
CS 61:
Database Systems

Normalization

Adapted from Coronel and Morris unless otherwise noted

2

Objective: create well-formed relations
• Tables are the building blocks of a relational database
• Previously we created tables for entities identified after

understanding the business rules

• We want our tables to be well formed
• Question, how do we know if our tables are well formed?
• It turns out a few relatively simple rules can help us

Understand
business rules

Identify
entities and

their attributes

Model
relationships

between
entities

Apply
constraints

3

Version 1: Restaurants, Inspections and FK
constraints on Action and Inspection Type

4

Normalization is the process by which we
confirm our tables are well formed
Normalization is the process of evaluating and
correcting poor table structure by following a
few rules:
• Each table represents a single entity
• Each row/column intersection contains

only one value and not a group of values
• No data item will be unnecessarily stored

in more than one table
• All nonprime attributes (attributes not part

of the key) in a table are dependent on the
primary key

• Each table has no insertion, update, or
deletion anomalies

Eliminate data anomalies
by removing unnecessary
or unwanted data
redundancies

5

We will examine one table at a time,
moving from First to Third Normal Form

1NF 2NF 3NF

First (1NF), Second (2NF) and Third (3NF) normal form characteristics

First Normal Form (1NF)
• Data in table format
• No repeating groups
• PK and all

dependencies
identified

Second Normal Form (2NF)
• 1NF plus
• No partial

dependencies

Third Normal Form (3NF)
• 2NF plus
• No transitive

dependencies

Higher forms
mainly of
academic
interest only

• Work one relation at a time
• Progressively break relation into

set of smaller relations as needed
moving from 1NF to 3NF

6

Agenda

1. Data anomalies

2. Normalization

7

Database anomalies

PlayerID Name Team TeamPhone Position1 Position2 Position3
1Pessi Argentina 54-11-1000-1000 Striker Forward
2Ricardo Portugal 351-2-7777-7777 Right Midfield Defending Midfielder
3Neumann Brazil 55-21-4040-2020 Forward Left Fullback Right Fullback
4Baily Wales 44-29-1876-1876 Defending Midfielder Striker
5Marioso Argentina 54-11-1000-1000 Sweeper Defending Midfielder Striker
6Pare Brazil 55-21-4040-2020 Goalkeeper

Soccer player database

Business rules
• Each player uniquely identified by PlayerID (it is a Primary Key here)
• Each player plays for one team and can play one or more position
• Each team has one phone number

Based on Prof Charles Palmer lecture notes

8

Insert anomaly: can not add data due to
absence of other data

PlayerID Name Team TeamPhone Position1 Position2 Position3
1Pessi Argentina 54-11-1000-1000 Striker Forward
2Ricardo Portugal 351-2-7777-7777 Right Midfield Defending Midfielder
3Neumann Brazil 55-21-4040-2020 Forward Left Fullback Right Fullback
4Baily Wales 44-29-1876-1876 Defending Midfielder Striker
5Marioso Argentina 54-11-1000-1000 Sweeper Defending Midfielder Striker
6Pare Brazil 55-21-4040-2020 Goalkeeper
∅ ∅ Iceland 54-12-5432-2345 ∅ ∅ ∅

Soccer player database

Insert anomaly:
• Can’t add team (say Iceland) without adding a player for that team

because PlayerID is Primary Key
• Also no consistency in position names

• What if some teams call a Sweeper a Center Back
• How would we know they are the same?

• What if a player can play more than three positions?
Based on Prof Charles Palmer lecture notes

9

Update anomaly: must update multiple
tuples for one change

PlayerID Name Team TeamPhone Position1 Position2 Position3
1Pessi Argentina 54-11-1000-1000 Striker Forward
2Ricardo Portugal 351-2-7777-7777 Right Midfield Defending Midfielder
3Neumann Brazil 55-21-4040-2020 Forward Left Fullback Right Fullback
4Baily Wales 44-29-1876-1876 Defending Midfielder Striker
5Marioso Argentina 54-11-1000-1000 Sweeper Defending Midfielder Striker
6Pare Brazil 55-21-4040-2020 Goalkeeper
∅ ∅ Iceland 54-12-5432-2345 ∅ ∅ ∅

