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Abstract

Securing embedded control systems within the power grid presents a unique challenge: on

top of the resource restrictions inherent to these devices, SCADA systems must also accom-

modate strict timing requirements that are non-negotiable, and their massive scale greatly

amplifies costs such as power consumption. These constraints make the conventional ap-

proach to host intrusion detection—namely, employing virtualization in some manner—too

costly or impractical for embedded control systems within critical infrastructure. Instead,

we take an in-kernel approach to system protection, building upon the Autoscopy system

developed by Ashwin Ramaswamy that places probes on indirectly-called functions and

uses them to monitor its host system for behavior characteristic of control-flow-altering

malware, such as rootkits. In this thesis, we attempt to show that such a method would

indeed be a viable method of protecting embedded control systems.

We first identify several issues with the original prototype, and present a new version

of the program (dubbed Autoscopy Jr.) that uses trusted location lists to verify that con-

trol is coming from a known, trusted location inside our kernel. Although we encountered

additional performance overhead when testing our new design, we developed a kernel pro-

filer that allowed us to identify the probes responsible for this overhead and discard them,

leaving us with a final probe list that generated less than 5% overhead on every one of our

benchmark tests. Finally, we attempted to run Autoscopy Jr. on two specialized kernels

(one with an optimized probing framework, and another with a hardening patch installed),

finding that the former did not produce enough performance benefits to preclude using our

profiler, and that the latter required a different method of scanning for indirect functions

for Autoscopy Jr. to operate.

We argue that Autoscopy Jr. is indeed a feasible intrusion detection system for embed-

ded control systems, as it can adapt easily to a variety of system architectures and allows

us to intelligently balance security and performance on these critical devices.
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Chapter 1

Introduction

In this thesis, we confront the issue of designing an intrusion detection system for use on an

embedded device—in particular, those devices operating within critical infrastructure such

as the power grid. Conventional wisdom dictates that using some sort of virtualization

primitive is necessary to shield a monitoring program from its host [80], and much of the

recent literature on the subject of intrusion detection systems follows this line of thought.

However, the constraints imposed by an embedded system, especially one within a critical,

availability-driven industry, make a virtualized solution impractical on these devices. In

contrast, we propose to extend recent work done in the lab [80] that uses the built-in trac-

ing framework of an operating system to monitor the host for control flow anomalies—in

essence, leveraging the system’s own data structures to monitor itself.

1.1 The Rise of Embedded Control Systems

Over the past few years, we have seen the proliferation of commodity computing systems

through much of modern society. This trend had been fueled by the widespread use of

smaller, more resource-constrained computational devices—for example, one market re-

search firm found that over 180 million smartphones were sold in 2009 (compared to a
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maximum estimate of 180 million laptops), and predicted that smartphone sales would

exceed even those of desktop computers within four years [78]. Even critical industries

are not immune from this trend, as an increasing number of embedded control systems

(computers implanted in larger devices to serve as controllers) have begun to permeate the

world’s vital infrastructure. A major example of this is the push towards the creation of

“smart” power grids: one study predicts that the number of smart electric meters deployed

worldwide (and by extension the embedded computers inside these meters) will increase

from 76 million in 2009 to roughly 212 million by 2014 [101].

As the number of deployed embedded devices increases, they become a more lucrative

target for attackers to exploit. After years of cat-and-mouse games between the writers of

malicious software and the computer security community, malware programs have evolved

into sophisticated entities, capable of harvesting private information, setting up an illicit

spam relay or file-sharing node on its host, or linking back to a central command and

control server to perform coordinated tasks as a member of a botnet [16]. In general, these

malicious programs can disrupt a system in two ways:

• They perform unauthorized actions that jeopardize the system and/or any data the

system contains (for example, sending personal information to a remote server), or

threaten other machines on the network (for example, working with other compro-

mised machines to perform a coordinated attack on a target).

• They place an additional resource burden on their host systems, consuming power

and processor cycles and impacting their performance.

The danger posed by malware increases when considering embedded systems used

within critical infrastructure, and the need to secure systems containing software that ex-

presses complex process logic is well understood. This need is particularly important for

devices operating as part of a SCADA system (where this logic applies to the control of
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potentially hazardous physical processes such as power generation), and most poignantly

demonstrated by the release of Stuxnet [33]. As a general exploit alone, Stuxnet’s creden-

tials are frighteningly impressive: The program attempted to subvert targets using four

zero-day vulnerabilities and two compromised digital certificates, and included rootkit

functionality to hide its behavior from observers. However, rather than attacking machines

indiscriminately, Stuxnet specifically targeted machines within an industrial control system

(ICS)—in particular, the program looked for Windows computers used to configure the pro-

grammable logic controllers (PLCs) that governed uranium-enriching centrifuges [34]. If

it exploited such a computer, Stuxnet attempted to modify the PLC code, causing the cen-

trifuges to spin at damaging speeds. As industrial control systems are often found within

critical infrastructure such as power plants, the consequences of such sabotage could be

severe, and potentially even life-threatening. Therefore, ensuring the integrity of these

devices, as well as other devices within our critical infrastructure, is essential.

Securing these systems, however, comes with a catch, as the usual assumptions and

practices for protecting a system do not apply. For example, in his 2009 paper [15],

Ross Anderson noted that control systems have a much longer lifecycle than less-critical

systems—the former can stay in operation for decades, while the latter tend to be replaced

more frequently. It has also been widely known in the field that the high cost of bringing

down a control system for patching, both in terms of the work involved and the loss of

availability, often means that these systems are patched later than most other systems, or

not patched at all.

These findings indicate that our systems will be vulnerable to exploits, even those that

are published, for longer periods of time, and therefore a different approach is needed to

adequately protect these systems from subversion.
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1.2 Detecting Malicious System Behavior

Throughout the fight against malware, regardless of the tools used, the fundamental prop-

erty we try to preserve is the trustworthiness of the system, so that users can be confident

that their system is doing exactly what they asked (and nothing more), and that their system

produces accurate results. In looking at the current approaches to maintaining this trust, we

see them as falling into three categories:

Virus/Intrusion Detection: This idea relies on the capability of a system to decide if an

action is malicious or benign, and if it coming from a trusted source. A number

of different detection methods have been leveraged for action classification (see Sec-

tion 2.2 for more details). In any case, any behavior classified as suspicious is flagged

and reported to the system administrator.

Policy Enforcement: This idea relies on the system’s ability to allow an administrator to

specify the security goals of a system, then determine whether requested actions are

authorized and consistent with these goals. Unauthorized actions are blocked from

taking effect.

Isolation: This idea relies on the administrator or system’s capability to declare what parts

of the system an action is confined to, and what parts it is able to affect. Even if

a malicious action occurs, its affects are contained to a specific area. Today, most

administrators achieve this goal by using virtualization.

At the most basic level, all three concepts involve mediation: the system must capture

any actions that could change the state of the system, determine whether the actions could

move the system into an untrustworthy state, and ensure that the action does not affect

anything beyond its scope. In this thesis, we focus exclusively on the first of these points,

and discuss the development of a lightweight intrusion detection system (IDS). In the ideal

case, an IDS possesses two important characteristics:
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• The IDS is separated in some manner from the rest of the system, letting it monitor

the system while protecting it from host exploits.

• The IDS is completely mediating the system—that is, it observes and decides on

every action that occurs on the system.

By achieving these goals, we can get a full view of what is happening on our system,

while remaining confident that our IDS remains accurate and trustworthy even if the system

it monitors gets breached.

1.3 The Limitations of a Virtualized IDS

Intrusion detection is a well-studied topic, and the accepted approach to building an IDS is

to use some form of virtualization to isolate parts of the system in the name of protecting,

inspecting, or containing a program [23]. In recent years, we have seen a bevy of IDS

literature based on this premise (for example, [42, 51, 74, 75, 83, 105]). However, much of

this recent work suffers from a common flaw: The authors assume that the systems running

their products will be fast and have many resources available, and only evaluate their prod-

ucts on these kinds of machines. On the other hand, embedded systems, and especially

embedded control systems within the power grid, feature some inherent constraints that

need to be taken into account:

Resource Constraints: Embedded systems are generally (though not always) less power-

ful than their standard counterparts, and will often have less memory, less persistent

storage, and a slower processor. This idea suggests that any overhead discovered on a

standard system will be magnified on an embedded system, and narrows our margin

for error in this area. In particular, the overhead imposed by a hypervisor—for ex-

ample, Petroni and Hicks [75] found that simply running the Xen hypervisor on their
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test platform (a laptop featuring an 2 GHz dual-core processor and 1.5 GB of RAM)

imposed a performance overhead of nearly 40%—becomes a dicey proposition, and

suggests that an IDS based on this approach will not be feasible in the embedded

realm.

Power Constraints: Adding security to an embedded device increases its associated en-

ergy cost, since every cycle spent doing a security computation on a system means

means energy is diverted from going towards performing the device’s prescribed task.

These extra costs associated with security computation do not scale well in a SCADA

environment—for example, LeMay and Gunter [48] found that in a planned rollout of

5.3 million electric meters, simply including a trusted platform module (TPM) with

each of these devices—assuming that the TPM sat idle at all times—would incur an

added power cost of 492,136 kWh per year.

In the more general case, battery power can also be a limiting factor, as the lack

of a constant power source means a device has a finite uptime, and using power-

conserving measures often means accepting a tradeoff in the level of data consistency

provided by the system [97]. This issue is rarely a problem in the power grid, how-

ever, and we assume in this work that a constant power source is always available.

Application Constraints: Embedded systems within the power grid are often subject to

strict timing requirements when passing data along the network, some of which re-

quire a message delivery time of no more than 2 ms for proper operation [7]. With

these small timing windows, introducing even a small amount of overhead could dis-

rupt a device such that it cannot meet its message latency requirements, prohibiting

it from doing its job—an outcome that may well be worse than a malware infection.

These constraints indicate that the cost of even a single security component, in terms of

both power and performance, may be too expensive, and even if such costs are relatively

small on a single device, the total cost across all devices becomes nontrivial as we move
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towards ubiquitous deployment. Furthermore, it suggests that the conventional wisdom of

using virtualization is not an effective method in the case of embedded control systems (as

the cost of integrity may be too great in an industry where availability reigns), and that we

should consider different approaches to intrusion detection for these devices.

1.4 A Different Paradigm for Intrusion Detection

With the door open for non-virtualized IDS solutions, one alternative shows particular

promise: the idea of a kernel protection mechanism defending against malware while resid-

ing at the same privilege level as the kernel itself, or in the words of Ashwin Ramaswamy,

“attempting to protect ring 0 from within ring 0” [80]. Several members of our lab have

sung the praises of this approach in prior work [23], observing that virtualization is not truly

the silver bullet that it appears and pointing out that considering alternative techniques has

led to the development of more efficient and economical solutions in the past.

While much of the work done is this area deals with the idea of kernel hardening, or

configuring an operating system in a manner that makes it less vulnerable to subversion (for

example, grsecurity’s PaX project [68]), our proposal works more like a traditional IDS in

that it monitors its host for bad behaviors rather than proactively taking steps to prevent

them. Previously in our lab, Ashwin developed the Autoscopy system [80] as an example

of an in-kernel intrusion detection method. Instead of being separated from its host via

a hypervisor, Autoscopy instead demonstrated the possibilities of an intrusion detection

system working inside the operating system kernel to reduce the overhead on its host. To

do so, the program leveraged Kprobes [62], a tracing framework included in the Linux

kernel, to place probes onto indirectly-called functions1 within the kernel to dynamically

monitor the control flow of running programs for anomalies [80]. While Autoscopy was

1These functions, and the indirect pointers to these functions, are sometimes referred to as hook functions
and hooks, respectively. We use the terms interchangeably in this paper.
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initially designed and benchmarked for use on a standard desktop system, Ashwin’s testing

showed that the program imposed an overhead ranging “from 2% to 5% on a wide range

of standard benchmarks” [80], indicating that Autoscopy also held great promise as an IDS

for embedded systems.

Our project attempted to realize this promise, and built on the original work by de-

termining of feasibility of using Autoscopy in this context. To accomplish our goals, we

executed the following plan:

1. We identified several shortcomings in our original Autoscopy prototype, and refac-

tored the code to address these issues and operate on newer Linux kernel versions.

More specifically:

• We moved away from using mmap to access kernel memory, and instead read

the memory directly using the ioctl function of our character driver.

• We simplified our hook-checking logic, reducing the amount of work done in-

side our detection probes and removing the need for a separate disassembly

library.

• Most importantly, we replaced the original malware-detecting logic with trusted

location lists, cutting down on the complexity of the learning phase and avoid-

ing some of the nasty edge cases within the original logic. In the process, we

corrected a major flaw within the original learning phase—not having enough

space to adequately collect all of the locations a function is called from—that

could cause indirectly-called functions to be handled improperly or ignored en-

tirely.

