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Abstract

Geophysical phenomena are often three-dimensional, time-variant, and physically
large, making them difficult to measure. As wireless sensor nodes become cheaper,
smaller, and more powerful, using a sensor swarm as a sampling framework seems to
be a viable approach to this problem. However, samples from the network can be
sparse and unstructured, creating an incomplete picture. Thus, the question addressed
by this project is the following: How can we easily construct and interpret the best
model of the underlying reality over some domain, given a possibly sparse and irreg-
ular set of samples? We present the design, implementation, and evaluation of the
Signal Reconstruction Panel, a graphical program for tackling this problem. Using a
method of Support Vector Regression, we demonstrate the program’s performance on a
variety of data sets including the Collisionless Terrella Experiment (CTX), the Active
Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE), the
Poker Flats Incoherent Scatter Radar (PFISR), and GreenCube5, a detailed study of
the Ompompanoosuc River flow.

1 Introduction

As the technology comprising wireless sensor nodes becomes cheaper and more powerful, us-
ing a fleet of sensor nodes to observe geophysical phenomena is increasingly viable. Often the
phenomena of interest are three-dimensional, time-variant, and physically large. Addition-
ally, samples from the network can be sparse and unstructured, but researchers would like
to have accurate information about the locations and times between measurements. Thus,
the problem is: given the times and places for which there are data, how can the best model
of the underlying reality be constructed over some domain?

In this paper, we present the design, implementation, and evaluation of the Signal Re-
construction Panel (SRP), a graphical program for assimilating and visualizing physical data
sets. Using a method of Support Vector Regression (SVR), we demonstrate the programs
performance on a variety of different data sets including the Collisionless Terrella Experiment
(CTX-http://sites.apam.columbia.edu/apam/plasma/ctx.html), Active Magnetosphere and



Planetary Electrodynamics Response Experiment (AMPERE-http://ampere.jhuapl.edu/),
the Poker Flats Incoherent Scatter Radar (PFISR-http://www.amisr.com/), and Green-
Cubeb, an Dartmouth undergraduate physics study of river flow [22]. In CTX, 2-D image
maps of particle density are produced from density probes in a vacuum chamber in order to
study fundamental plasma physics. A number of spatially fixed detectors make observations
over a period of time. AMPERE consists of 77 orbiting satellites that measure features
of the earth’s ionosphere, such as the magnetic field. PFISR measures ionospheric plasma
density, temperature, and drift using the scatter of radiation from a ground-based radar
array. Finally, GreenCubeb uses a low cost sensor swarm to map river surface velocities.
All of these studies are examples of multipoint sensor networks made to observe geophysical
phenomena.

These projects share various properties which motivate the utility of a program like the
SRP. First, the systems which they study lack rigorous models of their behavior, often be-
cause there are too many variables that are outside scientific control or cannot be measured.
Secondly, the data generated by these studies can be reduced to a simple, common form: a
list of sample points and their associated values. The points provide information to identify
and locate the sample—for instance, latitude and longitude in the case of GreenCube5 and
a local, polar coordinate system for CTX (r, 6, and time). The values are the observations
from the experiment—a vector describing river flow for GreenCubeb and a particle density
measurement, for CTX. Since many experiments share this form, we have designed a pro-
gram which attempts to reconstruct the original signal from any phenomenon that has been
sampled in this way.

The SRP originated in the GreenCube lab at Dartmouth College, a primarily under-
graduate student research group overseen by physics Professor Kristina Lynch. One of the
long-term goals of the lab is to send an orbital sensor swarm through the upper atmosphere in
order to measure properties of the aurora—the primary subject of Professor Lynch’s research.
However, the lab was concerned that there may be some difficulty in both assimilating and
interpreting the data collected by the swarm, which would not only move through 3-D space
and time, but observe a phenomena that also changes in space and time. Thus there seemed
to be a need for a program like the SRP in the GreenCube lab.

