
CS 61:
Database Systems

Transactions/Concurrency

Adapted from Silberschatz, Korth, and Sundarshan unless otherwise noted

2

Practice: Normalization

PlayerID Name Team TeamPhone Position1 Position2 Position3
1Pessi Argentina 54-11-1000-1000 Striker Forward
2Ricardo Portugal 351-2-7777-7777 Right Midfield Defending Midfielder
3Neumann Brazil 55-21-4040-2020 Forward Left Fullback Right Fullback
4Baily Wales 44-29-1876-1876 Defending Midfielder Striker
5Marioso Argentina 54-11-1000-1000 Sweeper Defending Midfielder Striker
6Pare Brazil 55-21-4040-2020 Goalkeeper

Soccer player database

Business rules
• Each player uniquely identified by PlayerID
• Each player plays for one team and can play zero or more positions
• Each team has many players and one phone number
• Assume players primary position listed first (e.g., Pessi primarily Striker)

Normalize this table
• Download soccer_unnormalized.mwb from course web page to start
• Create necessary tables and confirm at least 3NF

Based on Prof Charles Palmer lecture notes

3

Agenda

1. Database inconsistencies

2. ACID transactions

3. Concurrency/Isolation

4

Goal: quickly serve many users at the same
time, but data must stay consistent!

Database

Multiple CPUs in database
server could serve multiple
requests at the same time

Result: increased
throughput

Problem:
Must ensure data stays
consistent with concurrent
transactions

Assume database starts in
consistent state
• All integrity constraints met
• All business rules followed

Avoid handling user requests
sequentially – too slow!

Concurrent processing can
lead to trouble!

5

Attribute-level inconsistencies can occur
when transactions update the same data

Based on Prof Palmer lecture notes

Attribute-level inconsistency Two clients initiate simultaneous
update of checking account balance
with transactions T1 and T2
• Each transaction involves read,

increment, and write of same data
• Assume Balance starts at $100

T1

T2 T1 T2

Read Balance ($100)

Increment Balance
by $100 ($200)

Write Balance ($200)
Commit

Read Balance ($200)

Increment Balance
by $150 ($350)

Write Balance ($350)
Commit

If T1 and T2 complete
as expected, afterward
new Balance is $350

6

Attribute-level inconsistencies can occur
when transactions update the same data

Based on Prof Palmer lecture notes

T1

T2 T1 T2

Read Balance ($100)

Increment Balance
by $150 ($250)

Write Balance ($250)
Commit

Read Balance ($250)

Increment Balance
by $100 ($350)

Write Balance ($350)
Commit

If T2 completes before T1,
Balance afterward is still as
expected, $350

Attribute-level inconsistency Two clients initiate simultaneous
update of checking account balance
with transactions T1 and T2
• Each transaction involves read,

increment, and write of same data
• Assume Balance starts at $100

7

Attribute-level inconsistencies can occur
when transactions update the same data

Based on Prof Palmer lecture notes

T1

T2 T1 T2

Read Balance ($100)

Read Balance ($100)

Increment Balance
by $100 ($200)

Write Balance ($200)
Commit

Increment Balance
by $150 ($250)

Write Balance ($250)
Commit

If T1 is interrupted and T2
reads Balance before T1
finishes incrementing and
writing, $100 is lost!

Attribute-level inconsistency Two clients initiate simultaneous
update of checking account balance
with transactions T1 and T2
• Each transaction involves read,

increment, and write of same data
• Assume Balance starts at $100

8

Attribute-level inconsistencies can occur
when transactions update the same data

Based on Prof Palmer lecture notes

T1

T2 T1 T2

Read Balance ($100)

Read Balance ($100)

Increment Balance
by $100 ($200)

Increment Balance
by $150 ($250)

Write Balance ($250)
Commit

Write Balance ($200)
Commit

OR $150 is lost!

Attribute-level inconsistency

This condition is called the
lost update problem

Two clients initiate simultaneous
update of checking account balance
with transactions T1 and T2
• Each transaction involves read,

increment, and write of same data
• Assume Balance starts at $100

9

Attribute-level inconsistencies can occur
when transactions update the same data

Based on Prof Palmer lecture notes

Attribute-level inconsistency

T1

T2 T1 T2

Read Balance ($100)

Increment Balance
by $100 ($200)

Write Balance ($200)

Read Balance ($200)
Increment Balance
by $150 ($350)
Write Balance ($350)
Commit

Rollback

Another variant is the
uncommitted data problem

T1 could rollback, leading T2
with an erroneous value

Two clients initiate simultaneous
update of checking account balance
with transactions T1 and T2
• Each transaction involves read,

increment, and write of same data
• Assume Balance starts at $100

10

Attribute-level inconsistencies can occur
when transactions update the same data

Based on Prof Palmer lecture notes

T1

T2

• Database will often be temporarily in an
inconsistent state

• Transactions can make the operations
atomic so that they can’t be interrupted
(or are rolled back if they are interrupted)

