
CS 61:
Database Systems

Data analytics/warehousing

Adapted from Silberschatz, Korth, and Sundarshan unless otherwise noted

2

Practice: Normalization
You run a computer science conference where authors present their work to groups of
conference attendees

• Assume only one author gives a given presentation, but an author may give multiple
presentations

• Presentations can be uniquely identified by the date, time slot, and room number
• Attendees can sign up for multiple presentations (but must pay for each separately)

A junior database administrator
created this ERD for you. He says
you don’t need to worry about any
dependencies in the Presentations
table.
• Do you agree?
• What dependencies are present

in that table?
• What would you change?

Download presentations.mwb from
the course web page and make
changes to bring the tables into 3NF

Rooms have a number and a name (e.g.,
Room 101 is the Hanover Ballroom)

Adapted from Coronel and Morris

3

Agenda

1. Data warehousing/analytics

2. Excel vlookups, pivot tables

3. Rollup/Rank/top k queries

4

Today we collect lots of data…

https://www.domo.com/learn/data-never-sleeps-7

Five V’s of big data Data characterized by five V’s:
1. Volume: quantity of data to be stored,

systems can be scaled
• Vertically : “get a bigger box”
• Horizontally: “get more boxes”

2. Velocity: speed at which data must be
processed
• Stream processing: analyze data as

it comes
• Feedback loop: data generates

recommendations,
recommendations lead to more
data

3. Variety: store data in many forms
• Structured data: fits into

predefined data model
• Unstructured data: does not fit

data model
4. Veracity: can the data be trusted?
5. Value: can we exact value from the data,

perhaps by correlating with other data?

https://www.domo.com/learn/data-never-sleeps-7

5

We need tools to analyze this data for
insight

OLTP database

Online Transaction Processing
databases (OLTP)
• Our focus thus far
• Handles daily business operations
• Data often highly normalized
• Transactions mainly updates
• Speed is crucial!

Business Transactions Business intelligence queries can
hamper transaction performance

Operational data often not well
suited for business analysis

Solution: create a separate database
optimized for data analysis

6

We need tools to analyze this data for
insight

Online Transaction Processing
databases (OLTP)
• Our focus thus far
• Handles daily business operations
• Data often highly normalized
• Transactions mainly updates
• Speed is crucial!

Business Transactions

OLAP database

Online Analytical Processing
databases (OLAP)
• Designed for analysis of “so what” of

the data (get insight into data) to
make decisions

• Contains summaries of data (e.g.,
product sales by year by region)

• Transactions mainly reads
• Speed less critical

Analysis queriesMany short update
transactions

Fewer complex
aggregation queries

OLTP database

7

We need tools to analyze this data for
insight

Business Transactions

Extract, Transform, Load (ETL) data from OLTP to OLAP database
• Extract data periodically from OLTP (and other sources) in a batch (how often?)
• Filter, integrate, and aggregate data (what level of aggregation?)
• Store data for easy business analysis (denormalize data! Yep, you read that right!)
• Data warehouse is an “integrated, subject-oriented, time-variant, nonvolatile”

collection of data
• Integrated – consolidate data from many sources
• Subject-oriented – data optimized by topic such as sales, marketing, finance
• Time-variant – represent the flow of data through time (even projected data)
• Nonvolatile – data in warehouse not removed (or updated unless error)

Analysis queries

Bill Inmon and Chuck Kelly, “The twelve rules of data warehouse for a client/server world”, Data Management Review, May 1994