Finally, the studies listed above often require the data to be assimilated to a regular
grid for computational reasons such as calculating the curl or divergence, two ubiquitous
differential vector field operators. Certain data visualization techniques also have the same
requirement. The SRP can achieve this condition with no extra cost. In the rest of the paper
we discuss the development and evaluation of this tool.

2 Related Work

The problem of reconstructing a signal from sparse, irregular samples is a well-researched
problem. A few of these methods include sinc interpolation, multivariate interpolation, data
assimilation (e.g. weather forecasting models), machine learning methods (artificial neural
nets, support vector machines, etc.), and compressed sensing. The basic ideas, successes,



and drawbacks of some these models are briefly summarized below.

Consider a time-continuous, band-limited signal and a set of uniformly spaced samples
taken at the Nyquist Rate of twice the highest frequency present in the signal. Under these
conditions, the signal can be exactly recovered using the Whittaker-Shannon interpolation
formula, also known as sinc interpolation [1]. This algorithm has optimal performance, but
it comes at a great cost, namely the restriction on uniformly spaced samples which is all
but impossible in many physical applications. Also, if the sampling rate is too low, the
reconstructed signal will suffer from aliasing problems. Finally, this algorithm only works
for a signal which is a function of a single variable [2].

Multivariate interpolation is a family of interpolation techniques which operate on func-
tions of two or more variables. These can then be divided into methods that operate on
regularly and irregularly gridded data. In general, methods that operate on irregular grids
also operate on regular grids. Also, multivariate interpolation techniques make no guarantees
about quality of the reconstructed signal. Describing the details of these methods is outside
the scope of this document; however, a few methods are listed here for reference: triangular
irregular networks [3], inverse distance weighting [4], kriging [5], and polyharmonic splines
[6].

Data assimilation is the process by which observations are incorporated into a computer
model of a real system. This process is most commonly used in weather forecasting. Each
step in the procedure consists of combining current observations with the numerical weather
prediction model to produce the best guess for the current state of the system. This guess is
used as the model for the next iteration. The procedure is designed to balance uncertainty
in both the data and the model [7]. These types of analyses are custom-designed for the
particular signal under study.

There is a substantial amount of literature on using machine learning and artificial neural
networks for field approximation [8, 9, 10]. More recently, Macedo and Castro proposed
a framework for vector field reconstruction in arbitrary dimension from an unstructured,
sparse, and noisy sampling [11]. Their framework works by learning vector fields with support
vector machines and matrix-valued radial basis functions (RBF). Moreover, their approach
can guarantee that the field is either free of divergence or curl. Support vector regression is
the main technique used in the SRP and discussed at length in the Design section.

Finally, the field of compressive sensing shows remarkable promise for solving some sig-
nal reconstruction problems [12]. This technique leverages the fact that most signals can be
completely represented by a handful of numbers in some basis. For instance, a signal that is
composed of a finite set of sinusoids can be completely and exactly constructed knowing only
the non-zero amplitudes of the frequency components. Given some constraints on the sam-
pling procedure, compressive sensing has been shown to produce the original signal ezactly
with far less information than is required by sinc interpolation [13]. Although compressive
sensing was not used for this project, the procedure is complementary to this work and
warrants a longer discussion.

From Introduction to Compressed Sensing:

Compressed sensing differs from classical sampling (Nyquist-rate uniform sam-



ples) in three important respects. First, sampling theory typically considers
infinite-length, continuous-time signals. In contrast, compressed sensing is a
mathematical theory focused on measuring finite-dimensional vectors in R". Sec-
ond, rather than sampling the signal at specific points in time, compressed sensing
systems acquire measurements in the form of inner products between the signal
and more general test functions. Thirdly, the two frameworks differ in the man-
ner in which they deal with signal recovery. In the classical framework, signal
recovery is achieved through sinc interpolation—a linear process that requires
little computation. In compressed sensing, however, signal recovery is typically
achieved using highly non-linear methods.[14]

