
CS 55:
Security and Privacy

Hashing



2
Source: https://xkcd.com/421/

Hash browns



3

Let’s start with a game

Rules
You and I will both pick a number, if the sum is:
• Even – I win
• Odd – you win

Protocol
• Tell me your number!
• I will then tell you mine

Adapted from Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.



4

Agenda

1. Hashing intro

2. Common hash functions

3. Hashing use cases

4. MACs and attacks



5

Back in CS10 we looked at hashing to find 
an index in table based on an object

Object Table indexHash 
function

Step 1: convert object to integer
• Range –infinity to infinity 
• Use hashCode()

Step 2: constrain to fall within 
hash table (hashCode %m)

Maps any 
object into 
table index 
from 0..m-1

Output is 
fixed length

CS10 hash function

Goals:
1. Compute 

quickly and 
consistently

2. Spreads keys 
over the table

3. Small changes 
give different 
numbers



6

Crypto hash functions add two properties: 
irreversibility and collision resistance

Input Fixed-length 
digest

Hash 
function

Input:
“my secret message”

Digest:
061ef7d71233886440043538e4d91de3

Hash function is a deterministic mathematical function
1. Irreversible – Cannot find plain text in “reasonable” amount of time given 

only the hash digest output (one-way)
2. Collision resistant – different plaintext do not produce same hash digest
Pseudorandom - change any bit and get very different result 

Crypto hash function Can think of a hash as a 
“fingerprint” of input



7

Let’s visit the  game with a new protocol
Rules
You and I will both pick a number, if the sum is:
• Even – I win
• Odd – you win

Protocol
• I hash my number and give you the result (commitment)
• You then tell me your number
• I then tell you my number
• You can confirm I didn’t cheat by hashing my number and 

comparing with commitment
Is this fair to both parties?  Why or why not?
What could be a problem with this protocol?

Adapted from Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.



8

Agenda

1. Hashing intro

2. Common hash functions

3. Hashing use cases

4. MACs and attacks



9

MD5 and SHA are popular choices, but 
SHA-2 is currently the most popular choice
MD5 (Message Digest 5)

• Popular choice of hash function
• Designed by Ron Rivest of RSA fame in 1991
• Collision resistance broken in 2004
• Can still use, but not if collision resistance is important

SHA (Secure Hash Algorithm)
• SHA-1 

• 160-bit hash function
• Not recommended after 2005
• Collision found in 2017 (two different pdfs gave same hash)

• SHA-2
• Two popular flavors: SHA-256 and SHA-512 (number = length of hash)
• No known exploits… yet

• SHA-3
• New as of 2015
• Works differently from MD5 and SHA-2 (in case gets SHA2 broken)

SHA-2 the most common 
choice today

Don’t use MD5 anymore for 
most purposes



10

MD5, SHA-1 and SHA-2 use the Merkle-
Damgard construction

M1

IV

M2 Mn|| P

Digest

…

Message split into fixed sized blocks, processed one at a time
Fixed size current state initialized by IV
Each step uses the output of the prior step as input
Digest is fixed length:
• MD5: 16 bytes (128 bits)
• SHA-256: 32 bytes (256 bits)
• SHA-512: 64 bytes (512 bits)

Merkle-Damgard



11

SHA-256 returns a 256-bit (32 byte) digest 
despite arbitrary length input

Adapted from https://www.youtube.com/watch?v=DMtFhACPnTY, see https://youtu.be/f9EbD6iY9zI for detailed explanation of how SHA-2 works

SHA-256
Break message in 512-bit blocks, pad last block

SHA256(“abc”)
Input: abc (string)
bytes: [97, 98, 99] #ascii values
Message block: 0011000010110001001100011 #abc in binary

Pad message to make length a multiple of 512 bits: 
• Add one bit 
• Fill with zeros until last 64 bits
• Last 64 bits are length of message

Message block: 00110000101100010011000111000…11000 (length 24 bits = 3 bytes)

Message block is now 512 bits long

SHA256(“abc”) 
=  ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad



Break message in 512-bit blocks, pad last block
Calculate initial state of eight 32-bit variables based on square root of first 8 prime numbers
Calculate constants K = cube root of first 64 primes
Split input in to 16 words of length 32 bits (512 bits)
Create 48 more words from first 16 words