Summary: data warehouse read-only
database optimized for data analysis

Data mart: single-subject data warehouse aimed at a small group of users

OLAP databaseOLTP database

8

A data warehouse conforms to 12 rules

Rule Description

1 The data warehouse and operational environments are separated

2 The data warehouse is integrated (data from multiple sources)

3 The data warehouse contains historical data over a long time

4 The data warehouse data is a snapshot captured at a given point in time

5 The data warehouse is subject oriented

6 The data warehouse data is mainly read-only with periodic batch updates

7 The data warehouse is data driven, operational database is process driven

8 The data warehouse contains data with several levels of detail (current/old,
summarized at various levels)

9 The data warehouse is characterized by read-only queries of very large data sets

10 The data warehouse has a system that traces data sources, transforms, and storage

11 The data warehouse’s metadata is critically important

12 The data warehouse enforces optimal use of the data by end users
Bill Inmon and Chuck Kelly, “The twelve rules of data warehouse for a client/server world”, Data Management Review, May 1994

12 rules for a data warehouse

9

Data warehouses are often implemented
using a Star Schema

Sales manager’s view of
sales data by location

Sales

Product manager’s
view of product sales

Data cube
• Create conceptual cube with dimension as

sides of cube
• Each cube element contains a fact (sales $)
• Allows rapid slicing and dicing
• Uses fact and dimension tables to store data

10

Data warehouses are often implemented
using a Star Schema

Sales

Fact table
• Uses dimension keys to

form fact table PK
• Denormalized data (same

data stored many times)
• May have multiple

attributes

Data cube
• Create conceptual cube with dimension as

sides of cube
• Each cube element contains a fact (sales $)
• Allows rapid slicing and dicing
• Uses fact and dimension tables to store data

11

Data warehouses are often implemented
using a Star Schema

Sales

Dimension tables
• One table for each

dimensions
• Keys form PK on fact table
• Each table normalized with

attributes for dimension
Alternative is one *large* table

Data cube
• Create conceptual cube with dimension as

sides of cube
• Each cube element contains a fact (sales $)
• Allows rapid slicing and dicing
• Uses fact and dimension tables to store data

12

Agenda

1. Data warehousing/analytics

2. Excel vlookups, pivot tables

3. Rollup/Rank/top k queries

13

Excel pivot table tutorial

• Relative vs. absolute references
• Download csv file of Restaurants and Cuisine tables
• Create VLOOKUP for CuisineID
• Create pivot table over data

• Filter by Boro
• Rows: Cuisine
• Sum InspectionCount
• Sort by InspectionCount

14

Practice
Given data from day17.xlsx
Using Excel, create a pivot table to answer:

• What were the value of pens sold in
the Southern region in 2016

• What was the value of pens sold by
Victor in all years

• How did Victor’s sales break down by
region?

Year Region Agent Product Value
2016 East Carlos Erasers 50
2016 East Tere Erasers 12
2016 North Carlos Paper 120
2016 North Tere Paper 100
2016 North Carlos Paper 30
2016 South Victor Pens 145
2016 South Victor Pens 34
2016 South Victor Pens 80
2016 West Mary Pencils 89
2016 West Mary Pencils 56
2017 East Carlos Pencils 45
2017 East Victor Pens 55
2017 North Mary Pencils 60
2017 North Victor Erasers 20
2017 South Carlos Paper 30
2017 South Mary Paper 75
2017 South Mary Paper 50
2017 South Tere Pens 70
2017 South Tere Erasers 90
2017 West Carlos Paper 25
2017 West Tere Pens 100

day17.xlsx

15

Practice
Given data from day17.xlsx
Using Excel, create a pivot table to answer:

• What were the value of pens sold in
the Southern region in 2016

• What was the value of pens sold by
Victor in all years

• How did Victor’s sales break down by
region?