The following example and explanation is taken from the paper Sparco: A Testing Frame-
work for Sparse Reconstruction [15]. Consider the linear system:

b=Ax+r

where the rows of the m-by-n matrix A are test functions used to sample the signal x, r is
an unknown m-vector of additive noise, and b is the set of observed measurements. The goal
is to find an appropriate x that is a solution to the system. It is well known how to find
the solution that has the smallest {> norm provided A is full rank. However, in compressed
sensing m is typically less than n and the aim is to find a solution that is sparse so that x
has few nonzero elements. In the case where a signal f admits a sparse representation with
respect to a basis B (f = Bzx) and f is sampled with the m-by-n measurement matrix M
(b= MFf), then A becomes M B. This is rewritten as:

b= MBx+r

A concrete example might be where z is a series of Fourier coefficients which are mostly
zero. Then f is a sinusoidal function that is sparse in the Fourier basis. The classical sampling
scheme can be represented in this notation when b is a set of time-domain measurements
and the rows of M consist of zeros and a single one. We say the measurement basis is the
canonical spike basis.

The central problem of compressed sensing is written as the following discrete optimiza-
tion problem:

minimize ||z||o
T

subject to ||[Ax — bl < o

where the function ||z||p counts the number of nonzero components of the vector = and the
parameter o > 0 prescribes the desired fit in the set of equations Ax = b. Unfortunately
this problem is combinatorial and NP hard. However it can be replaced with the convex
optimization problem:

minimize ||z||;
€T
subject to |[Az —b|]s <o
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Methods for solving this problem include interior-point algorithms, gradient projection,
and iterative soft thresholding (end of example from Sparco [15]).

Compressed sensing is most successful when the matrices M and B are incoherent—
meaning that the largest absolute inner product between the columns of the two matrices
is small. For this project, M will always be constructed with the spike basis since sensor
nodes can only make measurements at singular points in space and time. Thus compressed
sensing techniques will only achieve success when the signal is sparse in a basis which is
incoherent to the spike basis, such as the Fourier basis. Because many physical signals
will not be sparse in the Fourier basis (i.e. sinusoidal), the compressed sensing framework
proved to be an infeasible choice for this project. In addition, extending compressed sensing
for continuous time/space signals is significantly more complicated than the discrete version
discussed here. Nevertheless, in certain applications—such as Magnetic Resonance Imaging
(MRI)—where samples can be taken as linear combinations of the entire signal, compressed
sensing demonstrates incredible results [18].

After reviewing the various techniques discussed here, we settled on Support Vector
Regression for use in the tool. This method will be discussed in detail in the Design section.

3 Problem Specification

There are two core inputs to the Signal Reconstruction Panel: (1) the samples and (2) the
points which may be unknown and need to be reconstructed. For lack of a better term,
the second input will be called “new points” for the duration of the paper. As stated in
the Introduction, the samples can be decomposed into points and values. To motivate this
separation, consider a sensor swarm equipped with multiple kinds of sensors. The points are
the same for each sensor, only the values are different. Similarly, for a set of values from
some sensor, one might choose different coordinate systems for a certain analysis (ignore the
z coordinate, for instance). Because we have restricted ourselves to signals that occur in the
physical world, a number of limitations are imposed on the points and values.

The points can have a dimensionality of at most four—corresponding to the three spatial
dimensions and time. The dimension of the values is restricted to one through three and less
than or equal to the point dimension. A value dimension greater than one corresponds to a
vector quantity, such as wind direction or magnetic field. Otherwise, the values are scalar
measurements, such as particle density. The “new points” input follows similar conventions
to the points input.

The outputs of the SRP are the predicted values for the new points and a visualization
of these values which is interpreted by the user. Finally, there are additional inputs which
control how the values are predicted and visualized.
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Figure 1: Flow diagram of the Signal Reconstruction Panel

4 Design

The central design choice of this problem is the algorithm by which the samples are used to
estimate the values of the new points. The goal of this project was not to develop a new
method, but to select the most appropriate one and incorporate it into a useful tool for data
interpretation from sensor networks. In the context of this project, the appeal of a certain
algorithm can be judged by the following properties: flexibility, customizability, and speed.

