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Figure 1  ThreadSense prototype in (a) a thin thread of less than 0.4 mm thick. Our sensing technique can locate up to two finger 
touches on extremely thin objects, found in (b) braided hair band, (c) embroidery, and (d) wire craft. 

ABSTRACT 
We propose a new sensing technique for one-dimensional 
touch input workable on an interactive thread of less than 0.4 
mm thick. Our technique locates up to two touches using 
impedance sensing with a spacing resolution unachievable 
by the existing methods. Our approach is also unique in that 
it locates a touch based on a mathematical model describing 
the change in thread impedance in relation to the touch 
locations. This allows the system to be easily calibrated by 
the user touching a known location(s) on the thread. The 
system can thus quickly adapt to various environmental 
settings and users. A system evaluation showed that our 
system could track the slide motion of a finger with an 
average error distance of 6.13 mm and 4.16 mm using one 
and five touches for calibration, respectively. The system 
could also distinguish between single touch and two 
concurrent touches with an accuracy of 99% and could track 
two concurrent touches with an average error distance of 
8.55 mm. We demonstrate new interactions enabled by our 
sensing approach in several unique applications. 
Author Keywords 
Touch input; impedance sensing, thread, fabric 
CSS Concepts 
• Human-centered computing~ ~Interaction devices 
INTRODUCTION 
Today's computing technologies are "weaving themselves 
into the fabric of everyday life", as Mark Weiser envisioned 

28 years ago [26]. Innovations in materials [4, 28], sensors 
[15, 31], and soft electronics [13, 17] are quickly changing 
the way people interact with computers and what people are 
interacting with. Touch input, for example, has gone from the 
rigid body devices like touch screens and found its way in 
one-dimensional (1D) soft sensors (e.g., stripe, cords) that 
can bring interactivities to everyday objects such as 
drawstrings [10, 12] and headphone wires [12, 23]. 

In this paper, we introduce a new approach for locating up to 
two concurrent finger touches on a thin thread made of 
conductive material using the principle of impedance sensing. 
This approach works on cords, stripes, and more importantly, 
very thin threads (less than 0.4 mm thick) with a simple 
structure (a single line of resistive material) that cannot be 
supported by existing methods using pressure [13], 
capacitance [23], or time domain reflectometry [27]. Thus, 
our new approach extends touch input to everyday thin 
threads, such as tinsels, braids, wire crafts, or embroidery 
(Figure 1b, 1c, 1d). 

Our method is also unique in that it employs a model-based 
approach, which locates touches based on a mathematical 
model describing the change in the impedance of the thread 
in relation to touch locations. Unlike many of the existing 
techniques also using impedance sensing [29-31], our system 
does not need to be trained. The user only needs to perform 
a quick calibration by simply touching a known location(s) 
on the thread to inform the system of their finger impedance, 
needed later for locating a touch.  

The simplicity of the calibration allows the system to quickly 
adapt to various environments and users. Environmental 
noises such as AC voltage can vary across environments (e.g., 
kitchen, cars, offices) because of different types of 
surrounding objects (e.g., power lines, metal objects). Such 
noises cause ground coupling with the thread and can affect 
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impedance sensing. Additionally, finger impedance can vary 
across users because of differences in their body impedance. 
It can even vary for the same user with different fingers or 
finger conditions (e.g., wet or dry). Prior designs on 
impedance sensing would likely require repeated training 
with tedious data collection in each different settings [31]. 
Our system, however, can adapt to these variations by only 
requiring the user to touch the thread one or a few times 
depending on the accuracy needed for an application.  

We demonstrate the effectiveness of our approach through a 
proof-of-concept prototype (called ThreadSense) developed 
in the form of a thin, thermally extruded monofilament via a 
conventional FDM 3D printer (Figure 1(a)). In a controlled 
experiment with ten participants, we tested the tracking 
accuracy of our sensing approach in distinguishing and 
locating touch positions of one versus two fingers. Our study 
revealed that the system could sense touch location with an 
average error distance of 6.13 mm with a single calibration 
point. Increasing the number of calibration points to five 
reduced the error distance to 4.16 mm. The system could 
distinguish single touches from two-touches with an 
accuracy of 99% and could track two concurrent touches 
with an average error distance of 8.55 mm.  

Our contributions are: (1) a sensing technique for locating 
touch input on an extremely thin thread; (2) a model-based 
approach that enables the system to work based on a simple 
calibration process; (3) the result of experiments to 
demonstrate the effectiveness of our approaches. 
RELATED WORK 
This work builds and extends upon prior work in a number 
of domains, including capacitive and impedance sensing and 
1D touch input on interactive stripe, cord, and fabric. 
Touch Input on Cords and Stripes 
User input on a thin stripe or cord is mainly achieved through 
touch [12, 22, 23] and deformation [8, 12, 22, 23, 25] . For 
example, I/O braid [12] allows a user to press or twist a cable 
to perform input. TactileTape [8] allows the user to use press 
as input. Both Cord Input [23] and Cord UIs [22] can sense 
touch and deformation of the cable but the resolution of 
touch input is limited by the number of capacitive sensing 
unit. With StretchEBand [25], the user can perform input by 
stretching a stripe. The works from Sousa, et al. [24] and 
Klamka, et al. [10] allow the user to perform input on a cord 
using a sliding bead. Our work focuses on 1D touch input. 

