.println("\nLinks from Charlie:");

46 for (String to : relationships.outNeighbors("Charlie™))

47 System.out.println(to + " ("+relationships.getLabel("Charlie”, to)+")"); Output:

48

149 System.out.println("\nAlice unfrieds Bob"); 1 1 .

50 relationships.removeDirected("Alice"”, "Bob"); Llnks from Allce'

51 System.out.println("and Charlie gets fired");

52 relationships.removeUndirected("Alice", "Charlie"); Dartmouth (fO”OWEF)

53 System.out.println("\nLinks from Alice:"); .

54 for (String to : relationships.outNeighbors("Alice")) BOb (frlend)

55 System.out.println(to + " ("+relationships.getLabel("Alice", to)+")");

56

157 System.out.println("\nThe final graph:");

58 System.out.println(relationships);

42

RelationshipTest.java: create graph with

both directed and non-directed edges

RelationshipTest.java

21 System.out.pr‘?ntln("The gr‘qph':"); ﬁ"iend

22 System. out.println(relationships); 3

23 "

124 System.out.println("\nLinks to Dartmouth = " + relationships.inDegree("Dartmouth")); AIICE - B{]b
25

26 System.out.println("\nLinks from Alice:"); A H

27 for (String to : relationships.outNeighbors("Alice")) U,.;..- f"E"d E'.‘"
28 System.out.println(to + " ("+relationships.getlLabel("Alice", to)+")"); % ':-:lﬁ
29 oy
130 System.out.println("\nLinks to Dartmouth:"); C "Eﬁ 4‘5."

31 for (String from : relationships.inNeighbors("Dartmouth")) O\

32 System.out.println(from + " ("+relationships.getlLabel(from, "Dartmouth")+")"); @ Dartmuu.th

33 . . (0)% %

134 System.out.println("\nElvis has left the building"); Add|ng ||nk between Q .-";-l"

35 relationships.removeVertex("Elvis"); Vad %El
36 System.out.println("\nLinks from Alice:"); 1 1 ot
37 for (String to : relationships.outNeighbors("A#ice™)) Charlle and Allce i
38 System.out.println(to + " ("+relationsh#ps.getLabel("Alice"”, to)+")"); Ch-ElrllF_!
39

40 System.out.println("\nAlice & CharlieMork together");

41 relationships.insertUndirected("Alice", "Charlie", "co-worker™); Output:

42 System.out.println("\nLinks from Alice:"); I h I k h

43 for (String to : relationships.outNeighbors("Alice™))

44 System.out.println(to + " ("+relationships.getLabel("Alice", to)+")"); A ICE & C arlie wor toget er

45 System.out.println("\nLinks from Charlie:");

46 for (String to : relationships.outNeighbors("Charlie™))

47 System.out.println(to + " ("+relationships.getLabel("Charlie”, to)+")"); . .

48 Links from Alice:

149 System.out.println("\nAlice unfrieds Bob"); h f II

50 relationships.removeDirected("Alice"”, "Bob"); ()

51 System.out.println("and Charlie gets fired"); DartmOUt ofiower

52 relationships.removeUndirected("Alice", "Charlie"); (H)

53 System.out.println("\nLinks from Alice:"); BOb frlend

54 for (String to : relationships.outNeighbors("Alice™)) .

55 System.out.println(to + " ("+relationships.getLabel("Alice", to)+")"); Char“e (CO'WO rker)

56

157 System.out.println("\nThe final graph:");

58 System.out.println(relationships);

Links from Charlie:
Dartmouth (follower)

43
Alice (co-worker)

RelationshipTest.java: create graph with

both directed and non-directed edges

RelationshipTest.java

21 System.out.println("The graph:");

22 System. out.println(relationships);

23 Ar

124 System.out.println("\nLinks to Dartmouth = " + relationships.inDegree("Dartmouth")); ce - B{]b
25

26 System.out.println("\nLinks from Alice:"); A H

27 for (String to : relationships.outNeighbors("Alice")) U,.;..- f"E"d E'.‘"
28 System.out.println(to + " ("+relationships.getlLabel("Alice", to)+")"); % ':-:lﬁ
29)
130 System.out.println("\nLinks to Dartmouth:"); C "Eﬁ 4‘5."