Flexibility refers to the algorithm’s ability to handle a variety of dimensions in both
points and values. The algorithm should be able to effectively process one to four dimensions,
including time. By customizability, we mean that the algorithm must produce satisfactory
results in the wide variety of data sets it might encounter, from a local experiment like
CTX to a global study such as AMPERE. How the results are judged is discussed in the
Evaluation section. Finally, the intended user of this software is a researcher who may not
have access to significant computing power. Thus the analysis should complete in a timely
manner when running on the average laptop computer.

The machine learning method of Support Vector Regression (SVR) was an excellent choice
for its performance in these categories. First we will give a brief overview of the algorithm
so the reader is aware of key concepts and parameters, then comment on its effectiveness in
this project. The following description is paraphrased from A Tutorial on Support Vector
Regression [19].

Suppose we are given a set of samples {(z1,v1), -, (z;,y)}x € R",y € R. For instance
x might be latitude and longitude (n = 2) and y might be sea level. In e-SVR, the basic
idea is to find a function f(z) that has at most € deviation from the observed values y; for



all the sample points, and at the same time is as flat as possible.
We might consider modeling this data with a linear function f , taking the form

f(z) ={(w,z) +bwithw e R" b e R (1)

In equation (1) flatness means a small w which can be ensured by minimizing the norm,
[|w||?. This can be written as a convex optimization problem:

. 1 2
minimize §||w||
subject to y; — (w,z;) —b < ¢, (2)

(w, ;) +b—y; < e.

It is possible that there is no function f that approximates all pairs (z;,y;) with e preci-
sion. In other words, the optimization problem may be infeasible. Slack variables &;, £ can
be introduced to deal with potentially infeasible constraints. The parameter C' in equation
(3) controls the how closely the model fits the data.

!
L 1 2 x
minimize §||w|| +C g (& +¢&)

i=1

subject to y; — (w,x;) —b<e+¢&, (3)
(w,z;) +b—y; <e+&,

Next, using the duality principle of mathematical optimization theory, a Lagrangian dual
problem can be formulated from (3).

l

l l
1
maximize o > (i — o)y — )@ a) —e > (o +af) + ;yi(ai )

i,j=1 i=1

i (4)

w = Z(%‘ — 7)) (5)

fla) = (= af)(wi, @) +b (6)

i=1
The key point here is that w can be completely described as a linear combination of the
sample points z;. From this it can be shown that for all samples inside the e-tube (points
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Figure 2: Linear SVR with slack variables. The ‘X’s are the samples and the bold line is the
regression line. The side-diagram shows that a sample can lie outside the e-tube and still be
feasible. (Figure reproduced from: Smola 2004) [19]

within the gray area of Figure 2), the a;, o} vanish. The samples which have non vanishing
coefficients are called Support Vectors.

The final step in this brief development of SVR is to employ the kernel trick. The
essence of this trick is to map the observations into a higher dimensional space so that a
linear analysis in this feature space produces a non-linear analysis in the input space.

Consider the map ® : R? — R? with ®(xy,25) = (23, V27129, 23). In equations (4)
and (6), we replace all dot products (z,z’) with k(z,2’), where k(x,z") = (®(x), ®(2')). By
performing a linear SVR on these preprocessed features, a quadratic function is produced
(end of paraphrased example from A Tutorial on Support Vector Regression [19]).

Certain aspects of the algorithm make it appealing for our problem. One is the kernel
function k, which can significantly alter the algorithm’s output and be chosen based on the
likely underlying truth in the observed phenomenon. Common kernels are the radial basis
function (RBF) kernel and the polynomial kernel. In this project, the RBF kernel was used
for several reasons. This kernel can be made to approximate other kernels with appropriate
parameter choices. Also there are fewer hyperparameters (i.e. parameters of the kernel, not
the SVR algorithm) compared to the polynomial kernel [20].