2. We benchmarked the performance of Autoscopy on our test systems using the same

kernel version as in the original Autoscopy work (2.6.19.7) [80] to compare the dif-

ferent Autoscopy versions. In doing so, we discovered that the probes we placed
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incurred much more overhead than those of the original program, but were able to

profile our system, identify the probes most responsible for the slowdown, and re-

move them to bring our performance overhead back underneath our 5% threshold.

3. We then tested Autoscopy on a newer kernel that offered jump-optimized probes [8],

to see if the optimizations would further reduce system overhead. However, we found

that though some of the previously-seen overhead was removed, other sources of

overhead appeared in different places, leading us to conclude that jump-optimized

probes do not grant us any advantage in this area.

4. Finally, we attempted to run Autoscopy on a kernel that had already been hardened

by the grsecurity patch [3], to see if the two could operate concurrently. Unfor-

tunately, we found that our method of scanning the kernel’s address space did not

function properly on the patched kernel due to the added protections, and that by-

passing these protections without weakening them is a non-trivial design decision.

This issue meant that we were not able to collect the desired performance data.

From these results, we concluded that Autoscopy would indeed be a suitable IDS for

embedded control systems.

1.5 Thesis Outline

We structure the rest of this thesis as follows: Chapter 2 offers some background informa-

tion on the important concepts underlying Autoscopy, Chapter 3 discusses previous work

on the topic of maintaining system trust, Chapter 4 gives an abridged description of Ash-

win’s original Autoscopy prototype, as well as some of the shortcomings discovered in

subsequent reviews, Chapter 5 introduces our new Autoscopy Jr. system and highlights the

upgrades over the previous Autoscopy iteration as well as their costs and benefits, Chapter 6

9



presents the results of our testing on a standard system (both performance and operational),

and Chapter 7 concludes.

Please note that much of Section 4 is based upon both Ashwin’s original thesis [80]

and the original Autoscopy source code. Additionally, parts of Sections 1 through 7 are

borrowed or based on my thesis proposal and our paper submission to the 5th Annual IFIP

Working Group 11.10 International Conference on Critical Infrastructure Protection [82],

whose proceedings are scheduled for publication later this year.
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Chapter 2

Background

In this section, we discuss the variety of embedded systems within the power grid, introduce

the methods and best practices of a standard intrusion detection system (IDS), explain

why these may be unattainable on a SCADA embedded control system, briefly discuss

the virtualization and self-protection approaches to intrusion detection, and highlight the

tracing framework we use for our IDS. We also take an in-depth look at direct jump probes

and the grsecurity kernel patch, two optimizations that we evaluate in Section 6.

2.1 Embedded Control Systems in the Power Grid

Today’s electrical grid contains a wide variety of intelligent electronic devices (IEDs), in-

cluding transformers, relays, and remote terminal units (RTUs). The capabilities of these

devices can vary widely—for example, the ACE3600 RTU sports a 200 MHz PowerPC-

based processor and runs a VX-based real-time operating system [13], while the SEL-3354

computing platform has an option for a 1.6 GHz processor based on the x86 architecture,

and can support commodity operating systems such as Windows XP or Linux [89].

As mentioned earlier, in addition to the typical resource restriction issues, embedded
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control systems within the power grid are often subject to strict timing requirements when

passing data along the network. For example, IEDs within a substation require a message

delivery time of less then 2 ms to stream transformer analog sampled data, and must be able

to exchange event notification information for protection within 10 ms [7], which poses a

challenge for people trying to add additional security mechanisms (such as bump-in-the-

wire authentication devices [104]). As some SCADA systems would be unable to handle

latencies extending beyond these upper bounds, we must therefore take great care to limit

the amount of overhead we impose, as the device’s availability takes precedence over its

security.

An important thing to note is the evolution of the technologies used to power these criti-

cal embedded systems. While companies have historically turned to customized proprietary

products for use in SCADA and other critical systems, more recently the tide has turned

towards using deploying commercial off-the-shelf (COTS) products (including operating

systems, applications, and even communication protocols) to meet their needs [108]. Our

partners in the power hardware industry indicate that time-to-market concerns drive the

movement towards COTS solutions [106], and the fact that control systems tend to stay in

operation for decades after their initial adoption [15] amplifies both the benefits of gaining

acceptance in the marketplace and the costs of being left behind.

2.2 Methods of Intrusion Detection

The concept of intrusion detection dates at least as far back as 1980, when James Ander-

son’s computer surveillance paper discussed the design of an early IDS toolset for tasks

such as user and file monitoring [14]. Early intrusion detection programs, however, were

computationally intensive and placed a huge burden of their host systems, and were used

mostly to catch malicious behavior after the fact [44]. In the 1990s, the development of

real-time intrusion detection systems meant attacks could be detected as they happened,
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and possibly even preempted [44].

Today, an intrusion-detection program can be classified in two ways: its monitoring

scope [41], and its detection methods [79]. We first consider the two monitoring scope

categories:

Host-Based IDS (HIDS): A host-based IDS lives on the machine that it monitors, and

analyzes data generated by both processes and users on the machine, looking for

suspicious activity [41]. HIDS can quickly gather details about the system itself

that an outside IDS may not have access to, but they are also vulnerable to host

exploitation unless isolated from the host OS in some manner, and may not scale

well when used in a large network. Popular examples of HIDS include OSSEC [66]

and Tripwire [103].

Network-Based IDS (NIDS): Rather than analyzing system behavior on a host-by-host

basis, a network-based IDS instead examines packets as they flow across the net-

work, determining whether or not they are malicious [41]. These programs are most

useful in detecting activity like denial-of-service attacks or unauthorized access from

a system outside the trusted network, but are hindered by things such as encrypted

network traffic. One of the most popular examples of a NIDS is Snort [93], which

reads packets off the network and can either log them, display them on screen, or

respond to them based on user-defined rules [94].

Since Autoscopy was previously implemented as a HIDS, we will focus exclusively on

this type of IDS in our research. NIDS for embedded systems are left as a future point of

interest.

IDS detection methods of can also fall into one of several different categories.1 We

discuss the most popular two below:

1For example, [96] mentions specification-based and behavioral detection.
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Misuse-Based Detection: A misuse-based HIDS searches for intrusions by scanning for

system behavior that has been labeled as unacceptable via a predefined set of rules [79].

While this approach provides a targeted setup that can reduce the number of false

positives discovered [79], it is vulnerable to new or novel attack behavior that may

fall outside these rules [76]. The type of patterns focused on by the system can come

from a variety of sources, including specific code or byte patterns within files [26],

the information flow between system calls [46], and even fundamental malware traits

such as malicious information access [109].

Anomaly-Based Detection: An anomaly-based HIDS uses a predefined notion of “nor-

mal” behavior on a system, and flags any behavior that falls outside this range [80].

As with misuse detection schemes, anomaly-based systems can vary based on how

they define normalcy. For example, Forrest et al. [35] proposed the idea of classify-

ing normal vs. abnormal program behavior using short sequences of system calls. By

observing the normal behavior of a process as it operates, they could build a database

of this behavior particular to the process’s setup on the local machine (a “sense of

self”), then compare future process behavior to this database to determine whether

the process was behaving normally or not (i.e., if the process had been compromised).

(Somayaji and Forrest [95] later furthered this design by building an automated re-

sponse system to slow or stop anomalous process behavior.)

Recent work dealing with anomaly-based systems has focused on making them more

autonomous in their operation, self-calibrating based on incoming traffic and outlier

rates [30], and classifying an attack based on the anomalies discovered [18].

It is worth noting that an IDS can fall into multiple categories—for example, Snort

claims to combine the benefits of both signature and anomaly-based approaches [93].

The logical extension of an intrusion detection system is an intrusion prevention system

(IPS) [40], which responds to any detected intrusions in real time. These systems, however,
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are outside the scope of this project.

2.3 Control Flow Integrity

The control flow of a given program is defined as the sequence of code instructions that

are executed by the host system when this program is run. The idea of using control flow

integrity, or CFI, as a security device has been a well-explored area of research (see [12]

for a good discussion of the topic). The crux of this idea is that we can build a model of the

program’s behavior (most often a control flow graph), which can be used to validate future

runs of the program.

Constraining the control flow of a program in this manner conflicts with the goals of

malware authors, since they are often trying to add malicious functionality to an exploited

system, and modifying the control flow of a program (or kernel) is a simple way of doing

so [75]. In fact, diverting control flow within a system has been a favored tactic of mal-

ware authors for some time, especially in the field of rootkit design: 24 of the 25 rootkits

analyzed in [75] and all 13 of the non-custom rootkit prototypes looked at in [80] redirect

control flow in some manner, thereby violating CFI.

Because of the prevalence of control flow alterations in malware, especially among

rootkits, Autoscopy uses control flow behavior as its main mechanism for validating system

behavior [80]. Chapters 4 and 5 contain more information on how this verification was

done.

2.4 Virtualization vs. Self Defense

In the computer security community, virtualization most often means simulating a specific

hardware environment that can function as if it were an actual system. Typically, one
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or more of these simulations, or virtual machines (VMs), are run such they are isolated

from the actual system and other VMs, with a virtual machine monitor (VMM) in place to

moderate a VM’s access to the real hardware.

Virtualization has become a commonly-used security measure, since in theory a com-

promised program remains trapped inside the VM that contains it, and thus cannot affect

the underlying system it runs on. Several recent IDS proposals [42, 51, 75] leverage this

feature to separate their detection program from the system that it monitors, achieving

our isolation goal from Section 1.2. However, these assumptions of isolation have been

challenged by Bratus et al. [23], who argue that there is no good way to discuss policies

concerning how information is allowed to pass between boundaries (and even if there were,

simply crafting such a policy is a challenge within itself), and:

“...[because] little thought has been given to what the best way is to com-

bine the twin roles of resource provider and reference monitor...virtualization

environments can find themselves attempting to measure security-relevant prop-

erties of a system in ways that are both creative and convoluted.” (from [23])

In addition, such a setup is computationally expensive—recall the 40% overhead added

by the hypervisor in [75]—and an embedded control system may not have the available

resources to support such a configuration and still perform its duties in a timely manner.

Finally, as shown by [10] and [107], the hypervisors often found in virtual configurations

are not immune to attack themselves, and Bratus et al. [23] also point out that adding a

hypervisor means having to update “both the protected guest software and the protecting

host OS”, and that remotely-deployed machines will require remote management systems

that rely on less-than-secure technologies.

To avoid the hassle and overhead of a virtualized or other external solution, we propose

using an internal approach to intrusion detection, one that allows the kernel to monitor itself

for malicious behavior. The idea of giving the kernel a view of its own intrusion status
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dates at least as far back as 1996, when Forrest et al. [35] proposed building a system-

specific view of “normal” behavior, which could then be used for comparisons with future

process behavior. The approach of Autoscopy can be viewed through the same lens, as we

provide the kernel with a module that allows it to perform intrusion detection using its own

structures, and determine whether an action is trustworthy or not.

2.5 Kprobes

The impetus behind OS tracing frameworks came from the need for users and adminis-

trators to understand the operations of their systems in the face of “increasing program

complexity...and seemingly impenetrable operating systems that offered sparse debugging

support” [80]. In recent years, therefore, several operating systems have introduced these

kinds of frameworks to give users easy access to the internals of the system—for example,

DTrace [25] for Solaris and Kprobes [62] for Linux. Since we will be working exclusively

with the Linux kernel for this project, we will focus on the workings of Kprobes in this

analysis.2

Kprobes were first introduced into the Linux kernel for version 2.6.9, as a mechanism

for allowing user-specified code to run at a specific point in the kernel [62]. Typically, an

administrator will instantiate his or her own instance of the kernel’s Kprobe data structure,

define what code should be run when the probe is hit, and register the probe on the system

using a kernel module [45]. While the Kprobe structure contains a number of data fields,

the most important ones to note are the addr field (the memory location that the probe

is monitoring) and the pre-handler and post-handler routines (the user-specified

routines called before and after the probed instruction is executed, respectively) [62]. How-

ever, we also call attention to the symbol name field, which is normally used to allow

2Other Linux tracing frameworks exist as well, most notably Ftrace [84], which we come into contact—
and conflict—with in Section 6.3.
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users to define probe locations using symbol names instead of raw addresses [9], but in this

case will be co-opted for our system’s own purposes.

Instrumenting a Linux kernel with Kprobes requires selecting the appropriate config-

uration option during kernel compilation [45]. Once properly configured, one or more

Kprobes can be inserted to the kernel at any arbitrary address within kernel text (including

multiple probes at the same address), although some exceptions exist (for example, func-

tions that are a part of the Kprobe infrastructure). When a Kprobe gets registered within

kernel text, the system “replaces the first byte(s) of the probed instruction with a breakpoint

instruction (e.g., int3 on i386 and x86 64)” [45], while copying the original instruction to

another memory location to be single-stepped (to allow for executing the original instruc-

tion without removing the breakpoint) [45].

A Kprobe-enabled kernel also has a notifier mechanism registered with the highest pri-

ority, ensuring that it is able to catch the traps generated by the Kprobe breakpoints [62].

