
CS 61:
Database Systems

ER models

Adapted from Silberschatz, Korth, and Sundarshan unless otherwise noted

2

Agenda

1. Entity Relationship (ER) models

2. Relationships

3. How to build an ER model

4. Reverse and forward engineering

3

ER models use three basic concepts:
Entities, Relationships, and Attributes

ER model (ERM) rests on three basic concepts:
1. Entities: what are the nouns involved?
2. Relationships: how are the entities related
3. Attributes: what characteristics do entities have?

Entity Relationship (ER) models

ER diagram (ERD)
expresses the overall
model graphically

4

Entities are nouns, each represents people,
places, things, concepts, or events
Entity Relationship Diagram (ERD) Entities are represented as rectangles

Entity set is set of entity instances
Entity set is materialized as a table

Entities are
made up of
attributes

Primary key uniquely identifies entity instance
Can be composite key (made up of several attributes)

Avoid storing same information
in multiple tables (avoid data
redundancy) unless:
1. Need speed: joining

multiple tables is too slow
for business need

2. Historical documentation:
want to store the state at
the time of a transaction
(e.g., what was the price of
an item when it was sold)

5

Attributes describe an entity and have data
type
Entity Relationship Diagram (ERD)

Attribute name and data type

MySQL does not support
composite attributes

If Name is composite of
• First name
• Last name

Just promote all composite
components to simple attributes

Some attributes can be derived from other
attributes (possibly in other tables)

6

Value of derived attributes can be stored or
computed on demand
Entity Relationship Diagram (ERD)

Store computed
value

Compute on
demand

Advantages • Fast to access
• Can be used to

keep track of
historical data

• Less space
• Computation

always yields
current value

Disadvantages • Requires constant
maintenance keep
value current

• Slow
• Adds coding

complexity to
queries

Derived attribute: store value or compute on demand

7

Agenda

1. Entity Relationship (ER) models

2. Relationships
• One-to-many (1:M)
• One-to-one (1:1)
• Many-to-many (M:N)

3. How to build an ER model

4. Reverse and forward engineering

8

One-to-many relationships are the
most common
One-to-many (1:M)

Date: Jan 2, 2018
Score: 7
Grade: A

Date: Feb 4, 2019
Score: 15
Grade: B

Date: Apr 20, 2020
Score: 4
Grade: A

One restaurant can be
inspected many times

One inspection is for one
restaurant

There is a 1:M relationship
between restaurants and
inspections

Many side

One side Notice how
links “fan
out”

9

Crow’s foot diagram shows one-to-many
using a 3-pronged symbol on the many side
1:M relationship on crow’s foot diagram

Many
side

One
side

Relationships
shown as lines
connecting
entities

Many side shows 3-
pronged symbolOne side shows

vertical line

Relationship
based on
RestaurantID
as FK

RestaurantID
FK relates an
Inspection to a
Restaurant

There can be
many rows in
Inspections
that reference
the same
Restaurant

10

Solid line indicates a strong (identifying)
relationship between entities
1:M relationship on crow’s foot diagram

Relationships
shown as lines
connecting
entities

Solid line indicates a
strong (identifying)
relationship between
entities

The related table is
existence-dependent
on the parent table
(cannot exist without
the parent)

Related table PK
contains part of PK of
parent tableHere PK of Inspections is a composite key comprised of:

RestauantID, InspectionDate, InspectionType
• Inspections PK contains part of PK of Restaurants table
• Cannot have entry in Inspections without entry in Restaurants
• Inspections are existence-dependent on restaurants

11

Dashed line indicates a weak (non-
identifying) relationship between entities
1:M relationship on crow’s foot diagram

Dashed line indicates a weak (non-
identifying) relationship between
entities

An entry can be made in a related table
even though it is not in the parent
table; not existence-dependent

PK of related table does not contain
part of PK of parent table

1 Restaurant can have 1 Cuisine type
1 Cuisine type can have many restaurants

Many
side

One
side

12

Implement 1:M relationship by including
common attribute as foreign key in table
1:M relationship on crow’s foot diagram

