Dartmouth logo Dartmouth College Computer Science
Technical Report series
CS home
TR home
TR search TR listserv
By author: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
By number: 2019, 2018, 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990, 1989, 1988, 1987, 1986

Time-Space Tradeoffs for the Memory Game
Amit Chakrabarti, Yining Chen
Dartmouth TR2018-860


A single-player game of Memory is played with n distinct pairs of cards, with the cards in each pair bearing identical pictures. The cards are laid face-down. A move consists of revealing two cards, chosen adaptively. If these cards match, i.e., they bear the same picture, they are removed from play; otherwise, they are turned back to face down. The object of the game is to clear all cards while minimizing the number of moves. Past works have thoroughly studied the expected number of moves required, assuming optimal play by a player has that has perfect memory. In this work, we study the Memory game in a space-bounded setting.

We prove two time-space tradeoff lower bounds on algorithms (strategies for the player) that clear all cards in T moves while using at most S bits of memory. First, in a simple model where the pictures on the cards may only be compared for equality, we prove that ST = Omega(n^2 log n). This is tight: it is easy to achieve ST = O(n^2 log n) essentially everywhere on this tradeoff curve. Second, in a more general model that allows arbitrary computations, we prove that ST^2 = Omega(n^3). We prove this latter tradeoff by modeling strategies as branching programs and extending a classic counting argument of Borodin and Cook with a novel probabilistic argument.


Previous version of this TR is on arXiv with url https://arxiv.org/abs/1712.01330.

PDF PDF (1459KB)

Bibliographic citation for this report: [plain text] [BIB] [BibTeX] [Refer]

Or copy and paste:
   Amit Chakrabarti and Yining Chen, "Time-Space Tradeoffs for the Memory Game." Dartmouth Computer Science Technical Report TR2018-860, June 2018.

Notify me about new tech reports.

Search the technical reports.

To receive paper copy of a report, by mail, send your address and the TR number to reports AT cs.dartmouth.edu

Copyright notice: The documents contained in this server are included by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

Technical reports collection maintained by David Kotz.