Upon receiving a signal from the appropriate trap, the system first verifies that it was indeed

a Kprobe breakpoint by looking within the hash list of registered probes for one that corre-

sponds to the breakpoint. If so, the system passes control to the Kprobe mechanism, which

executes the pre-handler associated with the probe, then single-steps the probed instruction,

and finally executes the probe’s post-handler [45].

In addition to the generic Kprobes, there are two other types of probes that can be used:

Jprobes, which are inserted at a function’s entry point and allow easy access to a function’s

arguments, and Kretprobes, which fires upon reaching the end of the probed function [45].

However, the overhead associated with both Jprobes and Kretprobes is about 1.5 times that

of a regular Kprobe [62], so we stick to using Kprobes for Autoscopy.
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2.6 Direct Jump Probes

A recent enhancement to the Kprobe infrastructure is the concept of direct jump probes,

or Djprobes, which were introduced by Masami Hiramatsu in 2005 [38]. Linux kernels

from version 2.6.34 onwards have offered this improvement,3 billed as “Kprobe jump op-

timization,” as a configuration option [1, 8], though a patch exists for select older kernel

versions [2].

The basic idea of a direct jump probe is to use a jmp instruction to move to the corre-

sponding Kprobe code, rather than using a breakpoint instruction [39]. After some safety

checking to determine the safety of overwriting the bytes needed for the jmp instruction,

the system prepares a detour buffer that handles saving/restoring registers, provides a path

to the probe handlers, and returns the flow back to the original execution path [45]. After

further safety checking, the jmp to the detour buffer is inserted into the kernel.

The primary benefit of using Djprobes is speed: Hiramatsu’s initial testing showed

that Djprobes were “10 times or more as fast as other probes” [38]. However, Djprobes

also introduce a number of restrictions when performing its safety checks [45]. Among

these restrictions are the following (conditions marked with an asterisk(*) are considered

temporary by the system, and the system will re-check for optimization potential if these

conditions change):

• The area replaced by the jmp instruction (for x86, 5 bytes) must all be contained

within the same function.

• The instructions replaced by the jmp (which may include more than the bytes re-

placed by the jmp, since the end of the jmp might land in the middle of an instruc-

tion, so the whole instruction will need to be moved) must be able to be executed out
3Given that Hiramatsu is credited with the initial idea of jump optimization [32] and Hiramatsu himself

refers to the “jump optimized” rebranding of his technique [39], we conclude that it is his idea that was
merged into the kernel.
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of line.

• The instructions replaced by the jmp cannot include a CALL instruction.

• The function being probed does not contain an indirect jump, a near jump back to the

replaced instructions, or any instruction that causes an exception.

• The instructions replaced by the jmp must not also be probed themselves.*

• The function being probed cannot have a post-handler.*

If all of these conditions are not satisfied, the system will not optimize the probe, instead

reverting to the original Kprobe design [45]. However, this assertion did not match with

our own experiences using Djprobes, which are described in Section 6.3.

2.7 grsecurity and PaX

The grsecurity project began in February of 2001, and was originally intended as a port of

an existing kernel hardening project to the 2.4 Linux kernel [99]. It provides a number of

additional protection features for the Linux kernel, including:

The PaX project [68]. The PaX hardening patch is a formidable defense mechanism in its

own right. PaX uses address space layout randomization (ASLR) [69] and memory-

page execution protection (either using a no-execution bit [70], or simulating one by

using the privilege bit to cause userland memory accesses to trigger a page fault [72]

and separating data accesses and execution mappings into different segments of

memory [73]) to protect the sanctity of the flow of information within a process.4

Role-based access control (RBAC). The grsecurity patch also includes a full-fledged role-

based access control system, expanding upon the standard Unix permission system
4PaX contains other protections as well; interested readers are encouraged to check the PaX project

page [68].
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with the goal of “creating a fully least privilege system” [5]. The patch’s RBAC

system is managed via a policy file containing the rules for the system, which are

verified by the program before activation to certain basic violations (such as granting

access to the policy file to the default role) are present [6]. Policies are generally

organized in terms of roles (users or groups), subjects (processes or directories), and

objects (files, system resources, etc.).

Filesystem protection options. A number of file protections are available in the patch as

well, including access restrictions on the /proc directory, extra safeguards to keep

programs inside chroot jails from escaping, and the ability to keep new devices,

as well as any existing devices mounted as read-only, from be mounted with write

permissions [4].

(The above bullets are by no means a comprehensive list: grsecurity also offers more

kernel auditing options, the ability to disable writing directly to memory through /dev/mem

and /dev/kmem, and a method of specifying which users are allowed to initiate client and

server sockets, among many other things [4].)

The payoff of using grsecurity is a kernel that is, in the words of Dan Rosenberg and

Jon Oberheide, “many orders of magnitude more difficult” to exploit [65]. Very little public

work exists on the subject of exploiting grsecurity-hardened kernels, and even Rosenberg

and Oberheide’s exploit technique—which leveraged vulnerabilities in kernel code and not

in the grsecurity protections—was promptly squashed by the PaX team [65]. While im-

plementing the grsecurity security features comes with a cost to some applications (for

example, although the PaX protections offer defense against common attacks such as shell-

code injection or return-to-libc exploits, the project team warns that its product will break

any application that requires writable/executable mappings [71], a potential problem for

legacy programs), the project stands as a testament to the security benefits we can achieve

using an in-kernel protection scheme. We detail our own experiences with using grsecurity
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in Section 6.4.
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Chapter 3

Related Work

Here, we cover some of the recent approaches to maintaining the trustworthiness of a sys-

tem. What we find, however, is that most of these solutions require extra logic, space or

processing power to achieve their improvements.

3.1 Virtualized IDS Solutions

Petroni and Hicks [75] approach the task of detection using elements of the kernel state

that should be invariant—in particular, the idea that a program’s execution path must fall

within a control flow graph that can be discerned in advance. A malicious program wishing

to add extra functionality will often divert this path through its own code, and violate the

integrity of the control flow path. The authors propose a state-based control flow integrity

(SBCFI) program, where the system is periodically examined for violations in the control

flow graph. Though the frequency of the checks can be adjusted to improve performance on

a more-constrained system, the SBCFI system also uses an external monitor for validation,

and as noted earlier, the hypervisor itself adds nearly 40% of overhead to the test system (a

machine with a 2 GHz dual-core processor and 1.5 GB of RAM).
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Litty, Lagar-Cavilla, and Lie [51] propose a hypervisor-based system that makes no

assumptions about the OS kernel when looking for malicious programs. Their Patagonix

system uses a hypervisor to isolate itself from the OS kernel, while bridging the semantic

gap between the kernel and hypervisor by relying only on the behavior of the hardware to

detect and identify any hidden binaries executing on the system (since malware is bound to

following proper OS semantics, and may also subvert the OS itself). Although the authors

claimed that Patagonix introduced an overhead of less than 3% for most programs, once

again they fall into the trap of benchmarking on a more-powerful system with 2 GB of

RAM and a 2 GHz dual-core processor. Additionally, Patagonix requires a trusted external

database of binary hashes to use in verifying programs, yet another luxury a deployed

embedded system may not be able to afford.

Jiang, Wang, and Xu [42] propose a flexible VMM-based detection solution that can be

used to detect malware on their system, even if the malware has compromised the OS to

hide itself. The authors present their VMWatcher system, which allows us to place a detec-

tion protection outside the VM it protects, but gives the program a view of the OS kernel

semantics as if it were living inside the host. VMWatcher relies on using the OS’s own data

structure definitions and function semantics to reconstruct an internal view of the protected

VM from the raw data, bypassing any modifications a piece of malware or a rootkit could

have made to the OS to hide things from standard reporting functions. This feature not

only means that hidden files and processes can be uncovered, but that a standard antivirus

program can be deployed safely within the VMM and use the reconstructed semantics to

protect the virtual machine. However, because VMWatcher relies on its ability to recon-

struct the data structures used by the OS, it is vulnerable to attacks that introduce subverted

versions of these function for use that VMWatcher would not have any knowledge of.

Riley, Jiang, and Xu [83] produce their NICKLE system by combining virtualiza-

tion with the idea that no unauthorized code should be allowed to execute in kernelspace.

NICKLE uses a virtual machine monitor to create a shadow copy of the memory of a vir-
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tual machine, and copies only the authenticated kernel instructions into the shadow space

when the VM starts. The system then redirects all kernel memory accesses to the shadow

memory copy, and in the event of an unauthorized execution of kernel code, NICKLE either

rewrites the code or simply routes it to the requested location within the shadow memory

copy, which will presumably contain null content at that location. However, loadable ker-

nel modules present a challenge, as NICKLE requires a hash of the code segment to be

taken off-line by an administrator, and would likely require a manual analysis to determine

whether or not it was malicious (since a module that was malicious to begin with would

not need to be changed, and its hash values would match).

Wang et al. [105] focuses on protecting hooks within kernelspace, using paged-based

protection within hardware. Noting that kernel hooks are often read but rarely written

after being initialized, the authors create a shadow copy of every kernel hook in a page-

aligned memory space, allowing them to use hardware-based page protection mechanisms

to monitor the hooks. The program they produced, dubbed HookSafe, was shown to foil

several rootkits in testing, either by redirecting system calls to its shadow copies (thereby

bypassing the original modified version) or by way of the memory protections offered by

paging. However, not only is this approach based on the use of a hypervisor, which an

embedded system may not have the resources to support, but it also uses an emulator that

the system runs on top of to handle profiling the kernel hooks.

Finally, Bratus et al. [21] used virtualization as a way of protecting and extending the

chain of trust coming from a Trusted Platform Module. After outlining a critical vulner-

ability in the general TPM setup—namely, that changing the contents of the memory the

binary is loaded into after the fact will not be detected, making the TPM vulnerable to time-

of-check time-of-use (TOCTOU) attacks—the authors address this oversight by inserting a

Xen VMM between the hardware and operating system (since any memory update within

Xen traps to the hypervisor and makes monitoring memory updates easier). The Xen hy-

pervisor is given the desired page table entries and memory frames to monitor, and checks
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to see if any writing to these memory locations is done. This solution is not fully trustwor-

thy, however, as it protects only against memory accesses that require the system’s page

tables; protecting against direct memory access is left as future work. Additionally, be-

cause the authors solved the problem by using another layer of software complexity (the

Xen hypervisor), embedded systems may not be able to spare the necessary resources.

3.2 Policy-Based Trust Solutions

Virtualization is not the only game in town when it comes to maintaining system trust, and

much time and effort has been expanded in exploring other non-IDS avenues. For example,

the idea of using policies to maintain trustworthiness can be traced at least as far back as the

discussions on mandatory access control within the Orange Book [31]. Though an effective

security concept in theory, constructing such a system in practice has proven difficult,1 and

the ideas of the Orange Book proved not to be a magic bullet for computer security ([92]

offers a good summary of the various arguments as to why). Despite this difficulty, access

control remains a popular tool for protecting systems from compromise.

Hicks et al. [37] discuss integrating a security-typed language with the OS services

that handle mandatory access control. In this way, a program can be verified as safe to

use based on its compliance with the operating system’s policy. This kind of approach,

however, would most likely require the rewriting of many legacy applications, and possibly

need to replace a device’s current OS with one that support access controls.

Chang, Streiff, and Lin [27] take a less drastic approach by integrating the details of a

security policy with a compiler, allowing users to produce compliant code without worrying

about the details while writing the program. An administrator can specify policies within

an annotation file, and the compiler analyzes the flow of data through a program checking

1The challenge is no easier at higher levels: Sinclair and Smith [90] found a similar difficulty in policy
construction maintenance even within organizations.
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for and preventing policy violations. Successful use of this system, however, depends on

how well a security policy can be translated into a compiler-readable format.

Butler, McLaughlin, and McDaniel [24] extend the policy idea even further with their

concept of rootkit-resistant disks. By extending the I/O processing within the disk con-

troller, the authors are able to label the important system binaries and configuration files

at the time of installation, then deny write-access to any disk blocks previously labeled

without specific local conditions (i.e., the machine is booted into a safe state and a security

token has been attached). Here, despite the system’s minimal overhead (found to be less

than 1% in filesystem creation and 1.5% while running an I/O intensive benchmark), the

physical access required to insert the token in case of an update would be a logistical chal-

lenge in the case of embedded systems that are widely distributed in unmanned locations

(or perhaps even mobile).

3.3 Isolation-Based Trust Solutions

Still other programs take a sandboxing approach to maintaining system trust, setting up

barriers to ensure that a program, even if subverted by an adversary, cannot escape its

predetermined bounds and affect other parts of the system. We note that while virtualizing

is a popular technique is this area as well as in intrusion detection, virtualization-based

intrusion detection systems create a trusted space that unauthorized programs cannot enter,

while isolating systems use virtualization to create a container that a potentially untrusted

program cannot escape.