Existing 1D touch sensing techniques are mainly based on 
capacitive sensing [10, 12, 22, 23]. Although most of them 
are effective, spatial sensing resolution is limited because the 
wirings for the large number of electrodes needed for a high 
spatial resolution are extremely hard to arrange in a very thin 
form factor. Techniques based on time domain reflectometry 
(TDR) [27] need a pair of electrodes to be placed side-by-
side with a gap of a certain distance (e.g., 0.5 mm in the 
authors’ best example), which limits how thin the thread can 
be made and its applications. TDR is also sensitive to the 

deformation of the sensor, which makes it less reliable for 
touch input on soft objects (e.g., hair tinsels). The techniques 
using the charging time of capacitance [6] can potentially 
locate two touch points on a single line of electrode but the 
technique has not been explored on a thin thread.  
Touch Input on Interactive Fabric 
In addition to stripes and cords, touch input has also been 
developed on soft fabrics. Existing techniques for touch 
input on interactive fabric can be divided into the ones based 
on capacitance sensing [16, 17] and those based on resistance 
sensing [13, 14, 21]. 

The class of work utilizing capacitive touch sensing is based 
on fabric capacitors made of conductive materials acting as 
electrode plates. On a piece of fabric, the electrodes can be 
created using conductive threads or inks. Musical Jacket [16], 
is an example of early explorations in this field. The authors 
used stainless-steel yarns to embroider a capacitive touch 
keypad on denim. A more recent work, Project Jacquard [17], 
describes the design and fabrication of a new type of 
conductive yarn that can be woven into textiles using 
standard looms at scale.  

The approaches using resistive touch sensing are based on 
fabric resistors. A sensor structure commonly seen in this 
category of work has two conductor-layers separated by a 
semi-conductive middle layer. For example, GestureSleeve 
[21] is an interactive sleeve that allows a user to perform 
touch gestures on the forearm. New methods are also under 
development to improve the resistive sensing technology. 
For example, Parzer et al. 's method can reduce the 
complexity of the sensor using a new type of yarn comprised 
of a metallic thread with a resistive coating [13].  

These prior works focus on sensing touch on a surface and 
mostly rely on a grid of threads. Instead, our work aims to 
sensing 1D touch input with a single thread-form sensor, 
which is therefore not achievable with previous approaches. 
Impedance Sensing 
Electrical Impedance Tomography (EIT) has been employed 
in many recent work for sensing hand postures [30, 32] and 
2D touch locations [28, 29, 31]. For example, Tomo [30] is a 
wrist-worn device that senses hand postures using EIT. The 
technique measures interior impedance geometry with eight 
electrodes inside a wristband to recognize gross hand and 
thumb-to-finger pinch gestures. Electrick [31] enabled touch 
input on a wide variety of irregular objects and surfaces using 
EIT. A technique based on a similar sensing principle has 
been used to enable the track of finger and pen movements 
on an interactive paper [29] . iSoft [28] utilized EIT to track 
real-time continuous touch input and deformation in a 
flexible sensor.  

While most of the work mentioned above uses a single AC 
current frequency, Swept Frequency Capacitive Sensing 
(SFCS) was shown to provide richer information in sensing 
hand gestures on everyday objects [19] and differentiating 
users of a touch-screen device [7]. A more recent work, 
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Zensei [20], used SFCS to support implicit and ubiquitous 
user recognition on mobile devices, furniture, and in many 
of the indoor environments.  

In comparison to above works, our work differs in that it 
provides a new approach to locating touch in an extremely 
thin 1D space of an interactive thread. Additionally, all the 
existing impedance-based touch sensing techniques require 
training and tedious data collection. They use machine 
learning to classify touch input, thus these systems would 
likely need to be retrained under various environments and 
for different users. Our model-based approach replaces 
training with a simple calibration process, which only 
requires the user to touch a known location(s) on the thread. 
Such simple calibration allows the system to quickly adapt \  
SENSING PRINCIPLE 
ThreadSense enables a thread made of evenly distributed 
conductive material to locate user touches. The key rationale 
is to sense the impact of user touches on the impedance of 
the thread and infer touch positions. Specifically, when each 
end of the thread is connected to an electrode, the impedance 
of the thread can be measured by inserting a small AC current 
between the electrodes. When a finger touches the thread, it 
shunts a small amount of current to ground (known as "shunt 
mode"), which increases the thread’s impedance measured at 
a certain AC frequency. More importantly, when the 
resistance of the thread is evenly distributed along the length 
of the thread, the measured impedance is dependent on the 
touch position on the thread. Thus, one can measure the 
thread's impedance to locate the finger touch.  

 
Figure 2 Equivalent circuit (a) without a finger touch and (b) 
with a finger touching at a location α on the thread.  

To further illustrate the rationale, Figure 2 demonstrates the 
equivalent circuit with and without a finger touch. Here 𝐻 
and 𝐿 are the high and low voltage endpoints connecting to 
the electrodes, respectively. 𝑍$ is the known impedance of 
the thread and 𝑍%  is the impedance caused by ground 
coupling due to environmental noises. When a finger touches 
the thread at a location, described using a location coefficient 
α (expressed as a ratio from 0 to 1, with the H end as 0 and L 
end as 1), ZS is introduced by the integration of the shunting 
impedance of the ground (𝑍%) and finger touch (ZT), which 

comprises the impedance of the finger and the contact 
impedance of the finger touch. Note that ZS remains constant 
regardless of the finger touch location. Finally, the 
impedance of the thread segment separated by the touch 
location is denoted as 𝑍&and	𝑍(. 

