![]() |
Dartmouth College Computer Science Technical Report series |
CS home TR home TR search TR listserv |
By author: | A B C D E F G H I J K L M N O P Q R S T U V W X Y Z | |
By number: | 2018, 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990, 1989, 1988, 1987, 1986 |
Abstract:
Self-reconfiguring (SR) robots are modular systems that can autonomously change shape, or reconfigure, for increased versatility and adaptability in unknown environments. In this thesis, we investigate planning and control for systems of non-identical modules, known as heterogeneous SR robots. Although previous approaches rely on module homogeneity as a critical property, we show that the planning complexity of fundamental algorithmic problems in the heterogeneous case is equivalent to that of systems with identical modules. Primarily, we study the problem of how to plan shape changes while considering the placement of specific modules within the structure. We characterize this key challenge in terms of the amount of free space available to the robot and develop a series of decentralized reconfiguration planning algorithms that assume progressively more severe free space constraints and support reconfiguration among obstacles. In addition, we compose our basic planning techniques in different ways to address problems in the related task domains of positioning modules according to function, locomotion among obstacles, self-repair, and recognizing the achievement of distributed goal-states. We also describe the design of a novel simulation environment, implementation results using this simulator, and experimental results in hardware using a planar SR system called the Crystal Robot. These results encourage development of heterogeneous systems. Our algorithms enhance the versatility and adaptability of SR robots by enabling them to use functionally specialized components to match capability, in addition to shape, to the task at hand.
Note:
Doctoral dissertation. Advisor: Daniela Rus
Bibliographic citation for this report: [plain text] [BIB] [BibTeX] [Refer]
Or copy and paste:
Robert C. Fitch,
"Heterogeneous Self-Reconfiguring Robotics."
Dartmouth Computer Science Technical Report TR2004-519,
September, 2004.
Notify me about new tech reports.
To receive paper copy of a report, by mail, send your address and the TR number to reports AT cs.dartmouth.edu
Copyright notice: The documents contained in this server are included by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.
Technical reports collection maintained by David Kotz.