31 for (String from : relationships.inNeighbors("Dartmouth")) O\

32 System. .println(from + " ("+relationships.getLabel(from, "Dartmouth")+")");

2 ystem. out.p C C Ps.g (from, >+")"); LI/O/. Dartmouth p

134 System.out.println("\nElvis has left the building"); AI|Ce removes Edge to Q G'.-";-"'

35 relationships.removeVertex("Elvis"); Vad %

36 System.out.println("\nLinks from Alice:"); BOb "-'-‘],.h
37 for (String to : relationships.outNeighbors("Alice})) i
38 System.out.println(to + " ("+relationships.gejlabel("Alice", to)+")"); ChﬂrIIE
39

40 System.out.println("\nAlice & Charlie work togetfier");

41 relationships.insertUndirected("Alice", "Charlig", "co-worker™); Output:

42 System.out.println("\nLinks from Alice:"); I f d b

43 for (String to : relationships.outNeighbors("Afice™))

44 System.out.println(to + " ("+relationshipg.getLabel("Alice", to)+")"); A ICE unfriends BO

45 System.out.println("\nLinks from Charlie:"); H H

46 for (String to : relationships.outNeighbors(JCharlie™)) and Charlle gets fl red

47 System.out.println(to + " ("+relationshjps.getLabel("Charlie”, to)+")");

48 .

149 System.out.println("\nAlice unfrieds Bob"); And Charlle no . .

50 r‘e'lationships:r‘emovEDir‘ected("‘Alice", "'Bob::); L|nks fr‘om Allce:

51 System.out.println("and Charlie gets fired"); e Ionger co_

52 relationships.removeUndirected("Alice", "Charlie"); Dartmouth (follower)

53 System.out.println("\nLinks from Alice:"); k

54 for (String to : relationships.outNeighbor‘s("Alice")wor er

55 System.out.println(to + " ("+relationships.getLabel("Alice", to)+")");

56

157 System.out.println("\nThe final graph:");

58 System.out.println(relationships);

44

RelationshipTest.java: create graph with

both directed and non-directed edges

RelationshipTest.java

21 System.out.println("The graph:");

22 System. out.println(relationships);

23 "

124 System.out.println("\nLinks to Dartmouth = " + relationships.inDegree("Dartmouth")); AIICE - B{]b
25

26 System.out.println("\nLinks from Alice:"); A H

27 for (String to : relationships.outNeighbors("Alice")) U,.;..- f"E"d E'.‘"
28 System.out.println(to + " ("+relationships.getlLabel("Alice", to)+")"); %‘ ':-:lﬁ
29 S
130 System.out.println("\nLinks to Dartmouth:"); "Eﬁ 4‘\&

31 for (String from : relationships.inNeighbors("Dartmouth"))

32 System.out.println(from + " ("+relationships.getlLabel(from, "Dartmouth")+")"); Dartmﬂuth P

33

134 System.out.println("\nElvis has left the building"); G'.-':-l"

35 relationships.removeVertex("Elvis"); %

36 System.out.println("\nLinks from Alice:"); ol
37 for (String to : relationships.outNeighbors("Alice")) i
38 System.out.println(to + " ("+relationships.getlLabel("Alice", to)+")"); ChﬂrIIE
39

40 System.out.println("\nAlice & Charlie work together");

41 relationships.insertUndirected("Alice", "Charlie", "co-worker™);

42 System.out.println("\nLinks from Alice:");

43 for (String to : relationships.outNeighbors("Alice™))

44 System.out.println(to + " ("+relationships.getLabel("Alice", to)+")");

45 System.out.println("\nLinks from Charlie:");

46 for (String to : relationships.outNeighbors("Charlie™))