The idea of using virtual machines for security dates at least as far back as 1973 [61];

the first major system to use virtualization in this manner dates was the VAX Security

Kernel [43]. The VAX kernel used a virtual machine monitor (VMM) to allow several dif-

ferent virtual machines to operate, each with mandatory and discretionary access controls
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assigned by the VMM. This setup meant that different VMs could be run with different ac-

cess classes, allowing each VM to operate only as allowed by their clearance level. Though

the makers of the security kernel chose not to market their kernel due to outside economic

forces [92], the technique remained a popular approach to securing systems.

Bittau et al. [17] propose the Wedge system, a two-step process to split monolithic pro-

grams into smaller compartments with explicitly-defined privilege sets. Wedge introduces

primitives that allow the OS to create default-deny compartments for program code (thus

forcing any compartment privilege granting to be explicitly done), as well as the Crow-

bar toolset, which can be used to determine a program’s memory access patterns and help

discover what program compartments require what access privileges. Using these tools,

programmers can use least-privileged principles to ensure that exploits are limited to the

access privileges of the subverted compartment. However, even with the inclusion of the

Crowbar tools, programmers are still forced to examine and tag their code with appropriate

privilege levels, as an automated system may not catch subtle bugs not revealed by data

dependencies.

Borders et al. [19] put an interesting twist on using virtualization: rather than use it to

separate malware from the actual system, it is used to ensure the safety of data managed on

a potentially-compromised system. Sensitive files are encased in encrypted file containers

known as “storage capsules,” and the system itself maintains both a primary (untrusted)

and secure operating system using virtual machines. To access the contents of a storage

capsule, a signal is sent to a virtual machine monitor that resides beneath both OS copies,

which switches focus to the secure VM, saves a snapshot of the primary VM, and disables

device outputs (such as the network) while the user enters their capsule credentials. Disk

I/O requests from the capsule are encrypted, and once the user is finished with the capsule,

the primary VM is reverted to the previous snapshot, and all device outputs are re-enabled.

However, the overhead imposed by such a system is substantial: the authors found that

their storage capsules system ran 38% slower than a native OS on a relatively powerful
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computer, and the space needed to maintain a VMM with two virtual machines would

likely be nontrivial. Thus, storage capsules would be infeasible on an embedded system.

3.4 Commercial Products

The search for effective intrusion detection systems has not been limited to academia, and

over time several commercial products have emerged to try to keep malware from exploit-

ing a given system. These programs run the gamut of protection strategies, from virtu-

alized approaches to policy settings to complete, manually-inspected operating systems.

However, while some of these products have demonstrated their effectiveness in real-world

settings, none of them are a silver bullet in the fight against malware.

One of the earlier attempts at enforcing policy controls within the OS is the Flask ar-

chitecture [98], built to support fine-grained access controls for objects in the system. The

architecture uses object manager and security system subsystems to handle policy enforce-

ment, where object managers enforce security decisions made by the security servers. The

goal of this setup is to provide policy flexibility by ensuring the subsystems have a con-

sistent view of the decisions made regardless of how they are made how they may change

over time. Using this framework, an NSA-led group developed SELinux [88] to demon-

strate the usefulness of mandatory access controls and how they could be feasibly added to

the Linux OS. However, the sheer complexity of SELinux has undermined its effectiveness:

for example, Bratus et al. [22] found SELinux to be unsatisfactory, since “any reasonable

degree of integrity protection requires a large and complex policy, essentially profiling all

the allowed accesses for protected applications.”

Openwall GNU/*/Linux [67] takes a more far-reaching approach to system security

by providing a complete operating system for use. Programs above a specified impor-

tance level have their source code manually inspected and fix any problems discovered, or
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the software may be dumped from the system altogether. Additional security principles,

such as secure default behavior and privilege separation, are applied when configuring the

included software for Openwall. Manually inspecting and fixing source code for bugs,

however, is a time-consuming process not guaranteed to catch every security hole, and the

increased program requirements may again cause trouble for programs who require more

lax security standards to function.

Finally, a good (though extreme) example of a commercially-available virtualized solu-

tion is the Qubes operating system [85]. Built on top of the Xen hypervisor, the system al-

lows users to create a multitude of virtual machines that allow them to separate applications

running with different trust levels. In addition, special system VMs are set up to set bound-

aries between important system components, such as networking- or storage-specific code,

to limit the amount of damage done if exploited. While the system has detractors—notably

Brad Spengler, who argues that the hypervisor does not support the type of information flow

control to be considered part of the trusted computing base [100]—the approach stands as

the prime example of a virtualization-based approach to maintaining a trustworthy system.

Once again, however, the space and computing power requires to maintain a large number

of VMs make this unsuitable for an embedded system.

3.5 Kprobes

Kernel developers have leveraged Kprobes in a number of interesting ways since the trac-

ing framework was first developed. Most of these programs focus on using Kprobes for

debugging the kernel or analyzing its performance. For example, Prasad et al.’s SystemTap

program [77] extends the basic Kprobe framework to create a more-portable method of

dynamically instrumenting a system. More recently, however, programmers have come up

with some more novel ways of using the tracing framework. For example, Lee, Moon, and

Lee’s ACAP system [47] uses Kprobes to capture network packets by probing important
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functions in the INET socket layer, while Singh and Kaiser’s Atom LEAP program [91]

leverages Kprobes to place “energy calipers” at arbitrary kernel code locations for mea-

suring and characterizing the energy usage of a system. To the best of our knowledge,

however, our Autoscopy work, along with Ashwin Ramaswamy’s work on our original

prototype [80], is the first to leverage Kprobes as a tool for system protection.
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Chapter 4

Autoscopy v1.0

The original work on Autoscopy, published by Ashwin Ramaswamy in 2009 [80], billed

the program as a lightweight-yet-comprehensive way to look for malware (more specif-

ically, “control-flow hijacking kernel rootkits” [80], although other programs exhibiting

this behavior would be caught as well) that used the operating system’s own tracing frame-

work to defend the OS from intrusion. The program looked for suspicious behavior on its

host by identifying similar function calls made within a program’s control flow as it passed

through the kernel, and tests of the program on a standard system running Linux showed

that it was not only successful at detecting rootkit prototypes matched against it, but that it

also imposed very little overhead on the host during our benchmark testing. In this chapter,

we dive into the details of Autoscopy and give a high-level overview of its operation, and

also discuss some of the drawbacks and oversights of the original prototype.

This chapter is based on both our reading of Ashwin’s original thesis [80] and a close

reading of the original Autoscopy source code, and many of the ideas here are re-stated

from Ashwin’s work. We encourage the reader to consult the original Autoscopy paper for

more information on this subject.
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4.1 Autoscopy Components

The Autoscopy program itself consists of three parts: a character driver that it creates on the

host system, a pair of kernel modules (one for each of the phases discussed in Section 4.2)

that define the necessary driver operations, and a collection of userspace programs that

interact with the driver using the modules. Most of the computationally-intensive program-

ming is offloaded to the userspace programs, to allow the modules to focus on control-flow-

monitoring activities, but exceptions to this rule exist (for example, some kernel disassem-

bly is required when verifying an unknown control flow).

In terms of additional software, Autoscopy demands relatively little of its host system.

On top of a development environment for both C and Ruby code, we also use the sort

program to help parse text file records, gdb to clean up the output from the learning phase,

and the udis86 disassembler library [102] for digging into the assembly code of the host.

Finally, because of our reliance on assembly code, Autoscopy must be tuned to the

architecture of its host system—in our case, x86. In theory, however, Autoscopy could be

ported to any architecture that supported Linux (although the porting process would include

finding a new disassembler library).

4.2 How Autoscopy Works

We make one additional assumption about any host system that uses Autoscopy: the actual

text of the kernel remains pristine, even in the presence of installed malware. Since we are

“attempting to protect ring 0 from within ring 0” [80], we are therefore as vulnerable to ex-

ploitation as any other piece of the kernel. Therefore, for full protection, we would need to

take additional measures to protect Autoscopy from malicious modification. (Additionally,

since altering a direct function call requires changing the underlying kernel text, we do not

consider direct function calls as part of our protection scheme.)
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(a) (b)

Figure 4.1: Examples of control flow. 4.1a depicts a typical flow from an function pointer to
the intended function, while 4.1b demonstrates the control-flow hijacking that Autoscopy
detects—namely, the re-routing of the function pointer to point to a malicious function,
which performs its intended evil deeds and eventually calls the original function.

As mentioned in Section 2.3, Autoscopy relies on control flow behavior within the OS

to search for anomalous activity. Specifically, Autoscopy looks for a certain type of pointer

hijacking, where a malicious function injects itself between a function pointer and the orig-

inal function that was pointed to. The pointer is hijacked to instead point to the malicious

function, which will then call the original target function of the pointer somewhere within

itself. This way, a malicious program can use the original target function to fool the user

by providing the output he or she expects, while allowing the malware to perform whatever

actions it desires (for example, scrubbing the output to hide itself). Figure 4.1 demonstrates

this behavior.

In his original prototype, Ashwin identified control flow anomalies by observing the

argument similarity between function calls within the current flow, where “argument sim-

ilarity is defined as the number of arguments that are equivalent [both in terms of position

and value] between two function calls” [80]. Whenever we hit a function that Autoscopy is

monitoring, the program examines both the current state and future direction of the present

control flow as determined by the monitored function, scanning for other indirect function
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calls. According to Ashwin, “if this similarity metric exceeds half the total number of ar-

guments for a callee function, and the attack vector we’re searching for [the control flow

deviation] is satisfied, then we report the presence of a rootkit” [80].

Because Autoscopy is an anomaly-based IDS, installing it on a program is a two-step

process: We first go through a learning phase to gather information about the normal be-

havior of the system, then move to the detection phase, where Autoscopy applies the infor-

mation to search for unexplained near-duplicate function calls. A more detailed explanation

of both phases follows.

4.2.1 The Learning Phase

In his discussion, Ashwin explains the learning phase by dividing the steps into two groups:

those performed in userspace, and those performed in kernelspace (he refers to these high-

level groupings as the “Hook Analyzer” and the “Hook Collector”, respectively [80]). To

try to make things easier to understand, we instead present his implementation of the learn-

ing phase as a three-step process: dereferencing kernel memory to find potential indirect

function pointers, verifying the function pointers and collecting the appropriate return ad-

dresses of the indirect calls, and collecting the context information needed for the argument

similarity checks. (Please note that the only change is the labeling of learning phase ac-

tions, not when and how they are performed.) Figure 4.2 provides a concise summary of

these activities; we now dive into the finer details.

The Derefencer The first step in the learning phase is to find the locations of any function

pointers within the kernel. To find these hooks, Autoscopy uses mmap to access the memory

that has been statically mapped into the kernel (we ignore high memory at this time), then

parse it into 4-byte chunks, dereferencing each chunk to see if the data contained at that

address might be a address inside kernel text. If this is the case, we have found a potential
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Figure 4.2: A summary of the Autoscopy learning phase. We first query the kernel to find
the memory locations of potential function pointers, then probe the kernel to find the true
indirect pointers and the return addresses of those function calls, and finally collect the
function context, or register values, at the time the hook value is specified.
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hook location that should be investigated further.

At the end of this stage, the program returns a list of kernel addresses that satisifed our

above criteria, as well as the dereferenced values of those addresses (which represent the

functions in the kernel that may be called indirectly). We feed the latter set of information

into the return address collector.

The Return Address Collector At this point, Autoscopy tries to filter out any false pos-

itives by taking the list of indirectly-called functions from the dereferencer and placing a

Kprobe on each function, then attempting to trigger to probes by putting the kernel through

its paces using a suitable (read: comprehensive) test suite.1 When a probe is hit, Autoscopy

simply records the return address of the function to use in further processing. This return

address is stored in an external data field whose address is stored in the symbol name

field of the Kprobe.

Once we finish running the test suite, Autoscopy reads the return address data from the

probes and verifies that the return addresses it found are part of an indirect function call.

Probes that were either called via a direct function call or never called at all are discarded,

while the rest have their collected return address paired with the address of the indirectly-

called function the probe was monitoring. These address pairs are then passed along to the

context collector.

The Context Collector Ashwin defines a hook instruction as “the instruction that con-

tains the hook address [the address of the function being called] in the form of processor

registers and optionally an offset” [80]. This final stage of Autoscopy’s learning phase at-

tempts to collect the context of the indirectly-called functions, which Ashwin defines as the

values of the “processor registers when the hook instruction was executed” [80].

1Ashwin used the Linux Test Project [52] for this task, but in practice, this method may leave out some
of the more task-specific behavior on specialized hosts, so we recommend working actual use cases into the
learning phase on top of using any test suites.
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To determine the location of the hook instruction inside the kernel, Autoscopy first

works backwards from the indirect call until it encounters the telltale 3-byte sequence2 that

signifies the function prelude (and therefore the beginning of the function).3 From there,

the kernel goes through the function from start to finish and builds a control-flow graph

(CFG) of the function. From here, Autoscopy examines the type of the indirect call, as

described by Ashwin:

“In case of a memory-indirect call, the hook instruction is the CALL in-

struction itself, while for a register-indirect call, it is some instruction...that is

present before the call in the caller’s control flow graph.” (from [80])

Once Autoscopy has finished building its list of indirect function pointers and their

corresponding hook addresses, it passes each pairing to the kernel, where a probe is placed

at both of the specified addresses. (The probe placed on the indirectly-called function is

given a link to the probe on its hook address). Once all of the probes are in place, we

begin a second round of kernel testing using whatever test suite we used previously, taking

a different action depending on which kind of probe we hit:

• When we hit a hook instruction probe, we save the current processor register values.