12

SHA-256 returns a 256-bit (32 byte) digest 
despite arbitrary length input

Compress
• State (A—H) is 256 bits long
• Changes made to state as message 

blocks fed in
• Math in compress is modulo 232 so 

variables always stay at 32 bits
• Modulo looses information, making it 

hard to reverse 
Round:
Ch(E,F,G) = (E⋀F)⊕(⌐E⋀G)
Ma(A,B,C) = (A⋀B)⊕(A⋀C)⊕(B⋀C) 
𝚺0(A) = (A⋙2)⊕(A⋙13)⊕(A⋙22) 
𝚺1(E) = (E⋙6)⊕(E⋙11)⊕(E⋙25) 
⊞ = addition modulo 32
Output A->B, B->C, … A=Ch+Ma+𝚺0+𝚺1%32
Repeat 63 times

SHA-256

M1

Simplified

Adapted from https://www.youtube.com/watch?v=DMtFhACPnTY, see https://youtu.be/f9EbD6iY9zI for detailed explanation of how SHA-2 works

64 
rounds



13

SHA-256 returns a 256-bit (32 byte) digest 
despite arbitrary length input
SHA-256 Simplified

Adapted from https://www.youtube.com/watch?v=DMtFhACPnTY, see https://youtu.be/f9EbD6iY9zI for detailed explanation of how SHA-2 works

M2M1 Repeat for each 
message block

64 
rounds

64 
rounds

Break message in 512-bit blocks, pad last block
Calculate initial state of eight 32-bit variables based on square root of first 8 prime numbers
Calculate constants K = cube root of first 64 primes
Split input in to 16 words of length 32 bits (512 bits)
Create 48 more words from first 16 words



…

Break message in 512-bit blocks, pad last block
Calculate initial state of eight 32-bit variables based on square root of first 8 prime numbers
Calculate constants K = cube root of first 64 primes
Split input in to 16 words of length 32 bits (512 bits)
Create 48 more words from first 16 words

Last block
• Add original state 

to current state

14

SHA-256 returns a 256-bit (32 byte) digest 
despite arbitrary length input
SHA-256 Simplified

Adapted from https://www.youtube.com/watch?v=DMtFhACPnTY, see https://youtu.be/f9EbD6iY9zI for detailed explanation of how SHA-2 works

Mn-2

64 
rounds

64 
rounds

Key points: internal state is always 256 bits
State changes as new blocks fed in
Modulo 32 looses information

Mn-1||P

Concatenate A–H 
to get final digest



#get md5 hash of plain.txt file 
#hashes to fixed length of 128 bits (16 bytes)
$ md5sum plain.txt
9db228551f900dc17d6a8059bedc0880  plain.txt

#get SHA-256 hash of plain.txt file 
#hashes to fixed length of 256 bits (32 bytes)
$ sha256sum plain.txt
45c946e93dc0509e4546f5489c1cd1083e7088976c7743c059ef70f49b031895  plain.txt

#get SHA-512 hash of plain.txt file 
#hashes to fixed length of 512 bits (64 bytes)
$ sha512sum plain.txt
1969715ca7f29edcffaabcafa6aeaf4061a0d0b1bab8352e2d0da38c61437f5093ecfadfccc280e5
599a220da31c58fce7924841a036f82c889182b9551870fd  plain.txt

#can also use openssl
$ openssl dgst -sha512 plain.txt
SHA512(plain.txt)= 
1969715ca7f29edcffaabcafa6aeaf4061a0d0b1bab8352e2d0da38c61437f5093ecfadfccc280e5
599a220da31c58fce7924841a036f82c889182b9551870fd 15

Most Linux distributions come with utilities 
to compute hashes from the command line



16

You can calculate hashes in Python using 
hashlib

To confirm type “sha512sum <filename>” 
on command line

Note: same result if read line by line or 
read the whole file and then hash

compute_hash.py

try:
#set up hashlib for SHA512
m = hashlib.sha512()

#read data file line by line
f = open(sys.argv[1],'r’)
for line in f:

#update after each line
m.update(line.encode("utf-8"))

f.close()
#print hash of file
print(m.hexdigest())

except:
traceback.print_exc()



17

You can also calculate hashes in C using 
OpenSSL

Compile with: gcc compute_hash.c -o compute_hash -lcrypto
Run with: compute_hash plain.txt
(Some code snipped for space on slide)

compute_hash.c

Returns the same digest as Python 
and the command line

void main(int argc, char *argv[]) {
SHA512_CTX ctx;
u_int8_t results[SHA512_DIGEST_LENGTH];
FILE * fp;