Attribute-level inconsistency

T1 T2

Read Balance ($100)

Increment Balance
by $100 ($200)

Write Balance ($200)

Read Balance ($200)
Increment Balance
by $150 ($350)
Write Balance ($350)
Commit

Rollback

Two clients initiate simultaneous
update of checking account balance
with transactions T1 and T2
• Each transaction involves read,

increment, and write of same data
• Assume Balance starts at $100

11

Relation-level inconsistencies can occur
when results depend on transaction order

Based on https://lagunita.stanford.edu/assets/courseware/v1/b91aa86921e55e62d426677a4a36e85e/c4x/DB/Indexes/asset/TransactionsProperties.pdf

T1

T2
Some rows in the Apply table are affected by
order in which these transactions are run
• If T1 runs before T2, some students won’t

be accepted that would have been
accepted if T2 ran first

• Here updates are applied to different
relations, but could give different results

• T1 operates on two tables, T2 operates on
one of those two

Apply holds student applications for college
• Simple admission criteria based only on grade
• But maybe large school students get a GPA bump

Relation-level inconsistency

12

Multi-statement inconsistencies can occur
when results depend on transaction order

Based on https://lagunita.stanford.edu/assets/courseware/v1/b91aa86921e55e62d426677a4a36e85e/c4x/DB/Indexes/asset/TransactionsProperties.pdf

Results from SELECT statements depend on whether they
run before, after, or between INSERT/DELETE statements

If SELECT runs here
• DELETE has not yet run
• Total count will be

incorrect because ‘N’
decision not yet
deleted from Apply

Multi-statement inconsistency

13

Multi-statement inconsistencies can occur
when results depend on transaction order

Based on Prof Palmer lecture notes

So must we force all transactions to run serially (one after the other)?
• Defeats the purpose of large databases serving many simultaneous users
• Want concurrency so we have highest possible performance

What about system failures?
• Power goes out during transaction
• Disgruntled employee types: rm –rf /

Transactions to the rescue!

Multi-statement inconsistency

14

Agenda

1. Database inconsistencies

2. ACID transactions

3. Concurrency/Isolation

15

Goal: want transaction to run fast but not
allow inconsistencies

T1 T2 T3

T1

T2

T3

Serial schedule (run consecutively; first come, first served)

Interleaved schedule (serialized)

• Consistency assumptions
1. Database starts in consistent state
2. Each transaction leaves database in

consistent state when complete
3. Serial execution of transactions

preserves consistency

• As we have seen, problems can arise if we
allow simultaneous (concurrent)
transaction execution

• But performance is low if transactions must
run serially

• Some transactions do not interfere with
each other (they can be serialized)

Serialized schedule interleaves
execution and gives same result as if
transaction ran serially

Schedule is clearly serializable if:
• Transactions operate on different data
• Only read operations

16

To allow concurrent transactions we want
ACID properties

Atomic
• Transaction treated as indivisible unit of work
• All commands in transaction complete successful or transaction is aborted
• Locks commonly used to ensure only one transaction accesses data at a time
• Transaction log allows rollback if transaction aborts

Consistent
• All data integrity constraints satisfied
• Transaction must take database from one consistent state to another
• If any integrity constraint is violated, transaction is aborted

Isolated
• Data used during a transaction cannot be access by another transaction until

the first transaction completes
• As if each transaction runs by itself, gives same result as serial execution

Durable
• Once changes are committed, they cannot be undone

ACID: Atomic, Consistent, Isolated, Durable

17

A transaction is a logical unit of work that
must be entirely completed or aborted

Transaction starts and
data inserted

Power failure here
would rollback
changes at restart
(not committed)

Data
committed

Second transaction
inserts two rows and
deletes one

Inserts and delete rolled
back, no change to
Customers table

Transactions make multiple
commands Atomic,
Consistent and Durable

18

Database locks can implement Atomic
property, allow one transaction data access
Database-level lock

Based on Coronel and Morris

Database-level locks tie
up the entire database
while a transaction
executes
• Good for batch

processes
• Normally not used

otherwise (defeats
serialization!)