When 𝑍$  and 𝑍)  are known, the impedance of the thread 
𝑍(𝛼) (with the finger at location 𝛼) can be calculated (or 
estimated) as below: 

𝑍(𝛼) = 𝑍$ + 	α ∙ (1 − α) ∙
345

36
, (1)   

because the circuit in Figure 2(b) can be converted into a 
delta network using a star-to-delta transform [9]. 

Since thread resistance is evenly distributed, α represents the 
proportion of the resistance of the thread segment separated 
by the touch location. For a fixed 𝑍$ and ZS, different touch 
location α results in different thread impedance, which 
ideally should equal to the estimation 𝑍(𝛼). This relationship 
forms the basis for locating touch position.  
Experimental Validation 
To validate the relationship between measured impedance 
and the estimation using Eq. (1), we use a pair of variable 
resistors to emulate the variations in ZH, and ZL, caused by a 
finger touching the sensor. Thus, the ratio of the resistance 
values of the variable resistors determines the location 
coefficient α. We keep the summation of the resistance of 
them (or 𝑍$) as 1 MΩ. As shown in Figure 3, the variable 
resistors are placed on a breadboard and connected via a 
copper tape representing the touch position.  

 
Figure 3 Setup of our experimental validation. 

Two participants were recruited in the test and were asked to 
press their index finger on the copper tape. We measured the 
resulting impedance at 80 kHz using the AD5933 impedance 
analyzer chip. We repeated the measurement by varying α at 
a step size of 0.1. Figure 4 plots the measured impedance of 
the participants as α varies. We fitted the data using a least 
square fit into Eq. (1) to find out 𝑍)  and plot the fitted 
function curve. The data fitted well with the curves, 
indicating that Eq. (1) is an effective estimation of the effect 
of α on the measured impedance. Therefore, if 𝑍9, 𝑍%, and 
measured impedance are known, α can be calculated to 
estimate the touch location. Figure 4 also shows that the 
curves differ between the two participants, suggesting that 
𝑍) needs to be calibrated individually. 

Note that 𝛼 is symmetric around the center of the thread. As 
such, touching the left or right side of the thread is 
indistinguishable from each other (Figure 4). This issue can 
be resolved by connecting the thread in series with a resistor 
of the same resistance (coupling resistor). The coupling 
resistor cannot be replaced by a potentiometer as the internal 
structure of the potentiometer may introduce noises.  
Challenges  
Though we have proved the feasibility of locating a single 
touch on a thread, challenges exist for detecting two 
concurrent touch and for the system to work robustly against 
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environmental noises. Detecting multi-touch is challenging 
because a single touch may cause a change in the measured 
impedance similar to that caused by two concurrent touches 
at different locations. For example, at 84 kHz, the impedance 
measured with two touch locations at	𝛼: = 0.56, 𝛼> = 0.64 
is close to that of a single touch with location coefficient 𝛼 =
	0.7.	 Further, environmental noises may also affect the 
measured impedance, making it less reliable for locating 
touch. We present our design to address these challenges. 

 

Figure 4 The fitted impedance curve shown in relation to the 
measured impedance. The impedance increases differently 
under the influence of different participant’s touch, but both 
fit in with Eq. (1). 
SYSTEM DESIGN 
To enable the ability of multi-touch detection and enhance 
the system’s robustness against environmental noises, we 
consider a frequency sweeping approach, where thread 
impedance measurements are collected as we sweep the 
frequency of AC current, Since the thread impedance varies 
under different AC frequencies, frequency sweeping allows 
us to collect a spectrum of impedance measurements across 
different AC frequencies. These measurements collectively 
can be more robust against environmental noises and present 
distinguishable features between single touch and multiple 
touches. Frequency sweeping has been used in prior works 
[19] to distinguish users or recognize hand poses. We are the 
first to apply the technique to locate touches. Next, we 
discuss the model-based touch localization method and 
system calibration.   
Model-based touch localization 
We extend our discussion of sensing principle from a single 
AC frequency to 𝑁  AC frequencies, with each frequency 
denoted by 𝑓C,	where	𝑖 = 1, 2,⋯ ,𝑁. Since different AC 
frequencies lead to different thread impedances, we denote 
the measured impedance for a single touch under 𝑓C , 𝑍GH. 
Similarly, we denote the impedance estimated using Eq. (1) 
under 𝑓C , 𝑍(𝛼, 𝑓C).  Here the problem of locating a touch 
position is to seek an estimated location coefficient (𝛼∗) that 
minimizes the summation of all differences between the 
measured and estimated impedance values, as shown below:  

𝛼∗ = 𝑎𝑟𝑔𝑚𝑖𝑛O ∑ (𝑍GH − 𝑍(𝛼, 𝑓C))
>Q

CR: . (2)  

To search for 𝛼∗,  we used the Trust Region Reflective 
algorithm [11]. As mentioned earlier, to compute 𝑍(𝛼, 𝑓C), 
the system must know the corresponding 𝑍% (the impedance 

caused by ground coupling from the environmental noises) 
and 𝑍9  (the impedance of the finger and the contact 
impedance caused by the finger touching the thread) at 
frequency 𝑓C . We will discuss how this information is 
acquired shortly in the system calibration section. 