Soccer player database

Update anomaly:
• If team moves, must update TeamPhone for all players on that team
• Could lead to inconsistency if some team players are updated, but

not all

Based on Prof Charles Palmer lecture notes

10

Delete anomaly: unintended loss of data

PlayerID Name Team TeamPhone Position1 Position2 Position3
1Pessi Argentina 54-11-1000-1000 Striker Forward
2Ricardo Portugal 351-2-7777-7777 Right Midfield Defending Midfielder
3Neumann Brazil 55-21-4040-2020 Forward Left Fullback Right Fullback
4Baily Wales 44-29-1876-1876 Defending Midfielder Striker
5Marioso Argentina 54-11-1000-1000 Sweeper Defending Midfielder Striker
6Pare Brazil 55-21-4040-2020 Goalkeeper
∅ ∅ Iceland 54-12-5432-2345 ∅ ∅ ∅

Soccer player database

Delete anomaly:
• If Ricardo retires, must remove from database
• If so, loose Portugal team data as well!

How does this apply to our inspection database?

Based on Prof Charles Palmer lecture notes

11

Version 1: composite Primary Key can
identify all rows in the Inspections table

Inspection table: compound Primary Key uniquely identifies row:
RestaurantID, InspectionDate, InspectionType

Version 1
While a
restaurant may
receive more
than one
inspection on a
given day (e.g.
cycle and trans
fat initial
inspection), it
will not receive
more than one of
the same type

Each violation has a
description
(concatenated here)

12

Violation codes and descriptions can be
rolled up into one field for each

Each inspection can result
in multiple violations

CriticalFlag set
to ‘Y’ if any
violation is
critical,
otherwise ‘N’

Version 1

Is this a good
design?

Let’s take a
closer look

13

There are insert anomalies
Version 1
If a new type
of violation
code were
created, it will
not exist in
the database
until a
restaurant
gets this type
of violation

Also no
consistency in
values

Could enter a
violation code
that does not
exist or a
violation
description that
does not match
the violation
code

14

There are update anomalies
Version 1
If we change
the description
for a violation
code, we must
update the
description in
all rows with
that
description

Hard to find
violation codes
and descriptions
as there are
multiple entries
in these columns

CriticalFlag also
depends on all
values in the
ViolationCode
column

15

There are delete anomalies
Version 1
If only one
inspection found
a particular
violation code,
and we delete
that inspection,
we would loose
the violation
code

How do we fix this
situation?

Normalization!

16

Agenda

1. Data anomalies

2. Normalization

17

Normalization is about correcting table
structure to minimize data redundancy
Normalization
• Works in a series of stages called normal forms
• First normal form (1NF) through third normal form (3NF) or higher
• High forms tend to split relations into multiple relations, each with

fewer attributes
• Generally the higher the form, the more joins are required to

produce data
• More resources required by the database to respond to requests
• Slower performance

• Occasionally we will denormalize tables
• Denormalization may result in redundant/dependent data
• Particularly common in reporting/analysis databases
• Deciding when to denormalize is part of the “art” of good

database design

18

Key review

Key type Definition

Superkey An attribute or combination of attributes that uniquely
identifies each row in a table

Candidate key A minimal (irreducible) superkey; a superkey that does not
contain a subset of attributes that is itself a superkey

Primary key A candidate key selected to uniquely identify all other attribute
values in any given row; cannot contain null entries

Foreign key An attribute or combination of attributes in one table whose
values must either match the primary key in another table or
be null

Composite key A key comprised of multiple attributes (sometimes called a
compound key)

19

Functional dependence is a generalized
notion of keys
Functional dependence (FD)
• One or more attributes determine the the value of one or more

other attributes in a relation
• This role of a key — to determine the value of other attributes
• Written A ➝ B

o A is called the determinant
o B is called the dependent (value identified by another variable)
o Here A is the (possibly composite) key and B is a collection of

attributes that can be looked up given key A

Can look up B, if given A

20

Functional dependence can be full, partial
or transitive
Full functional dependence
• An attribute is functionally dependent on a composite key but not any

subset of the key (e.g., all attributes in key are required)
Ex: RestaurantID, InspectionDate, InspectionType ➝ Score