19

Locks implemented at the table-level allow
unrelated transactions to run concurrently
Table-level lock

Based on Coronel and Morris

Table is locked during
transaction
• Other tables can be

accessed by different
transactions

• Transactions
attempting to access
locked table must wait

• Lock manager notifies
waiting a transaction it
can proceed

• Still too coarse grained
for many multi-users
systems

20

Page-level locks allow concurrent access to
different areas of one table
Page-level lock

Based on Coronel and Morris

Database locks a disk page (disk block)
• Page normally fixed size (4K, 8K, or 16K)
• To write 73 bytes to a 4K page, must read all 4K bytes,

make update, then write all 4K bytes back to disk
• Table may be several pages long
• This scheme is commonly used in practice
• Multiple processes can access same table simultaneously

21

Row-level locks allow concurrent access to
different rows of a table
Row-level lock

Based on Coronel and Morris

Database locks a single row in a table
• Improves availability of data
• Requires high overhead to track
• Not widely implemented (use page-level instead)
Field-level locks are conceptually possible, but not often used
(too much overhead)

22

Transaction log allows database to rollback
if a transaction aborts

Based on Coronel and Morris

LogID TransID Prev Next Op Table RowID Attribute Before
value

After
value

341 101 Null 352 Start ** Start

352 101 341 363 Update Products 1558 Quantity 25 23

363 101 352 365 Update Customer 1001 Balance 525.75 615.73

365 101 363 Null Commit ** End

Log and transaction IDs
assigned by database

Prev and Next
LogID

Operation, table, row,
and attribute affected by
change

Before and
after values

If system failure or ROLLBACK, use
log to return to prior consistent state

Log often kept on separate/
multiple disks (RAID)

Write changes to transaction log first , then update
database (called a write-ahead-log protocol)

Transaction log

Doesn’t clean up variables that
change or updates to other schemas

Like our Audit table

23

Transaction log allows database to rollback
if a transaction aborts

Based on Coronel and Morris

LogID TransID Prev Next Op Table RowID Attribute Before
value

After
value

341 101 Null 352 Start ** Start

352 101 341 363 Update Products 1558 Quantity 25 23

363 101 352 365 Update Customer 1001 Balance 525.75 615.73

365 101 363 Null Commit ** End

Transaction log

Two common approaches:
1. Deferred-write – transaction log updated immediately, but database tables not updated

until commit; if aborts, no changes made to tables; write “dirty buffers” at commit
2. Write-through – transaction log updated immediately, then database tables updated

directly afterward; use transaction log to rollback if needed

24

Agenda

1. Database inconsistencies

2. ACID transactions

3. Concurrency/Isolation

25

Isolated property demands transactions do
not interfere with each other

T1 T2 T3

T1

T2

T3

Serial schedule (run consecutively; first come, first served)

Interleaved schedule (serialized)

• Consistency assumptions
• Database starts in consistent state
• Each transaction leaves database in

consistent state when complete
• Serial execution of transactions

preserves consistency

• Serial schedule has poor performance;
transactions must wait for preceding
transactions to finish

• A schedule is serializable if it is interleaved,
but equivalent to a serial schedule (not all
schedules are serializable)

• Serialized schedule results in increased
performance and Isolation

26

Most combinations of reads and writes of
related data can cause potential problems

T2

T1 Read Write

Read

Write

Inconsistent retrieval and uncommitted data problems

If T1 and T2 operate on different data (e.g., T1 updates
Employees, T2 updates Products)

• No problems running concurrently
• Each can run concurrently

If T1 and T2 operate on the same data
• Could have problems if one or both write data
• No problem to if both only read data

27

Most combinations of reads and writes of
related data can cause potential problems

T2

T1 Read Write

Read

Write

Problems if one
transaction reads and
another writes
Inconsistent retrieval
problem: read operation
may read data that is no
longer current
• Example: T1 calculates

summary info over set
of data while T2
updates portion of
same data

Uncommitted data
problem: if T1 reads after
T2 writes, but T2 rolls
back, T1’s data is
incorrect

Inconsistent retrieval and uncommitted data problems

If T1 and T2 operate on different data (e.g., T1 updates
Employees, T2 updates Products)

• No problems running concurrently
• Each can run concurrently

If T1 and T2 operate on the same data
• Could have problems if one or both write data
• No problem to if both only read data

28

Most combinations of reads and writes of
related data can cause potential problems

T2

T1 Read Write

Read

Write

Problems if two
transactions write the
same data
Lost update problem:
• Each transaction reads

the same data, changes
it, then writes it back

• Last update wins

Inconsistent retrieval and uncommitted data problems

If T1 and T2 operate on different data (e.g., T1 updates
Employees, T2 updates Products)

• No problems running concurrently
• Each can run concurrently

If T1 and T2 operate on the same data
• Could have problems if one or both write data
• No problem to if both only read data

29

Two-phase locking protocol guarantees
serializability, but may deadlock
Two-phase locking to ensure serializability Phase 1: growing phase

• Acquire all needed locks before
conducting data operations

• Two transaction cannot both
hold conflicting lock (two reads
are not a conflict)

• No data is affected until all locks
are obtained (atomic)

Phase 2: shrinking phase
• Release all locks and cannot

obtain a new lock until all locks
released

• No unlock operation can
precede a lock operation in
same transaction

Ensures serializability
but might deadlock!