SHA512_Init(&ctx); //set up for hashing

fp = fopen(argv[1], "r"); //open file for reading
if (fp == NULL) exit(EXIT_FAILURE);

while ((read = getline(&line, &len, fp)) != -1) { //read lines
SHA512_Update(&ctx, line, strlen(line)); //update digest

}

SHA512_Final(results,&ctx); //finalize hashing

//print results
for(i=0;i< SHA512_DIGEST_LENGTH;i++) {

printf("%02x",results[i]);
}
printf("\n");

}



18

Some websites can give a hash such as 
SHA-256 or SHA-2512 on the fly

Website that calculates SHA hashes on the fly
https://www.movable-type.co.uk/scripts/sha512.html

https://www.movable-type.co.uk/scripts/sha512.html


#compute SHA-256 of message
$ echo "Hello world!" | sha256sum
0ba904eae8773b70c75333db4de2f3ac45a8ad4ddba1b242f0b3cfc199391dd8

#change message and recompute hash
$ echo "Hallo world!" | sha256sum
bf1adae4567d9fb6b3bfb30cbf4dfdd2503e89a831cf3472c399b39fb9c73289 

19

Changing even one bit in the input 
message results in a different digest

It is extremely unlikely hashes of two different inputs will collide

How unlikely you ask?



20

It is extremely unlikely that hashes of two 
different inputs will collide

https://www.youtube.com/watch?v=S9JGmA5_unY



21

Agenda

1. Hashing intro

2. Common hash functions

3. Hashing use cases

4. MACs and attacks



22

Use case 1: Committing to a secret without 
revealing it

Committing to a secret
• Our game
• Hash secret and publish hash
• Disclosing hash does not disclose secret – irreversible (one way)
• Once hash is published, cannot change document without being 

detected – collision resistance

Example
• You’ve figured out a way to predict the stock market
• You don’t want to tell everyone beforehand (or price goes up)
• Hash your predictions (with random nonce) and post them
• Later people can check your predictions were accurate

Adapted from Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.



23

Use case 2: Integrity verification
Integrity verification (e.g., determine nothing has changed, or if it has!)
• Hash the original object
• To see if the object hash been changed, compare the original hash with a 

hash of the current version of the object

Example
• Want to know if OS kernel files have been changed by malware
• Could keep a spare copy of each OS file and check when going to run if it 

matches the spare copy – wasteful/impractical 
• Instead, hash OS kernel files and store the 32-byte hash (not a second copy)
• Adversary might change kernel files, inserting malicious code
• Before running code, hash it and compare with stored version
• If no match, do not run it!

Many files on the Internet post a hash of the original
Compare hash of what you downloaded with posted hash to confirm you got 
an unaltered copy (is this good enough?)

Hash is equivalent to a duplicate copy because if anything 
changed in OS file, hashes won’t match

Adapted from Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.



24

Use case 3: Password verification
Password verification
• Do not store password in plaintext
• Store hashed version of password
• Use salt to defeat dictionary/rainbow tables
• To authenticate: enter password, hash it, compare with stored 

Example
• In Linux passwords stored in /etc/shadow
• seed:$6$wDRrWCQz$IsBXp9.9wz9SGrF.nbihpoN5w.zQx02sht4c

TY8qI7YKh00wN/sfYvDeCAcEo2QYzCfpZoaEVJ8sbCT7hkxXY/:17
372:0:99999:7:::

User name

Adapted from Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.



25

Use case 3: Password verification
Password verification
• Do not store password in plaintext
• Store hashed version of password
• Use salt to defeat dictionary/rainbow tables
• To authenticate: enter password, hash it, compare with stored 

Example
• In Linux passwords stored in /etc/shadow
• seed:$6$wDRrWCQz$IsBXp9.9wz9SGrF.nbihpoN5w.zQx02sht4c

TY8qI7YKh00wN/sfYvDeCAcEo2QYzCfpZoaEVJ8sbCT7hkxXY/:17
372:0:99999:7:::

6 means SHA512
User name

Adapted from Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.



26

Use case 3: Password verification
Password verification
• Do not store password in plaintext
• Store hashed version of password
• Use salt to defeat dictionary/rainbow tables
• To authenticate: enter password, hash it, compare with stored 

Example
• In Linux passwords stored in /etc/shadow
• seed:$6$wDRrWCQz$IsBXp9.9wz9SGrF.nbihpoN5w.zQx02sht4c

TY8qI7YKh00wN/sfYvDeCAcEo2QYzCfpZoaEVJ8sbCT7hkxXY/:17
372:0:99999:7:::

Salt
6 means SHA512

User name

Adapted from Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.