Implement 1:M by using a
foreign key on the many side

Foreign key is primary key on
the one side

Many
side

One
side

13

Implement 1:M relationship by including
common attribute as foreign key in table
1:M relationship on crow’s foot diagram

Circle indicates CuisineID is optional
in Restaurants

The “participation” is optional

Many
side

One
side

14

Agenda

1. Entity Relationship (ER) models

2. Relationships
• One-to-many (1:M)
• One-to-one (1:1)
• Many-to-many (M:N)

3. How to build an ER model

4. Reverse and forward engineering

15

One-to-one relationships are
somewhat uncommon
One-to-one (1:1)

One department is
chaired by one
professor

One professor
chairs one
department

16

Sometimes you cannot avoid them
One-to-one (1:1)

One entity can only be related to only one other entity in another table and vice versa
• Often you would just combine the attributes of both tables into one table (look for

two tables with the same PK)
• Sometimes you can’t do that

Computer science
Biology
…

Jayanti
Jack
…

17

Implement using a column in one table
and with a unique constraint
One-to-one (1:1)

To implement here:
• Add a column in Department for the Chair
• Make Chair column unique (no duplicates allowed)
• Fill column with PK of Professor that chairs a department (e.g., Jayanti for CS)
• One department now has one chair (due to one attribute)
• One professor can only chair one department (due to unique on Chair)

Chair

Computer science Jayanti
Biology Jack
… …

We will look at another variant next class

Jayanti
Jack
…

18

Agenda

1. Entity Relationship (ER) models

2. Relationships
• One-to-many (1:M)
• One-to-one (1:1)
• Many-to-many (M:N)

3. How to build an ER model

4. Reverse and forward engineering

19

We have no direct way to model many-
to-many relationships
Many-to-many (M:N) Problem:

• One inspection can
have many violation
codes

• One violation code
may occur in many
inspections

• Many-to-many
relationship

• We have no direct
way to model M:N
relationships

20

Implement M:N with a joining table,
create two 1:M relationships
Many-to-many (M:N) Problem:

• One inspection can
have many violation
codes

• One violation code
may occur in many
inspections

• Many-to-many
relationship

• We have no direct
way to model M:N
relationships

Solution:
• Use a joining

(bridging) table
(InspectionViolations
here)

• Create two 1:M
relationships

1:M from Inspections to
InspectionViolations

1:M from ViolationCodes
to InspectionViolations

Use PK of both tables
in joining table

NOTE: added
InspectionID to
Inspections table for
convenience

21

Agenda

1. Entity Relationship (ER) models

2. Relationships

3. How to build an ER model

4. Reverse and forward engineering

22

Data models are a (relatively) simple
expression of the real world; build in steps

Understand
business

rules

Identify
entities and

their
attributes

Model
relationships

between
entities

Apply
constraints

Steps to building a data model

23

First understand business rules so you
know how the system should behave
Understand business rules
What are business rules?
• “Business rules” really means organization’s rules
• “Brief, precise, and unambiguous written description of a policy

procedure, or principle within a specific organization”
• Important to get this right!
Example:
• The college has many departments
• Each department belongs to one college (e.g., Arts & Sciences,

Tuck, Thayer, Geisel, …)

How to I learn about the business rules?
• Review written procedures – tells you how things should be done
• Talk to people to find out how it does work:

• C-level – Have view of large portions of the organization, think
they understand details, but frequently do not

• Mid-level managers – know their part of the organization, but
may not have big picture of how pieces work together

• Users – might tell you how it really works

Understand
business

rules

Identify
entities and

their
attributes

Model
relationships

between
entities

Apply
constraints

• Written business
rules often help
organization
understand itself
better

• Can lead to
“business process
engineering” to
make
organizational
changes

• Consultants make
lots of money
doing this!

Output of this work is sometimes called a
“specification of functional requirements”

24

Next identify the entities (the nouns)
involved and create them in the database
Identify entities and their attributes

Entities
• Person, place, thing, or event (noun)
• Normally become tables in the database
• Examples: Employee, Customer, Product
• Entities instances (rows) should be “distinguishable”

from other entities based on keys

Attributes
• Characteristic of an entity
• Example: First name, Last Name, SSN

Some advice about naming
• I like to prefix attribute names with the entity name
• Example:, CustomerName CustomerAddress
• I think of this like a namespace
• Helps prevent confusion later (e.g., does Name

mean customer name or product name?)