• When we hit a probe monitoring a function that gets called indirectly, the probe

checks its link to see if its corresponding hook instruction probe has been hit. If so,

the indirect function probe would link to the saved register values collected by the

hook instruction probe.

Once we are finished running our test suite, Autoscopy reads back the register data

from the probes, filtering out all of the hook instruction probes and any indirect function

2The function prelude for x86 machines is 3 bytes long, but this value may vary across architectures.
3As stated in [80], “The above process assumes that function text is organized as a sequence of instructions

laid out consecutively in memory, which is the case with most Unix kernels.”
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probes that were never called indirectly (i.e., they have no link to a saved register structure

collected from a hook instruction probe). From here, the program uses “ruby scripts and a

gdb back-end” [80] to put together the final list of hooks for the detection phase.

4.2.2 The Detection Phase

Before we discuss Autoscopy’s detection methods, we first define two groups for classify-

ing malware based on its installation time:

Case 1: Malware installed on a system already protected by Autoscopy.

Case 2: Malware installed on a system prior to Autoscopy’s deployment.

In the detection phase, Autoscopy places probes on the final list of indirectly-called

functions identified in the learning phase,4 then monitors the probes until one gets acti-

vated. As Ashwin notes, “actions are triggered only when these probes are hit...[so] if a

particular hook function [monitored by Autoscopy] is never called, then our system im-

poses no overhead on it” [80].

When an indirectly-called function probe is hit, the system takes the following steps:

1. First, Autoscopy checks to make sure the probe was triggered by an indirect function

call. If not, the probe returns without further checks.

2. Next, Autoscopy examines the current call stack, disassembling the return addresses

it finds within each stack frame. For each return address found, we perform an ar-

gument similarity check against the probe function, to see if a similar function call

appeared earlier in the current control flow. If this is the case, we perform three

additional checks:
4Functions within the core text of the kernel are probed immediately. For indirectly-called functions

within kernel modules, “the detection system first inserts a probe on the caller (present within the core kernel)
and when the probe is hit, moves the probe from the caller to the callee (present within an LKM)” [80]. The
initial caller probe is then disabled.
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• We check to see if the similar function discovered is also an indirect call. If the

call is direct, we ignore it, since we are looking specifically for similar indirect

function calls within the same control flow.

• We check to see if both indirect function calls appear in the core kernel text. If

so, we declare the behavior to be benign, since we assume that the kernel text

is pristine (and that the Linux kernel itself has not been compromised).

• We compare the types of the similar function calls, where Ashwin defines a

hook type in the following manner:

“We...define a hook type for a hook as the combo structure

offset, where structure refers to the type of structure (C types

as identified in debugging symbols) under which the hook lies (for

global hooks under no structure, the type is global), and offset

is the offset of the hook within the structure.” (from [80])

If the function types are different, we do not flag the behavior as suspicious.

This step accommodates the scenario where two indirect-but-fundamentally-

different function calls appear in the same control flow (consult Section 8.5

of [80] for a hypothetical example of this behavior), and was added as a way to

reduce false positive reports from Autoscopy.

If the two similar function calls are indirect, do not both appear in the core kernel,

and are of the same type, Autoscopy flags the control flow as suspicious and logs an

alert for the system administrator.

3. If everything above the probed function call checks out, Autoscopy turns its attention

to the probed function itself, placing probes on any functions that are called from in-

side it. (Some limits are placed on this behavior to avoid unnecessary disassembly—

for example, in the case of direct calls to functions inside the kernel, “we need not

insert a probe on it since we assume the kernel text is unmodified” [80].) The function
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of these newly-installed probes depends on the nature of the function call: While Au-

toscopy instructs the new probes it places to continue this work within the functions

they monitor, any indirectly-called functions also perform an argument similarity

check against the context of the originally-probed function, reporting if it sees any

suspicious behavior.

By checking its host in this manner, our Autoscopy prototype is able to detect control-

flow-altering malware regardless of which of our predefined cases it falls under:

• In the presence of malware installed after Autoscopy (Case 1), the probe from the

detection phase is placed on the original callee function. When the malware redirects

the function pointer through its own code, its replacement for the callee function—

which by definition will have to follow the same function convention as the function

it replaces—will be on the call stack at the time it calls the original callee function.

Therefore, when the probe on the original callee function gets triggered and checks

the call stack, it will find the malicious function, notice its similarity to the original

callee function,5 and flag the behavior as suspicious.

• In the presence of malware installed before Autoscopy (Case 2), the probe from the

detection phase is placed on the malicious function that has interjected itself in be-

tween the indirect function call and the original callee function. However, while no

adverse behavior will be found on the call stack when the probe is hit, the malware

function will then be disassembled and probed further. Eventually, this further prob-

ing will lead to a probe ending up on the original callee function, which will trigger

an argument examination upon being hit, which will discover the previously-called

(and hopefully similar) malicious function and log the anomalous control flow.

5This step assumes that enough of the function arguments remain the same between the two calls, an issue
we discuss further in Section 4.4.
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In this way, Autoscopy is able to find control-flow-altering malware on its host, regard-

less of when the malware is originally installed.

4.3 Autoscopy Evaluation

For the initial Autoscopy prototype, Ashwin tested the program on a standard laptop system

running Ubuntu 7.04 and using the 2.6.19.7 version of the Linux kernel. He evaluated Au-

toscopy on two criteria: its ability to detect common control-flow-altering techniques, and

the amount of overhead (in terms of both additional time required and bandwidth reduction)

that it imposed on its host.

4.3.1 Detection of Hook Hijacking

Ashwin tested Autoscopy against a collection of control-flow-altering rootkits represen-

tative of kernel hook hijacking techniques, including two that he developed as proofs of

concept. (For a full list of the rootkits used for testing, consult Table 8.2 of the original

Autoscopy paper [80].) While most of these sample rootkits are publicly-released proto-

types rather than actual stealth malware captured in the wild, they showcase a broad range

of control-flow-altering techniques and the respective control-flow behaviors. Table 4.1

contains a sampling of hooking techniques used by malware, all of which were detected by

Autoscopy.

4.3.2 Performance Analysis

Ashwin measured the impact of Autoscopy on the test laptop using five benchmark pro-

grams: two standard benchmark suites (SPEC CPU2000 [29] and lmbench [63]), two large

compilation projects (compiling a version of the Apache web server and the Linux kernel),

and one test involving the creation of a large file. He found that in 90% of the bench-
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Technique Demonstrated By Found?
Syscall Table Hooking superkit Y

Syscall Table Entry Hooking kbdv3, Rial, Synapsys v0.4 Y
Interrupt Table Hooking enyelkm v1.0 Y

Interrupt Table Entry Hooking DR v0.1 Y
/proc Entry Hooking DR v0.1, Adore–ng 2.6 Y

VFS Hooking Adore–ng 2.6 Y
Driver Hooking Custom Nework Driver Rootkit [80] Y

Table 4.1: A partial listing of hooking techniques, some examples of programs that demon-
strated these techniques, and whether Autoscopy was able to detect these techniques.

mark test he ran (18 of 20), Autoscopy imposed an additional time cost of 5% or less on

the system.6 Only one test (the bandwidth measurement of reading a file) showed a large

discrepancy between its results with and without Autoscopy installed, which Ashwin hy-

pothesized was the result of the kernel “preempting the I/O path or interfering with disk

caching when probed.” [80] (Table 4.2 lists the benchmarks used.) Overall, however, the

system was not heavily inconvenienced by Autoscopy’s presence.

4.4 Prototype Shortcomings

Given the results from the previous section, our Autoscopy prototype achieves our goals,

offering an increased measure of protection without using a hypervisor or incurring an

infeasible amount of overhead. However, upon reexamining our system in the hopes of

leveraging it to protect critical infrastructure, we discovered some issues with its imple-

mentation that needed to be addressed:

Using mmap to access kernel memory. In the learning phase, Autoscopy accesses kernel

memory by using the mmap function to map all of kernel memory into the userspace

programs used for scanning, disassembly, and other tasks. However, the sys mmap

system call itself is vulnerable to hijacking, and therefore cannot be trusted to give
6In fact, in some of the tests the system ran faster with Autoscopy installed, which Ashwin interpreted to

mean that “Autoscopy imposed no measurable overhead” [80].
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SPEC CPU2000 Benchmark Name Native (s) Autoscoped (s) Overhead
164.gzip 458.851 461.660 +0.609%

168.wupwise 420.882 419.282 -0.382%
176.gcc 211.464 209.825 -0.781%

256.bzip2 458.536 457.160 -0.303%
254.perlbmk 344.356 346.046 +0.489%
255.vortex 461.006 467.283 +1.343%
177.mesa 431.273 439.970 +1.977%

lmbench Latency Measurements Native (µs) Autoscoped (µs) Overhead
Simple syscall 0.1230 0.1228 -0.163%

Simple read 0.2299 0.2332 +1.415%
Simple write 0.1897 0.1853 -2.375%
Simple fstat 0.2867 0.2880 +0.451%

Simple open/close 7.1809 8.0293 +10.566%
lmbench Bandwidth Measurements Native (Mbps) Autoscoped (Mbps) Overhead

Mmap Read 6622.19 6612.64 +0.144%
File Read 2528.72 1994.18 +21.139%

libc bcopy unaligned 6514.82 6505.84 +0.138%
Memory Read 6579.30 6589.08 -0.149%
Memory Write 6369.95 6353.28 +0.262%

Benchmark Name Native (s) Autoscoped (s) Overhead
Apache httpd 2.2.10 Compilation 184.090 187.664 +1.904%

Random 256MB File Creation 141.788 147.780 +4.055%
Linux kernel 2.6.19.7 Compilation 5687.716 5981.036 +4.904%

Table 4.2: The benchmark results for Autoscopy (from [80]). Note that with the lmbench
bandwidth measurements, smaller numbers indicate more overhead.
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us proper access to the memory we want [86]. While this does not hamper our

effectiveness against malware falling under Case 1 (as Autoscopy relies on mmap

only in its learning phase), one could imagine a Case 2 malware program avoiding

detection by subverting sys mmap to hamper Autoscopy’s learning phase and keep

important memory locations from being probed. Therefore, we would like to have a

more trustworthy method of accessing memory.

Providing a single return address slot for calls to potential hook functions. During the

return-address-collecting stage of the learning phase, we capture the return address

of every probed function every time the function is called, regardless of whether the

function was called directly or indirectly. However, each probe contains only a single

slot for retaining return addresses, which gets overwritten every time the probe fires.

This limitation means that a return address collected by a probe during an indirect

function call could subsequently be overwritten by a call coming from a different

location (which could be a direct or indirect call).

Making matters worse, as mentioned in Section 4.2.1, we perform our indirect call

verification only after we have finished gathering data from the probes. Since we

have only one return address slot per probe, we must make two crucial decisions—

namely, “Is the function called indirectly at all?” and “If called indirectly, what

context information should we collect?”—based on a single return address. This

oversight gives rise to two problematic scenarios:

Scenario 1

• Consider a function x that is called indirectly from location l1 and called di-

rectly from location l2 within the kernel, and assume that x is identified as a

potential hook function during the memory-scanning portion of the learning

phase. Let [a, b] be the time interval during which the return-address-gathering
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Figure 4.3: A timeline for the first problematic scenario for Autoscopy. At time t1, x gets
called indirectly, and the return address for l1 is saved in the slot attached to x’s probe. At
time t2, however, x gets called directly, and the return address for l2 is saved. Therefore,
when the function call is checked at time b, Autoscopy only sees the direct function call,
and throws x’s probe away despite the fact that x is called indirectly.

stage of the learning phase takes place (i.e., at time b, we read the collected

return addresses from the probes).

• Define t1 as the latest time x is called from l1 such that t1 < b, and t2 as the

latest time x is called from l2 such that t2 < b.

• If t1 < t2, then the return address stored in x’s probe will point to the instruc-

tion just after l2. At time b, Autoscopy will read the return address, examine

the corresponding call address (l2), determine that the call was direct, and re-

move the function from consideration, despite the fact that this function is called

indirectly from l1. This mistaken classification leaves a hole in Autoscopy’s de-

fenses that a malicious program could sneak through.

Figure 4.3 offers a timeline for this scenario.

Scenario 2

• Consider the same setup as in Scenario 1, except that both l1 and l2 are indirect

function calls.