The SVR algorithm is designed to model a data set of any dimensionality, so modeling
the four possible dimensions of the physical world poses no problem. By controlling hyper-
parameters, one can alter properties that affect the size and shape of features in the model,
such as the full-width, half-maximum of the RBF. These aspects of SVR make it superior
to most other routines in the context of this problem. The details of SVR can be found here
[19].

Using SVR, the control flow of the Signal Reconstruction Panel is as follows. First the user
supplies the samples, new points, and parameters to the program. Next SVR is performed



on the samples using the specified parameters to create a model of the original signal. Then
the model is queried with the new points, returning the values to the user. In addition, the
program creates a visualization of the results that the user can alter to display more useful
information. At this point, the user may decide that this SVR model is insufficient, revise
their inputs, and begin the process again. Due to the highly visual nature of this project
and the revisionary pattern of use, a graphical user interface was implemented. A diagram
of this flow is presented in Figure 1.

5 Implementation

In this section we discuss key implementation details of the Signal Reconstruction Panel.
Please refer to Figure 3 when GUI components are explained. The project was developed in
the MATLAB programming language which was chosen for its powerful, built-in visualization
routines. Also, a MATLAB tool for GUIs made designing the SRP layout relatively simple.
Three buttons allow the user to specify files for the sample points, sample values, and new
points. Each file is in MATLAB’s “.mat” format and must follow certain conventions laid out
in the README. When the user presses the “Update Display” button, the SVR algorithm
runs and a visualization is shown upon completion. The type of visualization is determined
automatically by sample data. For instance, if the data are two-dimensional, the visualization
will be a surface plot, etc. If the data is four-dimensional, the resulting visualization will be
a three-dimensional animation. However, if the user selects the “Animate” option for data
of two or three dimensions, the last dimension is assumed to be time and an animation is
produced. Again, this convention is specified in the project’s README along with more
detailed descriptions of the GUI elements.

The SVR algorithm is implemented using the LIBSVM library and represents the bulk
of the third-party code used in this project. This library has options for choosing different
kernels and parameter values. In the SRP, the radial basis function kernel is used and most
of the parameters are held constant. The main control a user has over the model is by
altering the four “Feature Size” values in the GUI, one for each dimension. Feature size is
not an official parameter of SVR or radial basis functions, however it roughly corresponds to
the full-width, half-maximum of the RBF. In LIBSVM the RBF kernel takes the following
form:

e u—vf? (7)
7 can be written in terms of the full-width, half-max (FWHM) as follows:

y = 4log 2 (8)
FW HM?
Thus 7 is calculated by replacing FWHM with the largest feature size. The data for the
remaining dimensions are scaled according this value and their relative feature sizes. In this
way, the FWHMs in each dimension of the gaussian can be individually controlled.
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(a) Equal feature sizes. (b) Large x, small y. (c) Small z, large y.

Figure 4: This figure shows the effect of various feature sizes on the model output.

There are two other features which produce large changes in the results of the Signal
Reconstruction Panel. By changing the “Model Choice” from SVR to TriScat, an entirely
new algorithm is used. The algorithm, called TriScatteredInterp (TriScat), is a built-in
MATLAB function which can perform interpolation on irregularly scattered data in two or
three dimensions. The basic idea is that it will “connect-the-dots”; more precisely, for a set
of (z,y) points and values v, it returns a surface of the form v = F(z,y). This surface can
then be queried for points to produced interpolated values. In TriScat, the observations are
guaranteed to lie on the surface, leaving almost no room for control over the model. This
algorithm is a common choice for solving the style of problems discussed in this paper and
is a good standard by which to test the SVR algorithm used in the SRP. Its performance is
discussed further in the evaluation section.

The second feature which affects the SRP’s model is the “Windowed Analysis” option.
This option is designed for experiments which collect a large amount data over a long period
of time, but whose features have a short time-scale. In this case, performing a single re-
gression over the entire length of the data set is time-consuming and unnecessary, especially
if times outside the feature size window should not affect the interpolated value at a given
point in time. Thus, when this option is selected, a regression is performed for every time
using only samples within a window of one time feature size. This style of analysis performs
best when the time sampling is regular and dense.