47 System.out.println(to + " ("+relationships.getLabel("Charlie”, to)+")");

48

149 System.out.println("\nAlice unfrieds Bob");

50 relationships.removeDirected("Alice"”, "Bob");

51 System.out.println("and Charlie gets fired");

52 relationships.removeUndirected("Alice", "Charlie");

53 System.out.println("\nLinks from Alice:");

54 for (String to : relationships.outNeighbors("Alice™))

55 System.out.println(to + " ("+relationships.getLabel("Alice", to)+")");

56 o

157 System.out.println("\nThe final gr‘aph:");oultpult'

58 System.out.println(relationships); Th e f|n al gra ph .

Vertices: [Bob, Dartmouth, Alice, Charlie]
Out edges: {Bob={Dartmouth=follower, Alice=friend}, Dartmouth={};5
Alice={Dartmouth=follower},Charlie={Dartmouth=follower}}

46

	Slide 1
	Slide 2: Agenda
	Slide 3: Graphs are a useful way to represent relationships between Objects
	Slide 4: Graphs are a useful way to represent relationships between Objects
	Slide 5: Graphs are a useful way to represent relationships between Objects
	Slide 6: Graphs are a useful way to represent relationships between Objects
	Slide 7: Graphs are a useful way to represent relationships between Objects
	Slide 8: Graphs are a useful way to represent relationships between Objects
	Slide 9: Two types of relationships: Undirected and directed
	Slide 10: Graphs represent directed or undirected relationships with nodes and edges
	Slide 11: Both nodes and edges can hold information about the relationship
	Slide 12: Graph interface defines several useful methods
	Slide 13: We can use Graph ADT methods to answer interesting questions
	Slide 14: Agenda
	Slide 15: Graphs are commonly represented in one of four different ways
	Slide 16: Edge Lists create an unordered list of vertex pairs where each entry is an edge
	Slide 17: Graphs are commonly represented in one of four different ways
	Slide 18: Adjacency Lists store adjacent nodes in a List; gives improved performance
	Slide 19: Graphs are commonly represented in one of four different ways
	Slide 20: Adjacency Matrices create an n x n array to indicate existence of edges
	Slide 21: Graphs are commonly represented in one of four different ways
	Slide 22: Adjacency Maps create a Map for each node and a second Map to adjacent nodes
	Slide 23: How a Graph is implemented has a big impact on run-time performance
	Slide 24: Agenda
	Slide 25: Our implementation will allow a mixed graph (directed and undirected edges)
	Slide 26: AdjancyMapGraph.java tracks in and out edges in two different Maps
	Slide 27: out tracks edges leaving a vertex
	Slide 28: in tracks edges entering a vertex
	Slide 29: Inserting vertices and edges requires updating both in and out
	Slide 30: Inserting vertices and edges requires updating both in and out
	Slide 31: Inserting vertices and edges requires updating both in and out
	Slide 32: We model undirected edges as directed edges going in both directions
	Slide 33: getLabel(u,v) returns the label on the edge between u and v
	Slide 34: getLabel(u,v) returns the label on the edge between u and v
	Slide 35: getLabel(u,v) returns the label on the edge between u and v
	Slide 36: When removing edges and vertices, must remove from both in and out Maps
	Slide 37: RelationshipTest.java: create graph with both directed and non-directed edges
	Slide 38: RelationshipTest.java: create graph with both directed and non-directed edges
	Slide 39: RelationshipTest.java: create graph with both directed and non-directed edges
	Slide 40: RelationshipTest.java: create graph with both directed and non-directed edges
	Slide 41: RelationshipTest.java: create graph with both directed and non-directed edges
	Slide 42: RelationshipTest.java: create graph with both directed and non-directed edges
	Slide 43: RelationshipTest.java: create graph with both directed and non-directed edges
	Slide 44: RelationshipTest.java: create graph with both directed and non-directed edges
	Slide 45: RelationshipTest.java: create graph with both directed and non-directed edges
	Slide 46