After you’ve answered those questions, create
the pivot table shown below

Year Region Agent Product Value
2016 East Carlos Erasers 50
2016 East Tere Erasers 12
2016 North Carlos Paper 120
2016 North Tere Paper 100
2016 North Carlos Paper 30
2016 South Victor Pens 145
2016 South Victor Pens 34
2016 South Victor Pens 80
2016 West Mary Pencils 89
2016 West Mary Pencils 56
2017 East Carlos Pencils 45
2017 East Victor Pens 55
2017 North Mary Pencils 60
2017 North Victor Erasers 20
2017 South Carlos Paper 30
2017 South Mary Paper 75
2017 South Mary Paper 50
2017 South Tere Pens 70
2017 South Tere Erasers 90
2017 West Carlos Paper 25
2017 West Tere Pens 100

day17.xlsx

16

Agenda

1. Data warehousing/analytics

2. Excel vlookups, pivot tables

3. Rollup/Rank/top k queries

17

We have previously seen how to use
GROUP BY to aggregate data

SELECT
productline,
SUM(orderValue) AS totalOrderValue

FROM sales
GROUP BY productline;

Given sales table Can use group by to get sales per product line

No total line
of all sales,
just sales by
product line

Adapted from: https://www.mysqltutorial.org/mysql-rollup/

SELECT
productline,
SUM(orderValue) totalOrderValue

FROM sales
GROUP BY productline
UNION ALL
SELECT

NULL,
SUM(orderValue) totalOrderValue

FROM sales;

18

You can add a summary row by using
UNION

UNION adds new *rows* to result (JOINs adds new columns)

UNION ALL returns duplicate rows
(UNION DISTINCT) does not

• UNION returns new
row with total

• Note: NULL for
productline in
second SELECT

Adapted from: https://www.mysqltutorial.org/mysql-rollup/

Given sales table

SQL has an
easier way to
add the
summary row
using ROLLUP

Must have same
number of
columns with
compatible data
types

19

ROLLUP can be used similarly to create
subtotals based on grouping

WITH ROLLUP adds extra row
with totals for grouped by
attributes like UNION did

Now have total for all
sales in a row called a
super-aggregate

SELECT
productLine,
SUM(orderValue) totalOrderValue

FROM sales
GROUP BY productline WITH ROLLUP;

Adapted from: https://www.mysqltutorial.org/mysql-rollup/

Given sales table ROLLUP creates total

SELECT
productLine,
orderYear,
SUM(orderValue) totalOrderValue

FROM sales
GROUP BY productline, orderYear WITH ROLLUP;

20

ROLLUP can operate over multiple columns

Now have super-
aggregate row by
product line

Hierarchy
determined by
GROUP BY order
(product line first)

Adapted from: https://www.mysqltutorial.org/mysql-rollup/

Can roll up multiple attributesGiven sales table

Also have grand
total over all super-
aggregate rows

21

ROLLUP can operate over multiple columns

Grouping order reversed
(orderYear first)

Adapted from: https://www.mysqltutorial.org/mysql-rollup/

Can roll up multiple attributesGiven sales table
SELECT
orderYear,
productLine,
SUM(orderValue) totalOrderValue

FROM sales
GROUP BY orderYear,productline WITH ROLLUP;

GROUP BY
reversed

22

GROUPING can give super-aggregate rows
a meaningful label

Super-aggregate
rows now have
reasonable names
(not just NULL)

Adapted from: https://www.mysqltutorial.org/mysql-rollup/

Given sales table
SELECT IF(GROUPING(orderYear),'All Years',orderYear)AS orderYear,
IF(GROUPING(productLine),'All Products',productLine)AS productLine,
SUM(orderValue)AS totalOrderValue
FROM sales
GROUP BY orderYear , productline WITH ROLLUP;

GROUPING returns 1 if super-aggregate row, 0 otherwise

Remember how
IF works: first
value if true,
otherwise
second value

23

Practice
use nyc_inspections;

Reminder:
Restaurants table has columns for
how many times each restaurant has
been inspected and its average score

24

Practice
use nyc_inspections;

Create a rollup with a count of the number of inspections by Boro and
by Cuisine type (e.g., 2,103 inspections of American cuisine restaurants
in the Bronx)
• Fill in ROLLUP Nulls with ‘All boros’ and ‘’All cuisines’ using IF and