• If t1 < t2, then the return address stored in x’s probe will again point to the

instruction just after l2. Here, Autoscopy will recognize l2 as an indirect call,

and probe it further for context information.
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Figure 4.4: A timeline for the second problematic scenario for Autoscopy. At time t1, x
gets called indirectly, and the return address for l1 is saved in the slot attached to x’s probe.
At time t2, however, x gets called indirectly from a different location l2, and the return
address for l2 overwrites the one for l1. Therefore, when an indirect call from l1 appears
during the detection phase, the information may be so different from the saved data from the
l2 call that it may not appear as a similar function call, even if the call from l1 is subverted.

• The problem here arises during the detection phase: When verifying argument

data, Autoscopy will use the information gleaned from the hook found at l2.

However, if the context information from l1 is different enough, anything com-

ing from l1—or perhaps from a malicious function by way of l1—will be al-

lowed to pass through unhindered. This possibility opens another avenue for

Autoscopy to be circumvented.

We diagram this scenario is Figure 4.4.

Given these possibilities, redesigning our learning phase to handle multiple return

addresses becomes a top priority.

Performing live disassembly within a Kprobe. In Autoscopy’s detection phase, the CALL

instruction of the probed function, as well as the CALL of any function found to be

argumentatively similar, are disassembled to determine whether or not the call was

indirect. While the original rounds of testing indicated that using our disassembler
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library [102] inside the probes was efficient enough to be feasible [81], our more

recent tests suggested the exact opposite, and that using the disassembler inside the

probes is an unreasonable proposition. To get around this dilemma, we will need to

find a more lightweight method of determining whether or not a function is indirect,

even from inside a probe.

Handling argument similarity edge cases. To use the argument similarity metric effec-

tively, we require having enough parameters to make a correct judgment even in the

face of malicious modifications. However, this metric leads to problems when deal-

ing with indirectly-called functions with less than 2 arguments. (Table 4.3 offers

a small sample of such functions in the kernel.) While we assume that a piece of

malware will try to be minimally invasive so as to avoid alerting the system to its

presence, it will still need to modify something to accomplish its goals—after all, a

malicious function that hijacks a function pointer only to pass all of the arguments

on to the original hook unaltered is of little use to anyone. However, in the case of

functions with only one argument, assuming the malware changes one of the param-

eters and thus changes the only parameter, the argument similarity check will fail,

and the hijacked function will be allowed to continue its business, which means we

have another potential hole in our IDS that requires attention.

The performance of syscall hook checking. In its learning phase, Autoscopy includes a

filter that throws away any function called indirectly from two specific locations

(0xc0103066 and 0xc01030d0). In terms of kernel symbols, these addresses

correspond to sysenter past esp+0x4f and syscall call, respectively. In

both locations, however, the instruction is the same: an indirect call to an entry in the

system call table.

In observing the hooks retrieved by our own system, we found that while a number of

functions (most notably, system calls) were called indirectly only through these two
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Function Location Arguments
sync cmos clock arch/i386/kernel/time.c [53] 1
verify tsc freq arch/i386/kernel/tsc.c [60] 1
syscall vma close arch/i386/kernel/sysenter.c [55] 1
sys sched yield kernel/sched.c [59] 0

sys exit kernel/exit.c [57] 1
sys getsid kernel/sys.c [58] 1
sys close fs/open.c [56] 1
sys brk mm/mmap.c [54] 1

Table 4.3: A small sample of indirectly-called functions within the Linux 2.6.19.7 kernel
that have fewer than 2 arguments.

locations, placing probes to capture these addresses incurred a significant perfor-

mance hit on the part of our system, which is most likely the reason these addresses

were ignored in the original prototype.

Despite these issues, the original Autoscopy prototype demonstrates the power of an

in-kernel approach to intrusion detection, and hints as the performance gains we obtain by

avoiding virtualization.
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Chapter 5

Autoscopy Jr.

Upon revisiting Autoscopy with the goal of using it to protect embedded systems within the

power grid, we discovered that the code required significant work to operate effectively and

address the concerns raised in Section 4.4. To that end, we embarked on a major redesign

of Autoscopy, simplifying our approach to control-flow monitoring while trying to patch

the holes we discovered within the original prototype. In this chapter, we will discuss

our methods for improving upon our initial program, and highlight some of the costs and

benefits of our new approach.

5.1 Scanning Memory via ioctl

First, we address the issue of using mmap for accessing kernel memory. Rather than go

through an untrustworthy system call, we instead opt for a more direct route to kernel

memory by leveraging our original prototype’s character driver.

In addition to the usual read and write operations, Linux character drivers support an

ioctl method as a catch-all for more esoteric functions, such as hardware-controlling

tasks [28]. We take advantage of this fact by defining an ioctl function within our
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learning-phase kernel module that takes an offset into kernel memory as input, derefer-

ences four bytes of memory beginning at that offset, and determines whether or not the

dereferenced value is a valid function prelude within the text of the kernel. If so, we tag the

offset as the potential location of an indirect function pointer, and return the dereferenced

value for further processing.

Switching from using mmap to viewing raw kernel memory can be a tricky proce-

dure, since operating inside the kernel means we do not have the usual memory protec-

tions in place, and thus mishandled errors may cause a kernel panic or crash. While the

NULL pointer issues caused by dereferencing random chunks of kernel memory can be han-

dled with the proper sanity checking, our direct-access method also introduces page faults

caused by scanning unmapped chunks of kernel memory (more on this in Section 5.6).

Because the ioctl function call from userspace includes a cmd option that is passed

to the driver unmodified [28], we are able to extend it to handle other tasks, including

examining the assembly-code bytes to see if a function call is indirect. Regardless of the

task, the ability to interact directly with kernel memory gives us a trusted base upon which

we can build the rest of our system.

5.2 Trusted Location Lists

By far the largest change among our Autoscopy improvements is the movement away from

argument similarity to search for anomalous control flows, and instead constructing trusted

location lists (TLLs), or lists of return addresses where known good control-flow paths

originate from, to use as a whitelist for validating any control flows we encounter. While

location-based verification is not a particularly groundbreaking approach (for example,

the technique has been used by Levine, Grizzard, and Owen [49] and the s0ftpj KSTAT

project [36, 64]), it allows us to make a simple decision about whether the current control
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flow is trustworthy.

Our reasoning for the soundness of this approach is as follows: In the hooking behavior

we describe in Section 4.2, a malicious function hijacks the function pointer of some func-

tion within the kernel, then eventually calls that function within its own code to fool the

user into thinking their system is still trustworthy [80]. However, this behavior means that

the original function gets called from an unexpected location inside the kernel—namely,

from a location within the malware. By capturing all of the “trusted” locations from which

the original function is called indirectly, we can use this location list to detect the appear-

ance of an unknown location on the control flow path, and alert the proper authorities. (Of

course, the matter of determining trustworthiness is a complicated one; we discuss this

issue in Section 5.6.)

Adapting Autoscopy to use TLLs was a straightforward process, since the original pro-

totype already collects the return addresses we need as an intermediate step during its

learning phase [80]. For Autoscopy Jr., we scan for and probe potential indirectly-called

functions as before, then gather any and all return addresses we find into preliminary TLLs,

which we verify for indirectness using our ioctl function once we are finished with

probing. (Once again, we ignore any direct function calls, and leave the return addresses

associated with them off of our TLLs.)

To handle the single-return-address-slot issue discussed earlier, we make sure to al-

locate enough memory to store all the addresses we collect. (Just as before, we allo-

cate the extra space external to the Kprobe, then place the address of this space in the

symbol name field of our probe.) For our implementation, we allocated 200 return ad-

dress slots for each probe, finding that the vast majority of probes remained well below

this number, while only one ( spin lock) reached our slot limit. (A summary of these

results can be found in Figure 5.1.) We ran a further test for spin lock with 500 slots

allotted for return addresses, but once again only 200 of these slots were used. As none of
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Figure 5.1: A graph showing the number of unique return addresses encountered by each
probed function during the learning phase. Of the original 9,441 probes we placed, only
2,413 of them were hit during the running of our test suite, and only 1 probe managed to
reach our 200-slot limit.

the return addresses in either the 200- or 500-slot tests passed our indirect function check,

we decided that spin lock was not a function we were concerned with, and therefore

our 200-slot limit was acceptable.

Once we have verified and compiled our TLLs, we can now move directly to the detec-

tion phase, since the context gathered by the original prototype [80] is no longer needed.

For our detection phase, we simply examine the return address to make sure the function

call is indirect, then check to see if the address appears on our list or not. If so, we declare

the control-flow to be trustworthy and move on; however, if we have not seen the return

address before, we assume that something has changed in between now and when we ran

our learning phase, and log that we have discovered an unknown control flow that should

be investigated.

This streamlined technique addresses two of the issues brought up in Section 4.4. First,

as mentioned, by leaving ourselves enough space for capturing all of the return addresses,
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we avoid the problem of potentially letting an indirectly-called function slip through the

cracks just because we did not read the return address from the probe at the right time.

Second, by dropping argument similarity in favor of trusted location lists, we have moved

to a method that applies more broadly to kernel functions, since many functions do not

have enough arguments to make argument similarity a useful metric. We discuss further

benefits and costs of using TLLs in Sections 5.5 and 5.6.

5.3 Simplified Hook Checks

To work around our inability to use our disassembler library [102] inside our probes, we

developed a simple assembly checker that looked for specific bytes that signaled the start

of a CALL instruction. We began by researching the byte makeup of x86 assembly instruc-

tions, discovering that CALL instructions in 32-bit mode began with one of three potential

byte values: 9a, e8, and ff [11]. The former two byte values denote the start of a direct

function call, while ff signifies that the call will be indirect [11]. These rules indicate that

determining the nature of a CALL may be done via a quick check of the starting byte.

However, the same problem that plagued Ashwin in relation to reverse disassembly [80]

rears it head again here: Because x86 instructions vary in length, determining exactly

where to look for the telltale CALL bytes is critical to the success of our hook check. To

address this problem, we observe that indirect calls exhibit more variability in their byte

makeup than direct calls—more specifically, calls beginning with e8 are followed by either

16 or 32 bits worth of address data, while calls beginning with 9a are followed by either

32 or 48 bits [11]. To see if these options could be pared down even further, we examined

our test kernel’s vmlinux file to get a sense of the CALL instructions it contained. Our

results, which we show in Table 5.1, show that only two of the four direct possibilities ever

appear within the core kernel text.
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CALL structure Direct?
9a XX XX XX XX XX XX Y
e8 XX XX XX XX Y
ff XX N
ff XX XX N
ff XX XX XX XX XX N
ff XX XX XX XX XX XX N

Table 5.1: A general summary of the CALL instructions discovered in our 2.6.19.7 test
kernel. (Each ‘XX’ pertains to one byte.) Note that we found only two options classified
as direct function calls (i.e., calls beginning with e8 or 9a).

Using this information, we constructed our assembly checker in the following manner:

Given a return address, which will point to the memory location just beyond the corre-

sponding CALL statement, we look to see if the value five bytes behind us is e8, or if the

value seven bytes behind us is 9a. If either of these cases evaluate to true, then the call is

direct, and we ignore it; however, if these bytes do not appear in the specified locations,

then we have an indirect function call, and we operate on the return address accordingly.

We found that using this check inside our probes was feasible, which allowed us to

perform indirect function checks in real time. However, as we discuss is Section 5.6, the

simplistic nature of the check may lead to oversights.

5.4 How Autoscopy Jr. Works

We now present a summary of how Autoscopy Jr. operates, after incorporating our im-

provements mentioned in the previous sections.

5.4.1 The Learning Phase

After registering our character device and inserting the appropriate kernel module, Au-

toscopy Jr. begins by scanning kernel memory for potential hooks using the ioctlmethod

from Section 5.1. Initially, the scan attempts to scan the entire kernel address space from
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0xc0000000 to 0xffffffff, but eventually fails due to memory mapping issues (on

which we elaborate in Section 5.6). However, the problematic address is stored by the

module, and the user can then query for this value and re-run the scan using the value as

the upper limit.

Once our scan finishes, we perform a number of “filtering” steps on the returned list of

potential hooks:

• We use the sort utility to remove duplicate records (records that point to a function

that has already been identified as indirectly-called) from the list.

• We verify the records against the kernel’s System.map file, verifying that the ad-

dress referenced in the indirect hook is indeed a valid kernel function.

• We remove certain problematic functions from the list altogether. These functions

were identified as responsible for causing kernel hangs/crashes, either when inserting

Kprobes or running the test suite later on in the learning phase.

Once filtering is complete, we submit our final list of potential indirectly-called func-

tions to the learning phase module,1 which inserts a Kprobe at each address. Each probe

is equipped with extra space to capture the return addresses from indirect function calls, as

detailed in Section 5.2. Whenever a probe is hit, the system looks at the return address on

the stack to see if it has already been put on the list, and adds it if it is not there.

We again turn to the Linux Test Project [52] as our test suite, hoping to exercise as

much of the code as possible. Once the LTP is done, we read back the return addresses

collected by each Kprobe. Any probes that are never hit are discarded, while the remainder

have their return address lists processed as follows:

• Each return address is checked to see whether or not the call was made indirectly,
1Depending on the number of potential probe locations, the final list may need to be broken up into smaller

chunks, with each chunk probed and tested separately.
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using our heuristic from Section 5.3. Any functions that are never called indirectly

are thrown away at this stage.