A similar approach can be used to locate multiple concurrent 
touches at different locations. Here we use two touches as an 
example for the sake of simplicity. When a user touches the 
thread using two fingers, an equivalent circuit can be 
described in the form shown in Figure 5a. This circuit can be 
simplified using a star-to-delta transformations, and the 
resulting circuit is similar to the one time transformed single 
touch circuit (Figure 5b). This step is useful as it allows us to 
calculate the ideal thread impedance for two touches 
𝑍(𝛼:, 𝛼>, 𝑓C)	at different locations and AC frequencies using 
the method described in Sensing Principle. We show all the 
details in the appendix through Eq. (a-1) to Eq. (a-9). Finally, 
the estimated location coefficients 𝛼:∗, 𝛼>∗  for a measured 
impedance spectrum can be computed as: 

< 𝛼:∗, 𝛼>∗ >	= 𝑎𝑟𝑔𝑚𝑖𝑛OU,O5 	∑ (𝑍GH − 𝑍(𝛼:, 𝛼>, 𝑓C))
>Q

CR: . (3)  

 
Figure 5 Diagram of the equavalent circuit of two concurrent 
touches simplified into a circuit similar to one touch. 

Distinguishing Between 1 and 2 Concurrent Touches 
Once 𝛼∗ and (𝛼:∗, 𝛼>∗) are determined, our system is now able 
to tell which one is more likely the cause of the change in the 
measured thread impedance. In particular, for a given 
spectrum of measured impedance across 𝑁 AC frequencies, 
𝑍G, whether the occurrence of a touch event is caused by one 
or two fingers can be determined by choosing between 𝛼∗ 
and (𝛼:∗, 𝛼>∗)  based on which one has an estimated 
impedance spectrum closer to �⃗�G.  Figure 6 shows the 
measured impedance profiles caused by one and two 
concurrent touches, respectively.  

 
Figure 6 Measured impedance of a single touch (𝜶 = 0.68) and 
two touches (𝜶𝟏 = 0.66, 𝜶𝟐 = 0.74), shown in complex numbers 
with a real (resistance) and imaginary part (reactance). 
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Although we only demonstrate the detection and localization 
of two touches, our approach can be extended to more than 
two concurrent touches. We leave it for future research.  
Calibration  
The goal of the system calibration is to acquire all the 
necessary information (e.g., 𝑍% and 𝑍9) needed to calculate 
the estimated impedance using Eq. (1) and Eq. (a-1). We 
calibrate 𝑍% and 𝑍9 separately, because it allows the system 
to be aware of environment change based on the change in 
𝑍% alone, enabling new types of interactions (details later). 
Due to frequency sweeping, we use �⃗�%  to denote the 
impedance spectrum of the ground coupling effects 
measured under all the 𝑁  frequencies (or background 
profile). We use  𝑍9:	and 𝑍9>,	to denote the spectrum for the 
finger and contact impedances for one and two touches 
respectively (or touch profile). Finally, 𝑍$ is the impedance 
of the thread without touch (or thread impedance), which can 
be estimated using resistance, measurable using a multimeter, 
by ignoring the small effect of capacitance and inductance.  

Calibrating Environmental Noises (𝑍%) 
As suggested by [1], the effect of ground coupling can be 
approximated using a distributed capacitance, which can be 
calculated using the following formula: 

𝑍% =
𝑘 ∙ (1 − 𝑘) ∙ 𝑍$

>

∆𝑍]^̂^̂⃗
, (4) 

where 𝑘  is a constant between 0 and 1 and ∆𝑍]^̂^̂⃗  is the 
increase in the measured impedance caused by the coupling 
effect. As suggested in [1], we used 0.21 for 𝑘  in our 
calculation. Although this approach overlooks the other 
parasitic components that may introduce noises, such as the 
impedance of electrodes at the two ends, we found these 
noises have negligible impact on system performance in our 
later experiments. 

Note that calibrating the background noises does not need to 
be carried out manually by a user. Instead, our system is 
designed to be re-calibrated automatically and periodically 
(e.g., every 5 minutes). By cross comparing every new 
background profile with the ones stored in the database, the 
system can identify if the user is in an unknown environment. 
This allows the system to notify the user for recalibration if 
the user is in a new environment. 

Calibrating Finger and Contact Impedances (𝑍9: and �⃗�9>) 
This step of calibration requires a user to touch a predefined 
location on the thread using the index finger. This is to allow 
the system to calibrate �⃗�). Again, 𝑍)  approximates 𝑍%	and 
𝑍9	 connected in parallel, which can be calculated using Eq. 
(5), with a pre-determined α. In our case, α = 0.5 as we asked 
the user to touch the middle of the thread.  