GROUPING
• Format your count to have commas at thousands (e.g., 1,234)
• Make sure your super-aggregate rows come at the bottom of

your groups (e.g., the total count of inspections in the Bronx
come at the end of the Bronx rows)

• Output should look like:

Note: a few restaurants
have a Boro of 0

25

RANK assigns an increasing number to each
row returned

Adapted from: https://www.mysqltutorial.org/mysql-window-functions/mysql-rank-function/

Sometimes you want to assign a numerical value to rows to indicate
their rank (e.g., first row has rank 1, second row has rank 2, …)
• RANK() assigns a rank to each row within the partition of a result set
• The rank of a row is specified by one plus the number of ranks that

come before it

RANK

Format:
SELECT RANK() OVER (

PARTITION BY A1 [,A2,…An]
ORDER BY <expression> [ASC|DESC], [{,<expression>...}]) AS RankName

• Rank numbering starts at 1 for each partition
• If tie on partition, all tying rows get same rank (e.g., if three row tie for first, all three

get rank of 1, next row gets rank of 4)
• Use ROW_NUMBER() instead of RANK() to ensure no gaps between rank values

assigned (e.g., first three ties get rank 1 though three, next row still gets rank of 4)

PARTITION BY works like GROUP BY – splits results into
groups based on attribute listed
Can have more than one partition (partition by cuisine
type, then boro for example)

Sort each partition by ORDER BY

26

RANK assigns an increasing number to each
row returned
RANK

Example:
SELECT

RANK() OVER (PARTITION BY Boro ORDER BY InspectionAvgScore) AS `Rank`,
RestaurantID, RestaurantName, Boro, InspectionAvgScore

FROM Restaurants
WHERE CuisineID = 83; -- only fruits/veg

Note: Tim’s and Ono Bowls tie for second in
Manhattan boro, so both get rank of 2
Juke Box Juice gets rank 4 (not 3) due to tie

PARTITION BY (works like GROUP BY) by Boro and sorted
by average inspection score ascending (default)

27

Use WITH and LIMIT to get top k results
RANK

Example:
SET @k = 2; -- return top k=2
WITH RestaurantRanks AS (

SELECT RANK() OVER (ORDER BY InspectionAvgScore) AS `Rank`,
RestaurantID, RestaurantName, Boro, InspectionAvgScore

FROM Restaurants WHERE CuisineID = 83) – only fruits/vegetable restaurants
SELECT * FROM RestaurantRanks WHERE `Rank`<= @k; -- top 2

Will limit to top 2 restaurants

Note: PARTITION BY is optional, if
omitted, use all rows (here all boros)

WITH created temporary table, SELECT
from that on RANK to get top k results

Here the top results happen to be in Manhattan (could have been other boros)
Also, note that this returned 3 restaurants due to tie, how could you force only 2?

28

Practice
use nyc_inspections; Reminder:

There is an entry in the Inspections table each
time a restaurant was inspected
RestaurantID is FK in Inspections table

29

Practice
use nyc_inspections;

1. Update InspectionCount and InspectionAvgScore in Restaurants table using
data from Inspections table. (Hint: Use UPDATE on both columns)

2. Insert a new Inspection for Tim’s Tasty Treats with a score of 6 (other
values can be Null) and confirm triggers updated count to 2 and avg score
to 8

3. Select all Fruits/Vegetables restaurants (there should be 7 of them
including Tim’s)

4. Rank all Fruits/Vegetables restaurants by best average inspection score
(lowest inspection score is best), return rank without ties

5. List the restaurants with Rank <=2 for all cuisine types in the Manhattan
Boro (e.g., top two ranked Italian/Pizza shops, top two ranked American).
Only return two per Boro and do not consider restaurants that have not
been inspected

30

Practice
use nyc_data;

1. Create a stored procedure that takes the boro and number of restaurants k
as parameters and returns the top k restaurants of each cuisine type in the
given boro based on average inspection score

2. Create the same query, but return your data as JSON