27

Use case 3: Password verification
Password verification
• Do not store password in plaintext
• Store hashed version of password
• Use salt to defeat dictionary/rainbow tables
• To authenticate: enter password, hash it, compare with stored 

Example
• In Linux passwords stored in /etc/shadow
• seed:$6$wDRrWCQz$IsBXp9.9wz9SGrF.nbihpoN5w.zQx02sht4c

TY8qI7YKh00wN/sfYvDeCAcEo2QYzCfpZoaEVJ8sbCT7hkxXY/:17
372:0:99999:7:::

User name
6 means SHA512

Salt Password hash

Adapted from Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.



28

Use case 3: Password verification
Password verification
• Do not store password in plaintext
• Store hashed version of password
• Use salt to defeat dictionary/rainbow tables
• To authenticate: enter password, hash it, compare with stored 

Example
• In Linux passwords stored in /etc/shadow
• seed:$6$wDRrWCQz$IsBXp9.9wz9SGrF.nbihpoN5w.zQx02sht4c

TY8qI7YKh00wN/sfYvDeCAcEo2QYzCfpZoaEVJ8sbCT7hkxXY/:17
372:0:99999:7:::

User name
6 means SHA512

Salt Password hash

$ sudo cat /etc/shadow #list all passwords on system (requires sudo)
…
seed:$6$wDRrWCQz$IsBXp9.9wz9SGrF.nbihpoN5w.zQx02sht4cTY8qI7YKh00wN/
…
$ python3 make_linux_password_hash.py dees '$6$wDRrWCQz’
$6$wDRrWCQz$IsBXp9.9wz9SGrF.nbihpoN5w.zQx02sht4cTY8qI7YKh00wN/

Does 5,000 
rounds of 
SHA512 to 
make password 
slow to 
compute



29

Use case 4: Trusted timestamping

Trusted timestamping
• Want to be able to prove a document existed at a point in time 

(called Long Term Validation – LTV)
• Also want non-repudiation (cannot later deny something, 

repudiate means to deny)

RFC 3161

Adapted from: https://www.forensicnotes.com/timestamping-authority-tsa/



30

Use case 4: Trusted timestamping

Trusted timestamping
• Want to be able to prove a document existed at a point in time 

(called Long Term Validation – LTV)
• Also want non-repudiation (cannot later deny something, 

repudiate means to deny)

Client Time Stamp 
Authority (TSA)

RFC 3161

Hash

Sign hash and 
time with 
private key

Hash 
document

Client can later prove 
document existed at 
stamped time 

Token

Assumes we can 
trust the TSA

Some commercial TSAs
• DigiStamp
• Tecxoft
• Safe Stamper TSA

Old school – print hash in newspaper
New school – write to blockchainAdapted from: https://www.forensicnotes.com/timestamping-authority-tsa/



31

Discussion

Scenario:
• You are pitching a start up idea to a sketchy venture capitalist
• You’d like to be able to prove you have produced your 

business plan *before* you meet with them
• What can you do?



32

Agenda

1. Hashing intro

2. Common hash functions

3. Hashing use cases

4. MACs and attacks



33

We need to guard against a message that 
has been changed or forged
Alice sends message to Bob

Alice Bob

Message: Launch missile at Target A

How does Bob know if the 
message has been altered?



34

MACs are used to detect if a message has 
been changed or forged but be careful!
Message Authentication Code (MAC)

Message: Launch missile at Target A
MAC: Hash(key||message)

Assume Alice and Bob 
share a secret key

Alice Bob

Not secure!
Changing the message fed into a hash 
function by even one bit changes output

This looks promising (assuming Bob knows 
key and adversary does not)

How does Bob know if the 
message has been altered?

Bob knows Key and can hash 
key||message and compare with 
MAC sent by Alice

Alice could hash(key || message) and send 
hash with message (called a Message 
Authentication Code, MAC, or a tag)



35

MACs are used to detect if a message has 
been changed or forged but be careful!

Message: Launch missile at Target A
MAC: Hash(key||message)

Assume Alice and Bob 
share a secret key

Alice Bob

echo -n ”theKey:Launch a missile at Target A" | sha256sum
5a97c8de6b858a3bb145b62661bb511eb7c77aeb1ef0cf86d585d8b81ecef2e7

How does Bob know if the 
message has been altered?