𝑍) = α ∙ (1 − α) ∙
𝑍$

>

𝑍G	 − 𝑍$
.		 (5) 

Since 𝑍)  approximates 𝑍%	 and 𝑍9	  connected in parallel, 
when both �⃗�) and 𝑍% are known, a single-touch profile �⃗�9: 
can be calculated using Eq. (6): 

�⃗�9: = 	
𝑍%𝑍)
�⃗�% − �⃗�)

. (6) 

Like the background profile, user profile can be stored in a 
database for repeated usages. The touch profile for two 
fingers can be retrieved in the same manner but with two 
predefined location coefficients. We show the equations 
needed for computing the profile for the two touches in the 
appendix. Finally, we show in Figure 7 the touch profiles of 
a user touching the thread using one vs. two fingers. 

Calibrating Sensor Impedances (𝑍$) 
An important requirement of our system is the uniformity of 
the resistance across the length of the sensor. However, this 
requirement may not always be satisfied (e.g., due to issues 
in the manufacturing process). As such, extra calibration can 
be used to obtain a more accurate impedance curve. The 
calibration can be performed by a user touching extra pre-
determined locations (e.g., three evenly spaced points across 
the sensor). Once the extra calibration data is collected, a 
precise mapping can be established between the calculated 
location coefficient 𝛼∗s and the ground truth positions. The 
curve segments between the calibration points can be 
interpolated linearly.  

 
Figure 7 Touch profiles of a user touching the thread using one 
(𝛂 = 𝟎. 𝟔𝟖) vs two fingers (𝜶𝟏 = 𝟎. 𝟔𝟔, 𝜶𝟐 = 𝟎. 𝟕𝟒).  

IMPLEMENTATION 
To evaluate our approach, we developed a proof-of-concept 
prototype using a FDM 3D printer and off-the-shelf 
hardware and software. This section presents our 
implementation details.  
Thread Prototype  
Like in the previous work [31], the resistivity of the 
conductive thread cannot be too high or too low. This is 
because if the resistivity is too high, the electric field will be 
too weak to sense the signal. However, if the resistivity is too 
low, the change in the difference in the impedance caused by 
the finger touching the thread can be too small to be detected. 
We found resistances between 500 kΩ and 1 MΩ work the 
best for our impedance analyzer chip (AD5933) from Analog 
Devices [5]. This requirement unfortunately makes most, if 
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not all, the commercially available conductive threads 
unqualified for our need. Therefore, we had to create our 
proof-of-concept prototype using a FDM 3D printer.  

The thread was a thin line of conductive filament in 11.5	𝑐𝑚 
long with a 0.1	𝑚𝑚	 × 	0.4	𝑚𝑚  rectangle cross section 
(dimension limited by our FDM 3D printer. The thread has a 
resistance of 432 KΩ, coupled with a 470kΩ resistor to 
extend the sensing range to approximately the length of the 
sensor. Ideally, the resistance of the thread and coupling 
resistor need to match or sensing range or accuracy may be 
affected. The thread was made using a thermally extruded 
monofilament using a Ultimaker 3 printer [3], with the 
carbon filament CDP12805 from Proto-pasta [18]. The two 
ends of the thread are connected to our sensing board using 
copper wire (Figure 8).  

 
Figure 8: Our thread sensor prototype, coupled with a 470k Ω 
resistor and connected to the AD5933 impedance sensing board. 

Impedance Sensing Board  
The main components of our sensing board are an impedance 
analyzer chip (AD5933 from Analog Devices) [2], a 1MSPS 
analog to digital converter (ADC), and a digital signal 
processor (DSP), which runs discrete Fourier transform 
(DFT) and returns the real and imaginary parts of the 
measured impedance of the thread at a desired frequency. 
The AD5933 allows impedance measurement from 1 kΩ to 
10 MΩ with a system error of around 0.5%. The AC 
frequencies of our sensing board were from 10 kHz to 100 
kHz with a 2 kHz interval. This leads to a total 46 samples 
per cycle, which takes around 10ms to finish. When the 
sensor is working, a small AC voltage is applied between the 
two electrodes, and the current flow through the thread is 
measured using an auto balancing bridge circuit. The 
impedance between the two ends of the thread is then 
calculated as the ratio between the input voltage and the 
output current measured by the sensor. Ideally, the resistor 
should have the same resistance as the sensor, we were 
unable to find one on the market. Although this affected 
sensing accuracy, the implementation was sufficient to 
demonstrate usage scenarios. Finally, sensor data is sent to a 
Macbook Pro through USB for further computation. It takes 
an average of 25 ms and 26 ms to locate a single and two 
touches respectively. 
DEMO APPLICATIONS 
To showcase ThreadSense and its capabilities, we created 
four demo applications and highlight various usage scenarios. 
Each application demonstrates the use case of one or more of 
interactions enabled by our sensing approach.  

Interactive Hair 
We implemented our sensing technique on a braided 
headband to allow gestural input to be carried out as if the 
user is touching or scratching the hair (Figure 9). Although 
touch input on the hair has been explored in prior research 
[5], the state-of-the-art methods can only sense the 
occurrence of touch. With ThreadSense, the systems can also 
detect swipe gestures for an extended input vocabulary. The 
use case for this type of input is broad. In particular, we see 
its benefit of being less obtrusive in social settings. For 
example, in the situations where repeated interacting with a 
smartphone or watch (e.g., checking voicemail messages) 
can be considered inappropriate. Swiping the hairband is less 
interruptive to other people since the motion is ambiguous 
about whether the user is actively using technology or just 
touching the head. In our implementation, a single touch on 
the sensor hangs up the phone call, and a swiping gesture 
changes the phone to mute mode. Although there is only one 
thread sensor in our current implementation, we foresee that 
the entire headband can be augmented with our sensing 
technique in the future with more research efforts. This will 
enable a much richer set of interactions via the hair. 