Finally there are two visualization options whose functions are not obvious: “Use Keogram”
and “Use Slice Plane”, both of which are alternatives to a “new points” file and ways to
reduce the dimensionality of a time-variant visualization. In other words, instead of con-
structing a list of points whose values need to be interpolated, the user specifies a keogram
or slice plane and the program uses the points from these structures as the new points.

A keogram is a 2-D plot where the z-axis is time and the y-axis is distance along the
keogram line. The user specifies some line in the space of the data and these points are given
as queries to the model for all times. A keogram is appropriate for two or three dimensional,
time-variant signals. An example keogram is shown in Figure 5.

A slice plane is a more intuitive visualization for 3-D and 4-D signals. The user specifies
a single plane in the space of the data whose points are used as queries in the model for all

11
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Figure 5: Keogram example from the CTX experiment. This diagram shows that collections
of high-valued (red) data move along the specified line. CTX data used with permission.

times. This plane is displayed in the resulting visualization as seen in Figure 6.

6 Example Workflow

In this section we will work through a case study with a set of CTX data and use a variety
of features of the SRP. We begin by listing a few key properties of the CTX data. In CTX,
spatially fixed detectors measure particle density over a period of time. The detectors all lie
in a single plane and are organized in a “donut” fashion. A given trial in CTX may last for
half a second, yet there is interesting, discernible structure at a time scale of 0.00001 seconds.
Thus the Windowed Analysis is a good option for this experiment. The data are given in
polar coordinates as a result of the donut structure and r ranges from 25cm to 72cm.

First, the input files are selected and the feature sizes are determined. We might choose
feature sizes of 0.5 in the # dimension, 5 in the r dimension, and 0.000025 in the time di-
mension. For the new points, we can create a regular grid in r, 6, and time. Next we must
specify the coordinate system of the samples, accomplished by simply selecting the appro-
priate choice in the “Sample Coordinate System” panel (“Polar” in this case). The “Display
Coordinate System” decides the axis labels in the visualization; choosing “Cartesian” will
use x and y and illustrate the donut sampling pattern. We should choose the “Animate”
option since time is a variable in this experiment. Since there will be many frames, we
should increase the frames per second (FPS). A frame from the resulting animation is shown
in Figure 7.
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(a) The frame in cartesian coordinates. (b) The frame in polar coordinates.

Figure 7: A frame from a CTX animation. CTX data used with permission.
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7 Evaluation

There are a number of standards by which one can evaluate the performance of the SRP.
First is the overall usefulness of the application to its audience, primarily the GreenCube
lab and Professor Lynch. Although this standard cannot be quantified, Professor Lynch has
been an active user of the SRP throughout its development. She has successfully produced
quality analyses of CTX and PFISR data and has commented on the program’s user-friendly
environment. [21] Now we will describe other standards for gauging performance including
cross-validation and comparison with MATLAB’s TriScatteredInterp. In addition, we show
results from the SRP which either match or improve on those obtained by the original
researchers of GreenCubeb, CTX, and PFISR.

(b) SVR with good feature (c¢) SVR with bad feature

(a) Original Signal. sizes. MSE = 0.048. sizes. MSE = 0.096.

Figure 8: This figure shows how MSE values from cross-validation can be used to assess
model performance.

A standard to evaluate the internal performance of the SRP is the cross-validation option
in the GUI: ”"Perform X-validation”. Cross-validation trains the model on a subset of the
samples and then tests its accuracy on the remaining samples to yield a mean squared error
(MSE) value. This option is excellent for testing the accuracy of different feature size choices.
An example is shown in Figure 8.