Understand
business

rules

Identify
entities and

their
attributes

Model
relationships

between
entities

Apply
constraints

#create new database
CREATE SCHEMA ‘new_schema’;

#create student entity as table with
attributes and their types
CREATE TABLE STUDENT (

STU_NUM int,
STU_LNAME varchar(15),
STU_FNAME varchar(15),
STU_INIT varchar(1),
STU_DOB datetime,
STU_GPA numeric(4,2)

);

Once entities and
attributes established,
create tables with DDL
commands

I prefer to spell out STUDENT (not
STU) and LastName (not LName)

25

Then model relationships between entities
(the verbs) using 1:M, M:N, or 1:1
Three types of relationships between entities

One to many (1:M or 1..*)
• Associations among two or more entities where one entity is

associated with two or more other entities
• Example

• A painter can paint many paintings
• Each painting is only painted by one painter

• Ask question in both directions:
• How many instances of B (paintings) are related to one instance of A (painter)?
• And how many instances of A (painter) are related to one instance of B (painting)

• Other examples?

Many to many (M:N or M:M or *..*)
• Employee may learn many skills
• More than one employee can learn a skill
• We have to model these relationships using a joining table

One to one (1:1 or 1..1)
• A store is managed by one employee
• An employee can only manage one store

Understand
business

rules

Identify
entities and

their
attributes

Model
relationships

between
entities

Apply
constraints

26

Draw relationships on an Entity
Relationship Diagram using 1 of 3 formats
Three types of Entity Relationship Diagrams (ERD)

Understand
business

rules

Identify
entities and

their
attributes

Model
relationships

between
entities

Apply
constraints

Source: Coronel and Morris

ManyOne

27

Finally apply any attribute constraints

Understand
business

rules

Identify
entities and

their
attributes

Model
relationships

between
entities

Apply
constraints

Apply constraints

Attributes are sometimes limited to particular domains
• GPA must be between 0 and 4.0
• Employee’s salary must be between $10K and $1M

Once everything is set up, Data Manipulation Language
(DML) allows us alter the database contents
• Perform CRUD (create, read, update, delete)
• SQL is both DML and DDL

Add CHECK constraint when defining table
(e.g., GPA double CHECK (GPA >=0 and GPA <=4)

28

Apply these steps in a phased approach

External
model

Conceptual
model

Internal
model

Physical
model

• Models a subset
of the total
problem

• Work with end
users to get this
right

• Hardware and
software
independent

Adapted from Coronel and Morris

• Combine
external models
into global view
of the entire
database

• Work with
managers to get
this right

• Hardware and
software
independent

• Database’s view
• Considers the

specific DBMS used
(e.g., Oracle vs
MySQL vs Mongo)

• Hardware
independent

• Software
dependent

• How the database
will be deployed on
actual hardware

• Hardware
dependent

• Software
dependent

External schema

Conceptual schema

Internal schema

Physical schema

Design phases

29

Agenda

1. Entity Relationship (ER) models

2. Relationships

3. How to build an ER model

4. Reverse and forward engineering

30

DEMO: Reverse engineer an existing
database

Reverse engineer nyc_inspections on sunapee
• From MySQL Workbench choose Database->Reverse engineer
• Make connection to database (sunapee here, so make sure

you are VPN’ed into Dartmouth!)
• Select nyc_inspections
• Re-arrange tables

31

DEMO: Forward engineer a new
schema based on a new ERD

Forward engineer a new schema
1. Create new ERD
• From MySQL Workbench choose File->New model
• Change schema
• Add diagram
• Add tables
• Add relationships (start from many side, then connect one

side!)

2. Create schema
• Database->Forward engineer to create new schema based on

ERD

32

Practice

Forward engineer a database according to the following rules to
track painters, paintings, and galleries for a famous art museum:
• A painting is painted by a specific artist and that painting is

exhibited in a specific gallery
• A gallery can exhibit many paintings, but each painting can be

exhibited in only one gallery
• Similarly, a painting is painted by a single painter, but each

painter can paint many paintings

33