 
Figure 9 A user performs a subtle swipe gesture on a braided 
head band to interact with a computing device.  

 
Figure 10 A user control the TV program using touch input on 
ThreadSense, hand-sewed on a cushion. 
Interactive Embroidery  
The next application is an interactive embroidery that allows 
the user to perform input on a soft object covered or made by 
interactive fabrics. In our implementation, we manually 
sewed our thread sensor onto an owl embroidered cushion 
cover (Figure 10). Touching different locations on the thread 
triggers different actions on a smart IoT device. For example, 
touching somewhere near the first owl disables/enables the 
microphone of the Alexa. Tapping near the second owl using 
one finger turn on the music. Tapping near the same location 
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using two fingers plays news. Swiping near the same location 
navigates the menu. This way, the cushion becomes the 
user’s always-available remote controller at the couch and 
can be used when voice input is not desirable. 
Interactive Wire Crafts 
Another example of bringing rich interactivity to objects that 
are traditionally passive is through wire crafts. In our third 
application, we developed an interactive tulip bookmark. 
When in use, the bookmark has a new function that allows 
the user to perform continues touch input to control the 
brightness of the ambient light while reading. For example, 
the user can slide the finger to increase or decrease the 
brightness of a lamp (Figure 11).  

 
Figure 11 When reading, a user uses the interactive tulip 
bookmark to control ambient light. 

Interactive Headphone Cable 
Finally, we demonstrate that all the interactions can be 
integrated into a single device of a headphone cable to extend 
input capability of the existing work that cannot sense touch 
locations [12].  With our implementation, the user can use a 
single tap to quickly pick up a call. The user can also record 
a call by tapping the cable using two fingers. Further, the user 
can use slide with a single finger to control the volume or 
two fingers to navigate the contact list. A unique feature of 
our system is that it can recognize the change in the user’s 
environment through the auto-calibration process. When the 
system detects that the current �⃗�%  is significantly different 
from the ones in its database, it shines an red light using an 
LED to notify the user to recalibrate Z⃗̂h: or Ẑ⃗h>. Once the 
new environment is calibrated, the profile is stored in the 
system for later use, and the light turns green (Figure 12).  

 
Figure 12 Left: a red light indicates that a user enters a new 
environment, so that a recalibration is needed. Right: two 
concurrent touches on the earphone cord to start recording. 
EVALUATION 
We conducted a system evaluation to measure the accuracy 
of our sensing approach in locating touch positions and 
distinguishing touches between one vs. two fingers.  

Participants  
Ten right-handed participants (5 female) between the ages of 
20 and 25 participated in the study. The average width of 
participants’ index fingers is 14.47 mm; s.e. = 0.18). 
Apparatus 
As the sensor is extremely thin and bendable, keeping it 
straight is important for us to accurately record the touch 
position(s) as the ground truth. For the study only, we printed 
the sensor straight on a supporting structure made of non-
conductive material. Additionally, we printed the sensor 
twice as long as its original size. The extra piece was used to 
replace the coupling resistor to ensure a precise measurement 
of our sensing accuracy. During the study, the sensor was 
placed on an empty wood desk in front of the participant, 
who performed the task in a seating position.  

 
Figure 13 Calibration locations for one (top) vs two fingers 
(bottom; 8 mm space between the fingers). The numbers 
indicate the order in which the calibration points were added 
for analysis on the effect of the number of the calibration points.   

Calibration 
Prior to the study, the system was calibrated for each 
participant using one and two fingers. In the one-finger 
condition, the calibration data was collected at five locations 
evenly apart from each other across the sensor (0mm, 23 mm, 
46 mm, 69 mm, 92 mm from the left end) (Figure 13 top). 
The location distances are calculated using the end near the 
coupling resistor as the origin. The calibration data was used 
later to investigate whether and how well the number of 
touch points involved in the calibration may improve sensing 
accuracy. In the two-finger condition, the calibration data 
was collected with the participant touching the sensor using 
the index and middle finger, approximately 8 mm apart from 
each other. Participants were asked to center a target position 
at 46 mm (from the left end) in the middle of the two fingers 
(Figure 13 bottom). Calibration for two fingers was only 
performed at a single location.  
Data Collection 
One finger. For the touches using one finger, participants 
slide their index fingers against the narrow edge of the sensor 
(0.1 mm) from 0 mm to 92 mm two times, with a sliding 
distance of 2 mm each. The start and end positions were 
chosen to avoid them mistakenly touching outside the 
sensor’s sensing region. Participant’s right index finger was 
held in a ring mounted on a slider placed in parallel to the 
sensor. This allowed them to precisely control the position of 
the finger on the sensor. Participants stopped every 2 mm, 
and the experimenter recorded the ground truth, measured 
using a ruler (Figure 14). A computer recorded the predicted 
location.  
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Two fingers. For the touches using two fingers, participants 
repeated the same task used in calibration but at three 
locations: 23 mm, 46 mm, and 69 mm. At each location, they 
were asked to center the target location in the middle of the 
index and middle finger, with the fingers set apart in a 
distance of 0 mm, 4 mm, 8 mm, 12 mm, or 16 mm from each 
other (Figure 13). This allowed us to systematically examine 
the impact of finger distance on sensing accuracy. We used a 
3D-printed divider to precisely control the distance between 
the fingers (Figure 14 right), except in the zero distance 
condition, where the two fingers were touching each other. 
Finally, each trial was repeated twice. In total, we collected 
920 and 300 samples for the touch events using one and two 
fingers respectively. 