• The indirect list is once again sorted using sort (to remove empty spaces in the

file as well as get rid of duplicate hook records), then compiled into a list of strings,

with each string consisting of the function address followed by the return addresses

coming from indirect function calls. This final list needs no further processing and

can be inserted directly into the detection phase.

5.4.2 The Detection Phase

Once the learning phase is complete, we can unload the learning module and switch to our

detection module, which will remain in place until the next reboot of the host system. To

activate our detection system, we simply feed our final list from the learning phase into the

detection module, which will place a probe at the specified function address and provide it

with a link to its return address list.

When a detection-phase probe is hit, Autoscopy Jr. once again checks to see if the probe

is on its trusted list. If the return address has not been seen before, the system notes that

a control flow from an untrusted location has been spotted, and increments an “untrusted”

counter that is stored along with the probe. These counters can be queried as any time

by an administrator to see exactly which functions are seeing control flows coming from

unknown locations (and therefore may have been hijacked).

5.5 Advantages of Autoscopy Jr.

As mentioned in the previous sections, our new Autoscopy Jr. program provides the fol-

lowing upgrades over the original prototype:
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• A more trustworthy path to kernel memory.

• A patch to allocate enough space for return addresses for probes called indirectly

from multiple places.

• The ability to handle argument-similarity edge cases, such as functions with fewer

than 2 arguments.

• A lightweight assembly checker that could discern indirect function calls, even within

probes on our test system.

In addition, Autoscopy Jr. offers two other useful advantages:

No need for a disassembler library. Autoscopy Jr. only digs into the bytes of the kernel’s

assembly code when a) checking for function preludes during the initial hook scan-

ning phase, or b) checking a CALL instruction to see if it is indirect or not. The

simplicity of our checking means that our dependence on the actual architecture of

the system is minimal, and simple enough that we can adapt our system to other

architectures just by making a few changes to our heuristics.

This fact, in turn, means that we are no longer dependent on having a full-fledged

architecture-specific disassembly library at our disposal, which increases the flexibil-

ity of our system. While such libraries are available for more-common architectures

(for example, udis86 [102] and libdisarm [50]), we do not want to bank on the avail-

ability of these tools for every architecture we may encounter. Therefore, freeing

ourselves from this constraint is a major plus.

The allowance of legitimate pointer hooking. If desired, Autoscopy can be used in con-

junction with other programs that alter the control flow of a system for security or

other legitimate reasons (for example, Lares [74] from Payne et al., although it also

uses a VM). Autoscopy will simply tag the program’s behavior as trusted during the
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learning phase. (This indiscriminate tagging, however, can also also be a drawback,

as mentioned in Section 5.6.)

5.6 Disadvantages of Autoscopy Jr.

While Autoscopy Jr. still possesses some of the limitations of its predecessor (for example,

the program is still a target for malicious behavior, and must still be tuned to the architecture

and behavior of its host system), it also introduces the following caveats:

The need for a trusted base state. If we recall the malware case classifications from Sec-

tion 4.2.2, our switch to TLLs means that we are no longer able to detect pre-existing

(Case 2) malware, since anything installed before Autoscopy Jr. (regardless of legit-

imacy) is whitelisted as trusted behavior and never reported. Therefore, Autoscopy

Jr. requires that its host be in a trusted state during the running of its learning phase,

since otherwise we run the risk of missing previous system subversions.

The disruption caused by unmapped memory. Not all of the logical addresses in the

kernel’s address space may be linked to a location in physical memory. The con-

tents of the kernel page tables are highly dependent on the amount of RAM a system

has—specifically, the kernel will try to map as much of the available physical mem-

ory as it can, up to a limit of 896 MB [20]. In testing our memory scanner, we

found that exceeding the boundary of this initial memory mapping generated a page

fault and crashes whenever it hits such an address. This limitation means that any

memory residing above an unmapped memory address—for example, our learning

module resided above the mapped memory limit of our 2.6.19.7 test kernel—would

be missed by our scan, as the program would never reach the address to examine it.

While we appeared to have enough memory available on our test systems to capture

most of the indirectly-called functions, this could be problematic for embedded sys-
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tems with less memory (and therefore less of the kernel address space available for

scanning).

The difficulty of identifying a false positive. As noted in Section 4.2.2, the original Au-

toscopy system featured a type checker to reduce the number of false positives re-

ported by the system, relying on the relative placement of the function within the

kernel and its data structures to make its decision [80]. With Autoscopy Jr., however,

the number of false positives depends completely on the comprehensiveness of the

test suites used in the learning phase. If we see any example of control flow coming

from an indirect function call, the path will be cataloged and thus will never generate

a false positive. On the flip side, if an indirect control-flow path is never seen in the

learning phase but appears during the detection phase, it will always be reported as

an anomaly, whether or not the flow actually indicates a malicious hijacking. Making

a finer-grained distinction between a flow that is “malicious” or simply “new” is an

continuing area of development.

The potential for false negatives within our hook checker. Because our hook checker from

Section 5.3 checks for bytes that identify a direct function pointer rather than an in-

direct one, the possibility exists that an indirect function call may get overlooked

simply because certain byte values happened to live in the proper positions behind it.

To make a foolproof diagnosis, our checker would require additional logic to ensure

that an indirect function call was present, although whether or not our Kprobes could

support this additional code is unknown.

The continued ignoring of sysenter past esp+0x4f and syscall call. As we

mentioned in Section 4.4, monitoring these locations with Autoscopy Jr. generates a

lot of overhead on our host system. Because a protection system that is too heavy

is a bigger problem than one that is incomplete, when looking at an embedded con-

trol system, we chose to continue the practice of ignoring indirect calls from these

60



locations. While we run the risk of missing pointers that are hijacked at the level of

the system call table, we note that this tactic is a well-worn one by malware authors,

and as such a number of other table-specific protections have been developed (for

example, [49] checks the table and its contents against the System.map file).

The reliance on certain pieces of the Linux kernel. While both Autoscopy and Autoscopy

Jr. are limited to operating on the Linux kernel, Autoscopy Jr. makes two additional

demands of its host:

1. It requires an available and accurate copy of the kernel’s System.map file, in

order to verify the functions it finds. (The results of using a non-representative

System.map file are discussed in Section 6.4.)

2. If we need to use the kernel profiler (more on this in Section 6.2), we require ac-

cess to the kernel source directory—specifically, we need to look at the symbols

within the .o files generated by the kernel compiler.

These dependencies mean we need to have full access to the kernel, including its

source, it we want to access Autoscopy Jr.’s full potential.

5.7 Threats Against Autoscopy Jr.

Here, we elaborate on some of the potential attacks against Autoscopy and Autoscopy Jr.:

Data Modification: If an attacker has the capability to read and write to arbitrary locations

on the system, he or she could conceivably modify the underlying data structures

to punch a hole in Autoscopy’s defenses—for example, a malicious program could

modify a Kprobe or TLL to include the addresses of its own functions, or perhaps

disable individual probes altogether.
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Program Circumvention: Autoscopy detects malware by checking for the use of legit-

imate kernel functions from illegitimate locations. However, if an attacker instead

used their own code to duplicate the functionality of a kernel function, he or she

could avoid any probed functions and bypass Autoscopy completely.

Kprobe-Specific Hijacking: As pointed out in Section 2.5, regular Kprobes are triggered

when the kernel hits the breakpoint placed by the probe. However, if a piece of

malware interferes with the breakpoint-handling code, it could bypass our Kprobe

notification setup, once again working around Autoscopy.

Kprobe Rootkits: Since Autoscopy Jr. uses return addresses for verification, the possibil-

ity exists that we could use Kprobes as a way of modifying important kernel data

without rerouting through a malicious function in the traditional manner, thereby by-

passing our protection scheme. We have not experimented with this technique to

determine its feasibility, but it remains an interesting area of future research.

While these attacks are a concern, we have still raised the bar that a malicious program

must clear to subvert our system by forcing malware to increase its footprint on the host,

either in terms of processor cycles (as more will be needed to locate the appropriate data

structures) or codebase size (to accommodate the extra functions needed to duplicate kernel

behavior or adapt it to the Kprobe architecture). These issues, in turn, increase the chances

of the malware being noticed on the host system.

If available, we can also use other tricks to protect Autoscopy’s data—for example,

placing our trusted lists in a read-only memory chip. Once again, however, the constraints

of our embedded host may make this idea infeasible.
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Chapter 6

Autoscopy Jr. Desktop Evaluation

As an initial test of Autoscopy Jr., we evaluated its performance on a Pentium 4 desktop

system, which boasted a 2.00 GHz processor and 768 MB of RAM. To control for ker-

nel differences, we tested Autoscopy Jr. using the same Linux flavor and kernel version

(Ubuntu 7.04 and 2.6.19.7, respectively) as in [80]. However, our tests produced some

surprising results, indicating that a full probe load would be too heavy for even a desktop

system to handle. This chapter discusses the results of our initial testing, and how we iden-

tified and worked around some surprisingly heavyweight probes to minimize Autoscopy

Jr.’s performance impact.

6.1 Complete Probe List Evaluation

Our initial hook scan turned up 62,081 potential hook locations, which translated to 9,441

potential indirectly-called functions once we filtered out duplicate records for the same

functions, removed functions that triggered probe handler faults in prior tests of the learning

phase, and dropped any hooked functions that did not appear in our System.map file.

After inserting probes on all of our potential hook locations and running the LTP [52], we

were left with 566 hook functions called from 760 different locations, as some functions
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Figure 6.1: A graph grouping our probes by the number of unique return addresses as-
sociated with indirect function calls. Most indirectly-called functions are called this way
from a single location, while one particular function (sock def readable) was called
indirectly from 12 different locations.

were called indirectly from multiple locations (Figure 6.1 offers a visual summary of this

fact).

We chose to use the lmbench test suite [63] for our initial performance test, because its

tests focused on basic system behavior rather than the performance of a particular program.

For our performance numbers, we ran lmbench three times with Autoscopy uninstalled and

three times with Autoscopy installed and with 566 probes inserted (one on each function

discovered during the learning phase), using the average of the three tests for our final

numbers.1 Our performance results can be seen in Table 6.1. Unfortunately, our results

indicated that Autoscopy weighed much heavier on the system than Ashwin’s prototype,

specifically on the simple read and file open/close benchmarks.

1As Ashwin notes: “For the bandwidth measurements, lmbench repeats each test for varying amounts of
data that is transferred, from about 512 bytes to 536MB” [80]. All of the bandwidth values we report are
based on a 1 MB transfer.
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Latency Unprobed w/Autoscopy Jr. Autoscopy Jr. Autoscopy
Measurements (µs) (µs) Overhead Overhead
Simple syscall 0.2247 0.2244 -0.1335% -0.163%

Simple read 0.5044 1.2264 +143.1564% +1.415%
Simple write 0.4097 0.3952 -3.5392% -2.375%
Simple fstat 0.6015 0.5809 -3.4357% +0.451%

Simple open/close 3.5573 5.2086 +46.4191% +10.566%
Bandwidth Unprobed w/Autoscopy Jr. Autoscopy Jr. Autoscopy

Measurements (Mbps) (Mbps) Overhead Overhead
Mmap Read 1288.5233 1267.4600 +1.6347% +0.144%

File Read 1091.5167 832.4200 +23.7373% +21.139%
libc bcopy unaligned 576.3567 588.2633 -2.0659% +0.138%

Memory Read 1274.7533 1266.3633 +0.6582% -0.149%
Memory Write 935.2300 920.7900 +1.5440% +0.262%

Table 6.1: The lmbench benchmark results for Autoscopy Jr., with the overhead num-
bers for the corresponding test from [80] for comparison. (Note that with the bandwidth
measurements, smaller numbers indicate more overhead.) Bold numbers are examples of
infeasible overhead, while italicized numbers are unexpected deviations from the original
results.

6.2 Probe Profiling Results

To determine exactly where our overhead issues were occurring, we developed a profiling

program2 to separate our probes into groups based on their location with the kernel. To

profile our kernel properly, we need to have access to the object files generated from the

kernel source code, the kernel’s System.map file, and the final list of probes generated

by running the learning phase on this kernel. The script operates in the following way:

1. Find all of the .o files associated with the kernel, and list all of the symbols within

those files.

2. Filter the symbol list using System.map.

3. Build a list of the top-level directories in the kernel source code, and place each probe

into the appropriate top-level group, based on its location.