Message Authentication Code (MAC) Not secure!

Alice could hash(key || message) and send 
hash with message (called a Message 
Authentication Code, MAC, or a tag)



36

MACs are used to detect if a message has 
been changed or forged but be careful!

Message: Launch missile at Target A
MAC: 5a97c8<snip>8581ecef2e7

Assume Alice and Bob 
share a secret key

Alice Bob

Message Authentication Code (MAC) Not secure!

How does Bob know if the 
message has been altered?

Bob knows Key and can hash 
key||message and compare with 
MAC

Alice could hash(key || message) and send 
hash with message (called a Message 
Authentication Code, MAC, or a tag)

echo -n ”theKey:Launch a missile at Target A" | sha256sum
5a97c8de6b858a3bb145b62661bb511eb7c77aeb1ef0cf86d585d8b81ecef2e7



echo -n ”theKey:Launch a missile at Target A" | sha256sum
5a97c8de6b858a3bb145b62661bb511eb7c77aeb1ef0cf86d585d8b81ecef2e7 37

MACs are used to detect if a message has 
been changed or forged but be careful!

Message: Launch missile at Target A
MAC: 5a97c8<snip>8581ecef2e7

How does Bob know if the 
message has been altered?

Bob knows Key and can hash 
key||message and compare with 
MAC

Assume Alice and Bob 
share a secret key

Alice Bob

Message Authentication Code (MAC) Not secure!

Bob computes h(key||message) 
h(theKey:Launch a missile at Target A)

MAC and hash match, 
so message has not 
been changed



38

MACs are used to detect if a message has 
been changed or forged but be careful!

M
essage: Launch missile at Target A

M
AC: 5a97c8<snip>8581ecef2e7

Alice Bob

Eve

Eve does not 
know the key M

es
sa

ge
: L

au
nc

h m
iss

ile
 at

 Ta
rge

t B

M
AC: 

c6
4e

dd
24

7<
sn

ip>
66

18
ff2

5b
81

Eve changes the message and 
guesses the key, but gets it 
wrong, sends result to Bob

Bob hashes message with the correct key
Hash does not match MAC, message alerted!

hash(theKey:message) ≠ hash(wrongKey:message)

Eve intercepts 
message

Sounds good 
right?

Message Authentication Code (MAC) Not secure!

Bob knows 
message is invalid



39

Hash length extension attacks exploit 
Merkle-Damgard construction

M1

IV

M2 Mn|| P

Digest

…

Because a block depends on the prior block
• If adversary intercepts message with MAC and can guess key length
• Adversary can add more text on to the end and still get a valid MAC, 

even though they do not know the key

Hash length extension attack Previous block state is initial 
state for next block

Idea: Reset state to where 
hashing algorithm left off 
and append new message

Adapted from Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.



40

Hash length extension attacks exploit 
Merkle-Damgard construction

M1

IV

M2 Mn|| P…

SHA2 uses 512-bit (64-byte) blocks with padding on the last block
• Pad with 1 followed by zeros, 
• Pad ends with size of key:message in hex
• Len(“theKey:Launch missile at Target A”) = 35
• End with 35 bytes * 8 = 280 (decimal) = 0x118 (hex)

theKey:Launch a missile at Target A \x80\x00 \x00 \x00 \x00 \x00 \x00 \x00 \x00 \x00 \x00 
\x00 \x00 \x00 \x00 \x00 \x00 \x00 \x00 \x00 \x00 \x00 \x00 \x00 \x00 \x00 \x00 \x01 \x18

This is the value that is 
actually hashed

Hash length extension attack

Digest



41

MACs are used to detect if a message has 
been changed or forged but be careful!

M
essage: Launch missile at Target A

M
AC: 5a97c8<snip>8581ecef2e7

Alice Bob

Eve

Eve does not 
know the key M

es
sa

ge
: L

au
nc

h …
 an

d a
t H

an
ov

er

M
AC: 

be
bb

35
0f

2<
sn

ip>
ec

d5
6a

07
92

Eve resets her SHA256 context using MAC
Extends message adding “ and at Hanover”
Does not know secret key, but sends altered 
message and MAC to Bob

Bob hashes theKey:Launch a missile at Target A 
\x80\x00 \x00 \x00 \x00 \x00 \x00 \x00 \x00 
\x00 \x00 \x00 \x00 \x00 \x00 \x00 \x00 \x00 
\x00 \x00 \x00 \x00 \x00 \x00 \x00 \x00 \x00 
\x01 \x18 and at Hanover

Eve intercepts 
message Hash checks out!