All three attributes are required to uniquely identify the score

Partial dependence
• An attribute is dependent on only part of the key

Ex: RestaurantID, InspectionDate, InspectionType➝InspectionDescription
• Only depends on InspectionType — straight forward, easy to identify

Transitive dependence
• If A➝B and B➝C, then A➝C
• An attribute is dependent on another attribute that is not part of the key
• More difficult to identify among a set of data
• Occurs when functional dependence exists among nonprime attributes

Ex: ViolationCode ➝ ViolationDescription, CriticalFlag

21

We will examine one table at a time,
moving from First to Third Normal Form

1NF 2NF 3NF

First (1NF), Second (2NF) and Third (3NF) normal form characteristics

First Normal Form (1NF)
• Data in table format
• No repeating groups
• PK and all

dependencies
identified

22

Start with 1NF: table form, no repeating
groups, PK and dependencies identified

Step 1: Put in table form
• Already done

Inspections table

23

Start with 1NF: table form, no repeating
groups, PK and dependencies identified

Repeating
groups

Step 1: Put in table form
Step 2: Eliminate repeating groups
• Multiple entries ViolationCode and

ViolationDescription attributes because each
inspection may result in multiple violations

• Remove repeating entries by making each
violation its own row

Inspections table

24

Start with 1NF: table form, no repeating
groups, PK and dependencies identified

Now each
violation on
its own row

Step 1: Put in table form
Step 2: Eliminate repeating groups
• Multiple entries ViolationCode and

ViolationDescription attributes because each
inspection may result in multiple violations

• Remove repeating entries by making each
violation its own row

Inspections table

25

Start with 1NF: table form, no repeating
groups, PK and dependencies identified

Step 1: Put in table form
Step 2: Eliminate repeating groups
Step 3: Identify primary key
• Primary key now needs ViolationCode to

uniquely identify rows
• Primary key now: RestauantID, InspectionDate,

InspectionType, ViolationCode
• Consider surrogate key

o Four attributes becomes unwieldy
o Surrogate key is a key whose value is

assigned by the system (auto increment)

Inspections table

26

Start with 1NF: table form, no repeating
groups, PK and dependencies identified

Step 1: Put in table form
Step 2: Eliminate repeating groups
Step 3: Identify primary key
• Primary key now needs ViolationCode to

uniquely identify rows
• Primary key now: RestauantID, InspectionDate,

InspectionType, ViolationCode
• Consider surrogate key

o Four attributes becomes unwieldy
o Surrogate key is a key assigned by the

system (auto increment)

Inspections table

27

Start with 1NF: table form, no repeating
groups, PK and dependencies identified

Step 1: Put in table form
Step 2: Eliminate repeating groups
Step 3: Identify primary key
Step 4: Identify dependencies
• With surrogate key, no partial dependencies
• Transitive dependencies

• ViolationCode ➝ ViolationDescription, Critical Flag

Now in 1NF, move on to 2NF

Inspections table

28

We will examine one table at a time,
moving from First to Third Normal Form

1NF 2NF 3NF

First (1NF), Second (2NF) and Third (3NF) normal form characteristics

First Normal Form (1NF)
• Data in table format
• No repeating groups
• PK and all

dependencies
identified

Second Normal Form (2NF)
• 1NF plus
• No partial

dependencies

29

Move to 2NF: remove partial dependencies
Step 1: Make new tables to eliminate partial dependencies
• Partial dependency is when an attribute is dependent on

only part of a composite key
• This table does not have a composite key now

• There can be no partial dependencies
• Table is automatically in 2NF

Inspections table

30

Move to 2NF: remove partial dependencies
Step 1: Make new tables to eliminate partial dependencies
• Partial dependency is when an attribute is dependent on

only part of a composite key
• This table does not have a composite key now

• There can be no partial dependencies
• Table is automatically in 2NF

• If we had left the primary key as RestaurantID,
InspectionDate, InspectionType, ViolationCode instead of
using surrogate key then:
• ViolationDescription and CriticalFlag are partial

dependencies (depend only on ViolationCode)
• We would deal with that at this stage by creating a

new table and reassigning dependent attributes
• With the surrogate key, we deal with it in 3NF