 
Figure 14: Study apparatus. Left: one finger condition. Right: 
two-finger condition, in which the space between the fingers 
were controlled using 3D printed dividers. 

Single Touch Accuracy 
We used average error distance (𝐸𝐷klm ) to measure the 
tracking accuracy of our approach. The 𝐸𝐷klm  per 
participant is defined as 	:

n
∑ |𝑦qC − 𝑦C|	n
CR: , where 	𝑦qC  is the 

predicted location, and 𝑦C  is the ground truth, and 𝑛	is the 
total number of trials per location per participant (e.g., 46 
locations × 2 repetitions). We then average the 𝐸𝐷klm across 
all participants as the final accuracy metric. 

 
Figure 15 The EDavg at different touch location under the 
configuration of one vs five points. 

Sensing Accuracy with Mid-Point Calibration 
We first looked at the sensing accuracy achieved using a 
single calibration point in the middle of the sensing region. 
Figure 15 plots the 𝐸𝐷klm for the 46 tested locations (0 mm 
to 92mm, stopped every 2 mm) and the region covered by 
the stand error. We observe that 𝐸𝐷klm was 6.13 mm (s.e. = 
0.26 mm) across all locations. Additionally, the average error 
distance is higher in the first quarter of the sensing region 
(𝐸𝐷klm  = 5.21 mm; s.e. = 0.26) than the remaining part 

(𝐸𝐷klm = 8.88 mm; s.e. = 0.43). Since half of the thread is 
used as a coupling resistor, this first quarter of the sensing 
region is close to the half point that separate the thread into 
two equilibrium impedance (α = 0.5). As shown in Figure. 4, 
impedance change caused by the touch location is much less 
significant when the finger touches the thread center (i.e., 
near the peak of the curve in Figure 4).  It results into slightly 
coarser-grained granularity in differentiating touch locations 
and thus larger location errors.  
Effect of Calibration Points 
We further compared the sensing accuracy while varying the 
number of touch points used for calibration. More 
specifically, with the two-point calibration, the calibration 
points were picked at the middle and start position; the three-
point calibration was similar but with one additional point 
picked at the right end of the sensor; the four-point 
calibration was based on the three-point version with one 
additional point picked between point 1 and 2. (Figure 16).   

 
Figure 16 The 𝑬𝑫𝒂𝒗𝒈 of single vs. up to five calibration points. 
Error Bars show ±2 SE in all figures 

As shown in Figure 16, sensing accuracy improved with the 
increase of the number of calibration points along the sensor. 
Note that error may take place on either side of the touch 
location. Therefore, a touch sensed within the distance of 
𝐸𝐷klm to both side of a touch button should be considered a 
successful hit on the target. Similarly, the distance between 
two touch buttons should be at least twice as big as 𝐸𝐷klm. 
We were able to reduce the 𝐸𝐷klm  to 4.16 mm with five 
calibration points. With this level of sensing accuracy, 
continuous input through sliding is possible but a filter needs 
to be used to reduce noise. The improvement brought by the 
calibration points near the fourth quarter (point 3 & 5) is 
smaller than that brought by the calibration points near the 
second quarter (point 2 & 4). We expect that point 3 & 5 is 
not needed if the resistance of the thread is evenly distributed.     

We further examine the location accuracy across participants. 
Figure 17 plots the average location error and the standard 
error for each participant. We observe that the 𝐸𝐷klm  for 
most participants are around 5 to 8 mm. Participant 4 has the 
largest error because the width of this participant’s finger 
(17.69 mm) is much larger than the average width (14.47 
mm), which influenced the ground truth reading. Overall, our 
results suggest that touch controllers designed for 
ThreadSense are likely generalizable among different users. 

 0
 1
 2
 3
 4
 5
 6
 7
 8

1 2 3 4 5

Er
ro

r (
m

m
)

The number of point for calibration

6.31

5.38 5.09
4.39 4.14



9 

 

 
Figure 17 The 𝑬𝑫𝒂𝒗𝒈 using the mid-point calibration for the ten 
participants. 

Two-Finger Touch Accuracy 
Our result shows that 𝐸𝐷klm is 8.55 mm (s.e. = 2.17 mm) 
across the three locations and 15 touch points (Figure 18). It 
is 2.42 mm higher than the error of one-finger touch achieved 
using the mid-point calibration. Error is again higher near the 
first quarter of the sensing region with the 𝐸𝐷klm	of 10.29 
mm (s.e. = 1.95 mm), 7.95mm (s.e. = 2.36 mm), and 7.41 
mm (s.e. = 0.39 mm) for the tested locations at 23 mm, 46 
mm, and 69 mm. As shown the Figure 18, error also 
increased with the increase of the distance between the finger, 
except at location 46mm where the calibration point (8mm 
spacing) has the lowest 𝐸𝐷klm. We suspect that it is because 
the touching area of the finger changes with the opening of 
fingers, which lead to small deviation in the Z⃗̂h> from the 
calibrated one. 