2This is essentially a shell script with two Perl-based helper files.
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The end result is a list of files, with each file corresponding to a top-level directory in

the kernel source and containing the probes that fall within that directory. Once we have

these groups, we can run lmbench on each probe group to see what kind of overhead these

groups generate. (Once again, we ran lmbench three times on group and used the average

performance.) Figure 6.2 displays the top-level breakdown of our probes as determined by

our profiler, while Figure 6.3 displays a combined graph of the overhead results returned

by lmbench, broken down by probe group. Our results show that the excessive overhead

we observed in our all-probes analysis falls neatly into the categories defined by our probe

profiler: The /drivers probes are mostly responsible for our simple read overhead, the

/mm probes are the primary culprits for our File Read bandwidth hit, and the /fs and

/security probes share much of the responsibility for the simple open/close perfor-

mance impact. We also see a smaller amount of overhead in our simple write benchmark

that is attributed to the /fs probes, which was not reflected in our test with all of the

probes installed. However, we do not consider this result to be of much concern, due to its

relatively small size and the fact that the /fs probes must be dealt with anyway to address

their impact on the simple open/close benchmark.

An important point to note is that our tests show little correlation between the number

of probes active on a system and the overhead those probes generate. While the /fs and

/drivers probe groups are both among the largest probe groups and responsible for a

fair chunk of the overhead we see, we also point out that the /mm and /security groups

impose substantial overhead despite being much smaller in size, while the largest probe

group (/net) does not appear to weigh down the system at all.

Given these results, we can customize our probe list to fit our host, removing problem-

atic probes and leaving the ones that do not hinder our ability to function. In this case,

we discard the probes from the four groups mentioned earlier (a total of 320 probes), and

instead probe only the functions falling within the remaining five categories. While admit-

tedly this step leaves a large gap for a malicious program to potentially exploit, we recall
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Figure 6.2: A breakdown of the 566 probes discovered by our learning phase.

Figure 6.3: A breakdown of the overhead imposed by each of the groups defined by our
profiler.
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from Section 1.3 that availability reigns supreme in the world of embedded control sys-

tems, so any heavyweight protection schemes that interfere with the normal duties of the

host may well be worse than the malware they protect against. Additionally, as Autoscopy

Jr.’s impact may vary from system to system, using the profiler allows an administrator to

further customize the program to fit each individual host. (If desired, we could take our

probe analysis a step further to identify the specific probes within each group, and remove

individual probes from a group rather than painting the entire group with a broad brush.)

Table 6.2 gives the lmbench results for our modified probe list, as well as our results

from the SPEC CPU2000 benchmark suite [29] and our Apache compilation and random

file creation benchmarks. (The SPEC benchmarks and Apache compilation tests were run

three times to obtain the averages shown, while the random file test was run five times.) As

expected, with the offending probes from our original measurements removed, we imposed

less than 5% overhead on every benchmark test we used.

6.3 Direct Jump Probe Results

Next, we decided to test our system on a host using direct jump probes [38, 39]. We used

the same Pentium 4 desktop as before, but this time we loaded a kernel (Ubuntu 10.04 and

kernel version 2.6.34, respectively) that included Djprobes as a configuration option. On

our new kernel, our initial hook scan found over 151,000 potential probe locations, which

reduced to 21,103 possible indirectly-called functions once we applied our filtering. Earlier

tests that we had run on newer kernels indicated that having this many probes active at one

time was infeasible, so we split the probes after the first 12,000 and evaluated them during

the rest of our learning phase as two separate groups.

Here, however, we encountered a problem with inserting our probes into the kernel,

experiencing a roughly 20% failure rate during probe insertion (Table 6.3 contains more
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SPEC CPU2000 Unprobed w/Autoscopy Jr. Overhead
Benchmark Name (s) (s)

164.gzip 248 246 -0.8065%
168.wupwise 151 149 -1.3245%

176.gcc 279 277 -0.7168%
256.bzip2 260 260 0.0000%

254.perlbmk 309 309 0.0000%
255.vortex 241 242 +0.4149%
177.mesa 369 372 +0.8130%

lmbench Latency Unprobed w/Autoscopy Jr. Overhead
Measurements (µs) (µs)
Simple syscall 0.2247 0.2245 -0.1038%

Simple read 0.5044 0.4918 -2.4916%
Simple write 0.4097 0.3908 -4.6213%
Simple fstat 0.6015 0.6024 +0.1496%

Simple open/close 3.5573 3.6189 +1.7307%
lmbench Bandwidth Unprobed w/Autoscopy Jr. Overhead

Measurements (Mbps) (Mbps)
Mmap Read 1288.5233 1289.9967 -0.1143%

File Read 1091.5167 1081.0100 +0.9626%
libc bcopy unaligned 576.3567 593.7733 -3.0219%

Memory Read 1274.7533 1265.8867 +0.6956%
Memory Write 935.2300 925.1633 +1.0760%

Custom Unprobed w/Autoscopy Jr. Overhead
Benchmark Name (s) (s)
Random 256MB 131.0748 131.8162 +0.5656%

File Creation
Apache httpd 240.5577 243.0730 +1.0456%

2.2.19 Compilation

Table 6.2: The benchmark results for Autoscopy Jr., using only the low-overhead probes
identified by our profiler. Note that in the case of our SPEC benchmarks, seconds were the
finest granularity returned by the program.

69



Total Probes Successful Failed % Failed
Insertions Insertions

Probe Run 1 12000 9568 2432 20.27%
Probe Run 2 9103 7292 1811 19.89%
Total Probes 21103 16860 4243 20.11%

Table 6.3: A breakdown of the probes we initially attempted to insert in our 2.6.34 Linux
kernel during the learning phase.

Total Probes Successful Failed % Failed
Insertions Insertions

Probe Run 1 12000 11948 52 0.43%
Probe Run 2 2107 2017 90 4.27%
Total Probes 14107 13965 142 1.01%

Table 6.4: A breakdown of the probes we attempted to insert in our 2.6.34 Linux kernel
during the learning phase, after configuring the kernel such that the ftrace framework is
not included.

detail). After investigating a small sampling of the functions associated with the failed

probes, we noticed a strange pattern: Every one of the functions we looked at had a call

to the mcount function immediately after the function prelude, which violates one of

the Djprobe conditions mentioned in Section 2.6—namely, the instructions being moved

cannot include a CALL [45]. This reasoning, however, runs contrary to the claim within the

Kprobe documentation that an unoptimized probe would still be inserted in these cases [45].

First, we looked into the issue of exactly why the probes could not be optimized. The

mcount function is used as part of the ftrace kernel framework as a way to alter the

tracing scope dynamically [84]. The function is a stub that is “placed at the start of ev-

ery kernel function” [84], and the kernel maintains a table of these function locations that

is populated with either nop instructions (signifying the function is not traced) or calls

into the ftrace infrastructure. Thankfully for Djprobes, the FTRACE configuration op-

tion governs the insertion of mcount calls in the kernel, and removing it from the kernel

resolves most of the probe failure issues (as shown in Table 6.4).

With the ftrace framework removed, the number of potential and actual indirect
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Latency Unprobed w/Autoscopy Jr. Autoscopy Jr.
Measurements (µs) (µs) Overhead
Simple syscall 0.2593 0.2598 +0.1928%

Simple read 0.4462 0.5961 +33.6123%
Simple write 0.3726 0.4882 +31.0163%
Simple fstat 0.5968 0.7266 +21.7369%

Simple open/close 5.0153 5.6164 +11.9854%
Bandwidth Unprobed w/Autoscopy Jr. Autoscopy Jr.

Measurements (Mbps) (Mbps) Overhead
Mmap Read 1262.4300 1258.4067 +0.3187%

File Read 1207.8467 1156.6633 +4.2376%
libc bcopy unaligned 581.4433 560.7267 +3.5630%

Memory Read 1258.5800 1253.9600 +0.3671%
Memory Write 912.2800 902.7933 +1.0399%

Table 6.5: The lmbench benchmark results for Autoscopy Jr. on the 2.6.34 Linux kernel
with jump-optimized probes enabled and FTRACE unconfigured. Here again, bold numbers
represent infeasible performance overhead.

function calls appears to drop dramatically: We found only 58,040 potential indirect func-

tion calls, which translated to 14,107 possible indirectly-called functions and eventually

1,158 probe points post-filtering. (A small subset of the possible probe points were dis-

carded because they caused the system to crash during the running of our test suite.) Once

again, we used lmbench as our performance litmus test, and compared the average of three

unprobed test runs with the average of three test runs with all 1,158 probes enabled. Our

results, as shown in Table 6.5, reveal some interesting trends:

• The overhead previously observed on the File Read benchmark is no longer present.

• The overhead previously observed on the simple read and open/close benchmarks is

still present, but moderated to some degree.

• Unfortunately, new performance overhead has cropped up on the simple write and

fstat benchmarks.

These numbers indicate that further adaptation of the probe list using our kernel profiler

would still be necessary if we wished to come up with a suitable solution for an embedded
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system. Therefore, we concluded that jump-optimized probes, although billed as a major

improvement in Kprobe performance, provided little benefit for our program.

6.4 Hardened Kernel Considerations

Finally, we decided to test Autoscopy Jr. on a hardened kernel, to see how our code can co-

exist with other security measures. For this experiment, we used a copy of the 2.6.32.43 ver-

sion of the Linux kernel that had been augmented with the the grsecurity kernel patch [3].

By layering Autoscopy on top of an existing hypervisor-free security product, we hope to

show that Autoscopy Jr. can be used as a complementary program and offer some value to

already-hardened kernels.

However, combining these two security tools is no easy task, since grsecurity introduces

a number of changes to the kernel that interfere with Autoscopy Jr.’s operation. In particu-

lar, grsecurity appears to rearrange the load addresses of many kernel symbols (even with

grsecurity set to a low security level with no additional options) such that they do not corre-

spond to the System.map file, which means we would need an additional mechanism—or

at the very least, a variation of our current mechanism—to properly identify the true sym-

bols and hooks. (Of course, any hook-searching rootkit would run into the same issues.)

Since any mechanism added to gather symbol information should not leak any address in-

formation that could enable an attacker, we must treat the process of adapting our hook

locator mechanism with care.

Because of this discovery, we were not able to obtain proper performance measurements

using Autoscopy with the grsecurity patch. However, we hope to continue our efforts to

integrate Autoscopy Jr. with grsecurity, to try to provide another layer of protection.
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Chapter 7

Conclusion

In this thesis, we claim that while protecting embedded control systems is vitally impor-

tant, the resource constraints of these devices, as well as the demands placed upon them

by SCADA software, make the standard security solution—namely, using a hypervisor in

some manner for protection—too costly to deploy on these devices. We instead argue for

the viability of an in-kernel method of protection, and present Autoscopy Jr. as an example

of such a method. We build upon the foundation of Ashwin Ramaswamy’s original thesis

work [80] to create a system that locates functions that are called indirectly, builds a list of

the return addresses coming from indirect calls, then verifies future indirect calls against

these lists to check for unexpected control flow behavior. While we were unable to match

the performance of the original Autoscopy system with a full probe list, we introduced a

profiler system that can allow users to customize their monitoring scope based on the loca-

tion of functions inside the kernel, and demonstrated how we could adjust our probe list to

allow our system to operate with a reasonable amount of overhead. Finally we tested Au-

toscopy Jr. on two kernels featuring useful upgrades (one with direct-jump Kprobes, and

one with the grsecurity patch applied) to see how our system performed in each case. Nei-

ther test, however, proved successful: our jump-optimized probe results indicated that our

profiler would still be necessary to generate a suitable probe set, while we found that our
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hook-locating logic was insufficient to properly examine the hardened kernel, prohibiting

us from testing its performance. (We relegate integrating the two to future work.)

Of course, if we aim to develop an intrusion-detection system for embedded systems

used within critical infrastructure, a logical next step in our research would be to test our

code on examples of these kinds of systems. To that end, we are currently collaborating

with Schweitzer Engineering Laboratories [87] with the goal of testing Autoscopy Jr. on

actual power hardware1 to get a more realistic view of how the program would perform.

While we are at an early stage of this process, we hope that these efforts will give us an

even better picture of Autoscopy Jr. feasibility for use on embedded power products.

Another area of future development is the adaptation of Autoscopy Jr. to other operating

systems. While we made an effort to keep Autoscopy Jr. flexible enough to operate across

different architectures, we only have a Linux version of the program at present. Porting

the program to other operating systems used in the power grid would be beneficial, but

potentially complicated by operating systems lacking a built-in tracing framework—for

example, Microsoft Windows does not include an equivalent to Kprobes. Still, for operating

systems found to be prevalent in the grid, customizing a version of Autoscopy Jr. for them

would be a worthwhile exercise.

Finally, in addition to offering a low-overhead security tool for embedded systems, we

also hope that this project demonstrates the usefulness of ring 0 security solutions to the

security community. In their recent lament, Bratus et al. [23] note that virtualization has

“become a ‘gold standard’ of invariant-based policy enforcement research,” and that any-

thing that does not measure up to this standard is considered a waste of effort. With Au-

toscopy Jr., we aim to show that non-virtualized security measures still hold value, and that

in certain cases—such as protecting embedded control systems—these types of measures

are preferable to a full-blown virtualized setup.

1SEL has also expressed interest in commercializing Autoscopy Jr. and incorporating it into their product
line.
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