30

Transactions can deadlock, either prevent
them or detect and recover from them
Deadlocks

Shared lock – read only, many transactions can hold
Exclusive lock – for writes, only one transaction holds
T1: exclusive locked A and tries to exclusive lock B
T2: shared locked B and tries to exclusive lock A
Result is deadlock (exclusive lock request does not
override existing shared lock)
System must roll back (and unlock) one transaction

T1 T2

Exclusive lock (A)

Read (A)

A=A-1

Write (A) Shared lock (B)

Read (B)

Exclusive lock (A)

Exclusive lock (B)

To deadlock, four conditions
must each be met
1. Mutual exclusion – only

one transaction can access
data at a time

2. Hold and wait – one
process holding a resource
while waiting for another

3. No preemption – no
transaction can be forced
to give up a lock

4. Circular wait – must be a
circular chain of locks
waiting for access

Break any of these
condition and you can
overcome deadlock

31

Transactions can deadlock, either prevent
them or detect and recover from them
Deadlocks

Shared lock – read only, multiple transaction hold
Exclusive lock – write, only one transaction holds
T1: exclusive locked A and tries to exclusive lock B
T2: shared locked B and tries to exclusive lock A
Result is deadlock (exclusive lock request does not
override existing shared lock)
System must roll back (and unlock) one transaction

T1 T2

Exclusive lock (A)

Read (A)

A=A-1

Write (A) Shared lock (B)

Read (B)

Exclusive lock (A)

Exclusive lock (B)

Deadlock options
• Prevention – never allow

deadlock to occur
• Make acquisition of all

locks atomic operation
(break hold and wait)

• Use if probability of
deadlocks is high

• Recovery – detect deadlock
and roll back a victim
transaction
• Force one transaction to

release locks and roll
back (break no
preemption)

• Use if probability of
deadlocks is low

Book covers
graph-based
methods that do
not deadlock,
but have high
overhead

32

SQL allows different levels of transaction
isolation for improved performance

Dirty read: a transaction can read data not yet committed by another transaction
Isolation levels

33

SQL allows different levels of transaction
isolation for improved performance

Dirty read: a transaction can read data not yet committed by another transaction

Nonrepeatable read: a transaction reads a given row, then later reads the same row
and may get different result if row updated or deleted by another process

-- Transaction log
START TRANSACTION;
SELECT ... ;
-- Begin some complex calculation that uses the following result
SELECT GPA FROM Student WHERE StudentID = 1234;
-- do some other stuff, then get that same GPA again to finish the calculation, and this
-- GPA should be the same as before or else had nonrepeatable read!
SELECT GPA FROM Student WHERE StudentID = 1234;
-- more stuff
COMMIT; -- This ends the transaction

Isolation levels

34

SQL allows different levels of transaction
isolation for improved performance

Dirty read: a transaction can read data not yet committed by another transaction

Nonrepeatable read: a transaction reads a given row, then later reads the same row
and may get different result if row updated or deleted by another process

Phantom read: a transaction execute a query, then later runs the same query and
gets additional rows inserted by another process

-- Transaction log
START TRANSACTION;
SELECT ... ;
-- Begin some complex calculation that uses the following result
SELECT COUNT (*) FROM ENROLLMENT WHERE ClassDept = "CompSci";
-- do some other stuff, then get that same result again to finish the calculation, and this
-- count should be the same as before or else had phantom read!
SELECT COUNT (*) FROM ENROLLMENT WHERE ClassDept = "CompSci";
-- more stuff
COMMIT; -- This ends the transaction

Isolation levels

35

SQL allows different levels of transaction
isolation for improved performance
Dirty read: a transaction can read data not yet committed by another transaction

Nonrepeatable read: a transaction reads a given row, then later reads the same row
and may get different result if row updated or deleted by another process

Phantom read: a transaction execute a query, then later runs the same query and gets
additional rows inserted by another process

Can set Isolation level per transaction to allow dirty, nonrepeatable, or phantom reads

Isolation level Dirty
Read

Nonrepeatable
Read

Phantom
Read

Comment

Read
Uncommitted

OK OK OK Reads uncommitted data; most
serializable (best performance)

Read
Committed

No OK OK Does not allow dirty reads

Repeatable
Read

No No OK Allows phantom reads (MySQL
default)

Serializable No No No Most restrictive (least serializable)

Isolation levels

36