One can also compare MATLAB’s TriScatteredInterp algorithm with Support Vector
Regression. The mean squared error between 1600 points of the original function in Figure
8(a) and a reconstructed function from TriScatteredInterp shown in Figure 9 was 132,590.
The mean squared error for the analysis shown in Figure 8(b) was 63,138. In this example,
SVR was more than twice as accurate as TriScatteredInterp. Similar results were observed
for different combinations of signals and sampling patterns.

In GreenCubeb, GPS payloads floated down the Ompompanoosuc River, measuring the
surface velocity. Figures 10, 11, and 12 show the reconstructed velocity of a small portion
of the river using both SVR and TriScatteredInterp. It is difficult to judge which is more
accurate since the truth is unknown. With TriScat, the river appears more continuous with
relatively high velocities shown up to the river boundaries. This seems unrealistic as the
velocities should fall to zero as they approach the river bank. Using SVR, the velocities near
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Figure 9: Results from the TriScatteredInterp algorithm on the same data set shown in
Figure 8.
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Figure 10: These are the samples taken in a portion of the Ompompanoosuc.
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Figure 11: Reconstructed river flow using TriScat.
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Figure 12: Reconstructed river using SVR.
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(a) The frame in cartesian coordinates. (b) The frame in polar coordinates.

Figure 13: The same frame show in Figure 7 using the researcher’s original technique (a
simple interpolation equivalent to TriScat). Note how the features seem less defined and
more angular. These are artifacts of the interpolation technique, not found in the data.
CTX data used with permission.

the river bank are closer to zero. Also the reconstruction appears more complex, displaying
a wider range of velocities.

8 Conclusion

In this paper, we presented the design, implementation, and evaluation of the Signal Recon-
struction Panel (SRP): a graphical program to assimilate and visualize data for researchers
in the physical sciences. After surveying a wide variety of algorithms including compressed
sensing—a method employed with great success in other fields—the machine learning tech-
nique of support vector regression was used as the core reconstruction technique. Addi-
tionally, the SRP demonstrated excellent performance on both constructed and actual data
sets.

This project will be inherited by the students of the GreenCube lab at Dartmouth College.
Although the SRP is a working finished product, there are a number of useful extensions that
could be implemented in the future. First, the visualizations of vector data are difficult to
intuitively grasp, especially in three dimensions. Work could be done to make these diagrams
cleaner and more customizable. Also the number of parameters in the SVR analysis that a
user can directly control is relatively small. Although Professor Lynch—the primary tester
during the SRP’s development—never expressed the need for more direct control, it might
arise during some future project.

Perhaps the biggest extension to this project would be the inclusion of custom Lagrangian
constraints and boundary conditions, tasks which were researched but never implemented
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(a) This image is a view of the aurora from the(b) This figure is a reconstruction of the PFISR

ground overlaid with the PFISR data. data at roughly the same time. The overall struc-
ture is similar to the aurora.

Figure 14: In PFISR, ground-based RADAR arrays measure ionospheric plasma density,
which is a good proxy for auroral activity. PFISR data used with permission. UAF/GI
image (left), D. L. Hampton, used by permission.

due to time constraints. Because SVR is formulated with Lagrangian multipliers, one can
imagine the ability to specify custom constraints on the model. A particular case of this
was shown in [11] where the authors reconstructed vector fields which were guaranteed to
be either curl-free or divergence-free. This extension would require both a framework for
specifying constraints and extensive modification to the LIBSVM library. Similarly, one
might wish to specify boundary conditions on a certain model. A prime example of this is
that river flow should be zero outside the river boundaries.

Lastly, leaving a maintainable library of code is an important goal of this project. A
compendium of documentation on the Signal Reconstruction Panel will be compiled and
placed on the GreenCube lab’s wiki page. This will include examples, the project README,
and implementation details. In addition, the source code will be placed in a repository so
GreenCube students will have easy access in the future.
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Figure 15: This figure shows an analysis of AMPERE data. A quarter of the upper hemi-
sphere of the earth is shown here. The large strings of dots are five minute windows of data

from the orbiting satellites. A direct comparison to researcher data was not completed due
to time constraints. AMPERE data used with permission.
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