
CS 61:
Database Systems

Aggregation

Adapted from Silberschatz, Korth, and Sundarshan unless otherwise noted

2

Some advice about crafting SELECT
commands
• Know your data

o The importance of understanding the data model that you are
working in cannot be overstated

o Real-world databases are messy; many systems remain in
service in an organization for decades

• Know the problem
o Understand the question you are attempting to answer
o Information reporting requests will come from a range of

sources; may be one-time events or ongoing operations within
an application

Adapted from Coronel and Morris

Build query in this order
1. FROM
2. WHERE
3. SELECT
4. GROUP BY
5. HAVING
6. ORDER BY

3

Some advice about crafting SELECT
commands

Adapted from Coronel and Morris

Where does the data come from? Could be
one or more tables, could be subquery
Think of building one large relation

Filter out unwanted rows in
relation from step 1

Which attributes do we want?

Create subgroups

Filter out unneeded subgroups

Finally, sort the results

4

Some advice about crafting SELECT
commands

Adapted from Coronel and Morris

Build query in this order Write SQL command in this order
1. FROM
2. WHERE
3. SELECT
4. GROUP BY
5. HAVING
6. ORDER BY

SELECT columnlist
FROM tablelist
[WHERE conditionlist]
[GROUP BY columnlist]
[HAVING conditionlist]
[ORDER BY columnlist [ASC | DESC]];

5

Agenda

1. Aggregate functions and NULL

2. Group by and having

3. Nested queries

6

Aggregate function provide a scalar value
for an attribute

Use in the SELECT clause (e.g., SELECT MIN(score) AS
MinScore FROM …)
• AVG: average value
• MIN: minimum value
• MAX: maximum value
• SUM: sum of values
• COUNT: number of values

Aggregate functions

AVG and SUM must be numeric
attributes, others need not be
numeric

7

Practice

• Find the min and max restaurant name
• What is the average score of all inspections scores?
• How many restaurants inspection scores were

recorded?
• Try to answer the last two questions with one SELECT

query

use nyc_data;

8

NULL means the value is missing or
unknown; can cause unexpected problems

Theoretically, these two queries should be the same!

SELECT AVG(score) AS AvgScore
FROM restaurant_inspections; -- 20.41

SELECT SUM(score)/COUNT(*) AS AvgScore
FROM restaurant_inspections; -- 19.56

Practice:
First query returns 20.41, the second 19.56. Why are they different?
How can we make them the same?
Remember, NULL not considered in aggregate functions
NULL in an arithmetic operation is NULL (e.g., 5 + NULL = NULL)

9

Agenda

1. Aggregate functions and NULL

2. Group by and having

3. Nested queries

10

GROUP BY creates subgroups of tuples, you
can perform aggregation over subgroups

• Without grouping, AVG would return a single
number for all departments

• Grouping allows aggregation of tuples with
the same value for the GROUP BY attributes
(e.g. dept_name)

Selected
attributes (e.g.
dept_name and
AvgSalary) must
be in aggregate
functions or
group by list

Adding ID
would cause
query to fail!

SELECT ID, name, dept_name,
FORMAT(salary,0) AS Salary

FROM instructor
ORDER BY dept_name;

SELECT dept_name,
FORMAT(AVG(salary),0) AS AvgSalary

FROM instructor
GROUP BY dept_name
ORDER BY AvgSalary DESC;

Get avg
salary
by dept

11

HAVING works with GROUP BY to filter
subgroups

• HAVING works with GROUP BY to filter results similar to
how WHERE works with SELECT

• Note: predicates in the HAVING clause are applied after
the formation of groups whereas predicates in the
WHERE clause are applied before forming groups

SELECT dept_name,
FORMAT(AVG(salary),0) AS AvgSalary

FROM instructor
GROUP BY dept_name
ORDER BY AvgSalary DESC;

SELECT dept_name,
FORMAT(AVG(salary),0) AS AvgSalary

FROM instructor
GROUP BY dept_name
HAVING AVG(salary) > 65000
ORDER BY AvgSalary DESC;

12

SQL evaluation proceeds start with FROM
and proceeds to LIMIT

https://www.mysqltutorial.org/mysql-group-by.aspx

FROM
Create a relation
based on tables
listed

WHERE
Remove tuples
not matching
criteria

SELECT
Get attributes
listed

GROUP BY
Aggregate
tuples into
subgroups

HAVING
Remove non-
matching
subgroups

ORDER BY
Sort resulting
tuples

LIMIT
Return top k
items

More on
this soon

13

Practice

• In one query, find the average health inspection score and
number of inspections by boro (e.g., Manhattan, Bronx, …)

• Which is better a low score or a high score? (Hint: consider
the critical flag)

• In one query, find the average health inspection score and
number of inspections by boro and by cuisine type. Sort by
boro then by cuisine type

• For restaurants in Queens, find the average score and
number of inspection scores where the restaurant has at
least 5 inspection scores; sort by avg score, best first

use nyc_data

14

Agenda

1. Aggregate functions and NULL

2. Group by and having

3. Nested queries

15

Nested queries have a subquery inside
another query

Nesting can be done in the SELECT, FROM or WHERE clauses
SELECT A1, A2, ..., An
FROM r1, r2, ..., rm
WHERE P

• SELECT clause:
Ai can be replaced be a subquery that generates a single (scalar) value

• FROM clause: ri can be replaced by any valid subquery because SELECT
returns a relation

• WHERE clause: P can be replaced with an expression of the form:
A <operation> (subquery)

A is an attribute and <operation> is <,>,IN, NOT IN, etc

Nested queries

More on this soon

16

Subqueries in the SELECT clause return a
scalar value
Subquery in SELECT clause

• You can use a subquery in the SELECT clause in SQL
• Generally returns a scalar value (could be Null)

-- compare each restaurant score with this restaurant’s max score
SELECT dba AS RestaurantID, Score,

(SELECT MAX(Score)
FROM restaurant_inspections r2
WHERE r2.camis = r1.camis) AS MaxScore

FROM restaurant_inspections r1
WHERE r1.camis < 30080000;

Select RestaurantID and Score for
each row in table

• Find max score for this
restaurant

• This is sometimes called a
correlated subquery because
camis from inner query using
r2 is correlated with camis
from outer query using r1Limit search to shorten query runtime

More on this when we get to query
optimization

SELECT
FROM
WHERE

17

Subqueries can also be used in the WHERE
clause
Subquery in WHERE clause

-- find scores for restaurant with min camis id
SELECT camis AS RestaurantID, dba AS RestaurantName, Score
FROM restaurant_inspections
WHERE camis = (SELECT MIN(CAMIS)

FROM restaurant_inspections);

-- find inspections with max score from any inspection
SELECT * FROM restaurant_inspections
WHERE score = (SELECT MAX(Score)

FROM restaurant_inspections);

SELECT
FROM
WHERE

18

The WITH clause is also a subquery, but
creates a queryable temporary relation
Subquery in WHERE clause

The WITH clause provides a way of defining a temporary relation whose
definition is available only to the query in which the with clause occurs

WITH TempRelationName (ColumnName1, columnName2...) AS
(SELECT ...)

SELECT ...

19

Practice

1. For all each restaurant not in Manhattan or Queens return
• RestaurantID, RestaurantName, Boro, and average score for

that restaurant on one row
• Sort the restaurants by average score descending
• What is ironic about the name of the first restaurant

returned?

2. Use a WITH clause to calculate a temporary relation with a
column for the average score of all inspections, then use that
temporary table to return all rows with a score greater than
average

3. Do the same as 2, but without using a WITH clause

use nyc_data

20