Fire two missiles!

Message Authentication Code (MAC) Not secure!



42

Adversary resets SHA256 context to where 
it left off, then adds new message
sha256_length_extension.c

void main(int argc, const char *argv[]) {
int i;
unsigned char buffer[SHA256_DIGEST_LENTH];
SHA256_CTX c;

SHA256_Init(&c);
for (i =0; i<64; i++)  SHA256_Update(&c, "*", 1);

c.h[0] = htole32(0x5a97c8de);
c.h[1] = htole32(0x6b858a3b);
c.h[2] = htole32(0xb145b626);
c.h[3] = htole32(0x61bb511e);
c.h[4] = htole32(0xb7c77aeb);
c.h[5] = htole32(0x1ef0cf86);
c.h[6] = htole32(0xd585d8b8);
c.h[7] = htole32(0x1ecef2e7);    

// Append the additional message
SHA256_Update(&c, " and at Hanover", 15);
SHA256_Final(buffer, &c);
for (i = 0; i < 32; i++) {

printf("%02x", buffer[i]);
}
printf("\n");

}

Set up SHA256 context

Reset context to where 
hashing left off using MAC

Add new message (this is the 
message length extension)

Print new MAC 
Send Bob
• “Launch a missile at Target A <padding> and at Hanover”
• New MAC

Legitimate message: “Launch a missile at Target A”
Legitimate MAC: 5a97c8de6b858a3bb145b626 
61bb511eb7c77aeb1ef0cf86d585d8b81ecef2e7

Eve sees message and MAC

Note: padding not printable characters!

Adapted from Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.



43

MAC checks out at the receiver, even 
though adversary does not know secret
sha256_padding.c

int main(int argc, const char *argv[]) {
SHA256_CTX c;
unsigned char buffer[SHA256_DIGEST_LENGTH];
int i;

SHA256_Init(&c);
SHA256_Update(&c,
"theKey:Launch a missile at Target A"     
"\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x18"
" and at Hanover",      
64+17);

SHA256_Final(buffer, &c);

printf("New MAC\n");
for (int i = 0; i < 32; i++) {
printf("%02x", buffer[i]);

}
printf("\n");
return 0;

}

Set up SHA256 context
Hash with original message, 
padding, and extension

MAC matches the one sent

Message: “Launch a missile at Target A 
<padding> and at Hanover”
New MAC: bebb350f2613abff0520fa9754cc4 
4cb58d36e3ec17fbd0092a2e9ecd56a0792

Two missiles launched!

Adapted from Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.



44

A better solution is to use a Keyed-Hash 
Message Authentication Code (HMAC)

Key

⊕
ipad

(0x36363636)

Key ⊕
ipad (0x363636..) Message

Hash

HMAC (K,m) = H((K ⊕ opad) ∥ H((K ⊕ ipad) ∥ m)) 
Requires secret key and two hashes using:
• K = key
• opad = outer pad  = 0x5c5c5c5c
• ipad = inner pad = 0x36363636

Adapted from Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.
and https://crypto.stackexchange.com/questions/12680/how-does-the-secret-key-in-an-hmac-prevent-modification-of-the-hmac

Inner hash uses 
irreversibility property 
where adversary without 
key cannot find message

Output is a fingerprint  
on the message



45

A better solution is to use a Keyed-Hash 
Message Authentication Code (HMAC)

Key ⊕
opad (0x5c5c5c..)

Key

⊕
ipad

(0x36363636)

Key ⊕
ipad (0x363636..) Message

Hash HMAC(K,M)

Hash

Hash

Key

⊕
opad

(0x5c5c5c5c)

HMAC (K,m) = H((K ⊕ opad) ∥ H((K ⊕ ipad) ∥ m)) 
Requires secret key and two hashes using:
• K = key
• opad = outer pad  = 0x5c5c5c5c
• ipad = inner pad = 0x36363636

Inner hash uses 
irreversibility property 
where adversary without 
key cannot find message

Output is a fingerprint  
on the message 

Outer hash 
acts as MAC 
on fingerprint

Adapted from Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.
and https://crypto.stackexchange.com/questions/12680/how-does-the-secret-key-in-an-hmac-prevent-modification-of-the-hmac



46