Inspections table

31

We will examine one table at a time,
moving from First to Third Normal Form

1NF 2NF 3NF

First (1NF), Second (2NF) and Third (3NF) normal form characteristics

First Normal Form (1NF)
• Data in table format
• No repeating groups
• PK and all

dependencies
identified

Second Normal Form (2NF)
• 1NF plus
• No partial

dependencies

Third Normal Form (3NF)
• 2NF plus
• No transitive

dependencies

32

Move to 3NF: remove transitive
Step 1: Make new tables to eliminate transitive dependencies
• Transitive dependency: If A➝B and B➝C, then A➝C
• Identify by looking for dependencies on nonprime attributes
• ViolationCode ➝ ViolationDescription, Critical Flag
• Make new tables to eliminate transitive dependencies

o Create table for ViolationCodes with ViolationCode as
PK and ViolationDescription and CriticalFlag as
attributes

o Make foreign key entry in Inspections table for
ViolationCode

Inspections table

33

Move dependent attributes into their own
table
Inspections table

Move dependent attributes
into their own table (we
would have done this with
partial dependencies also)

Use PK in new table as FK in
Inspections

34

Move dependent attributes into their own
table
Inspections table

Move dependent attributes
into their own table (we
would have done this with
partial dependencies also)

Use PK in new table as FK in
Inspections

35

Move dependent attributes into their own
table
Inspections table

Move dependent attributes
into their own table (we
would have done this with
partial dependencies also)

Use PK in new table as FK in
Inspections

Problem! There is a M:N
relationship between
Inspections and
InspectionCodes

36

Use a joining table for M:N relationships
Inspections table

Use a joining table

Inspection table get smaller
• New tables created
• Dependent attributes

moved into new tables

37

Normalization is valuable because it helps
eliminate data redundancies
Other steps to consider after reaching 3NF
• Identify new attributes and new relationships (did we forget

anything?)
• Refine attribute atomicity (will we ever need part of an

attribute like first name if storing name as first and last name)
oAtomic attribute: cannot be further subdivided
oAtomicity: characteristic of an atomic attribute

• Evaluate using derived vs. stored attributes
• Consider foreign key requirements

oHere we want Actions and InspectionTypes to be selected
from a set of known values

oCreate new tables for these, use PK as FK in Inspections

38

Normalized Inspections table

39

Sometimes we choose to denormalize
Restaurants table

Can you identify any dependencies in the
Restaurants table?

• Can there be any partial dependencies
here?

• Can there be any transitive
dependencies?

40

Sometimes we choose to denormalize
Restaurants table

Can you identify any dependencies in the
Restaurants table?

• Can there be any partial dependencies
here? No: key is single attribute

• Can there be any transitive
dependencies?

41

Sometimes we choose to denormalize
Restaurants table

Can you identify any dependencies in the
Restaurants table?

• Can there be any partial dependencies
here? No: key is single attribute

• Can there be any transitive
dependencies? Yes: ZipCode gives Boro

Could make a table with ZipCode as key
and Boro as attribute and look up Boro
with JOIN as needed

42

Sometimes we choose to denormalize
Restaurants table

Can you identify any dependencies in the
Restaurants table?

• Can there be any partial dependencies
here? No: key is single attribute

• Can there be any transitive
dependencies? Yes: ZipCode gives Boro

For simplicity we choose to keep this table
denormalized (2NF, has transitive dependency)

But, want Cuisine to be selected from a small
number of options, so make a Cuisine table and
use Cuisine as FK in Restaurants table

43

Final normalized design

44

45

Normal forms

Normal Form Characteristic

First normal form (1NF) Table format, no repeating groups, PK
and dependencies identified

Second normal form (2NF) 1NF and no partial dependencies

Third formal form (3NF) 2NF and no transitive dependencies

Boyce-Codd normal form (BCNF) Every determinant is a candidate key
(special case of 3NF)

Fourth normal form (4NF) 3NF and no independent multivalued
dependencies

Fifth normal form (5NF) and
more

Mainly of academic interest only

Normalization: evaluating and correcting table
structures to minimize data redundancies

Normally
good enough

46