 
Figure 18 𝑬𝑫𝒂𝒗𝒈  of two concurrent touches by location and 
spacing. 

Distinguishing One vs. Two Fingers 
Finally, we also investigated how well our system can 
distinguish one versus two concurrent touches. We used the 
same data in the accuracy evaluation but fitting the data using 
the models for both one and two fingers. The recognition was 
carried out by comparing the similarity between the 
estimated and measured impedance spectrums. Out of 920 
samples collected using one finger, three were recognized as 
two fingers (error rate: 0.32%). The errors occurred at 69 mm, 
85.1 mm, and 89.7 mm from left. Out of 300 samples 
collected using two fingers, three were recognized as one 
finger (error rate: 1%). One error occurred at 16.1 mm, 29.9 
mm and the other two occurred at 52.9 mm, 85.1 mm. Most 
of the errors occurred near the end of the sensor, where the 
increase in impedance caused by touch is less observable.  
SUPPLEMENTARY STUDYS 
We conducted three supplementary studies to preliminarily 
evaluate how well the system can performance under 

different environmental noises, finger conditions, and 
distinguish between different environments.  
Environmental Noise 
The goal of this study was to measure the robustness of the 
system against different environmental noises. This study 
was carried out with a single participant (male, right-handed, 
24 years old). 
Data Collection 
The study included four daily environments: (1) a running 
car, where the sensor was placed on the back seat; (2) outdoor, 
where the sensor was placed on a wood desk in an open space; 
(3) kitchen, where the sensor was placed on a dining table, 
surrounded by kitchen appliances, including a refrigerator 
and a microwave; and (4) workplace, where the sensor was 
placed on a wood desk, full of computers and electrical 
cables. In each environment, the participants taped the sensor 
using the index finger at five locations: 0 mm, 23 mm, 46 
mm, 69 mm, 92 mm from the left. Each trial was repeated 
five times. In total, we collected 100 samples for data 
analysis. During the study, the sensor board was powered 
through a USB cable connected to a laptop.  

We first measured the sensing accuracy with �⃗�9: calibrated 
in each tested environment. We then measured the sensing 
accuracy with 𝑍9: calibrated in an environment outside the 
tested ones – in a clean lab desk. This was to investigate 
whether and how well the system works in a new 
environment without recalibrating finger impedance.  

 
Figure 19: Sensing accuracy with and without calibration in 
different environments. 

Result 
The data was analyzed using a repeated measures ANOVA 
with Environment and Calibration as independent valuables. 
Our result showed that the 𝐸𝐷klm  across all the four 
environments was 3.96 mm with the system recalibrated 
separately for each environment. ANOVA showed no 
significant different between the four environments in the 
recalibration condition (𝑝 = 0.93). In contrast, the 𝐸𝐷klm 
increased to 25.63 mm without recalibration. ANOVA 
yielded a significant different between the condition with and 
without recalibration (𝐹:,z{ = 13.65, 𝑝 < 0.001). The most 
noticeable difference between the two calibration conditions 
was found in the outdoor environment (Figure 19). This is 
mainly because of the large difference in the grounding effect 
caused by the earth (outdoor) and the floor of our building.  

The 𝑬𝑫𝒂𝒗𝒈 from this participant was lower than the average 
sensing accuracy	found in the main evaluation. This is fine 
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as sensing accuracy varies among users. For this study, we 
were only interested in the difference between the tested 
conditions.  
Distinguishing Environments 
The goal of this evaluation was to measure how well the 
system can distinguish between different environments 
based on the difference in the current background profile (𝑍%) 
and the ones existing in the system database. We defined the 
similarity of two profiles using the Fréchet distance between 
them. The smaller the distance is the more similar the two 
profiles are. Our database contains 100 samples for each of 
the four environments tested in the previous study. To 
calculate the recognition threshold for each environment, we 
first calculated 100 distance scores by calculating the 
similarity between the each of the database profile and the 
average of all the 100 samples (average profile). The 
recognition threshold is thus the sum of the average and 
standard deviation of the distance scores. If the distance 
between the testing and the average profile is smaller than 
the recognition threshold, the environment is recognized. 
Otherwise, we tag it as a new environment. Our testing data 
included five new samples from each of the four tested 
environments, collected in a 20-minute interval. Our result 
showed a 100% recognition accuracy with no false positive.  
Finger Conditions 
Finally, we conducted another quick test to investigate if the 
sensing accuracy is affected by a sweaty finger. We repeated 
the test in the lab environment with the same participant 
performing the task with a dry or sweaty finger. To create a 
sweaty finger, we asked the participants to jog for thirty 
minutes. We collected 50 samples for data analysis. Our 
result showed that 𝐸𝐷klm  was 2.99 mm in the dry finger 
condition but increased to 4.41 in the sweaty finger condition. 
This is expected as body and touch impedance change when 
the finger sweats. A more careful study is needed to better 
understand how system performance may vary with the 
change of body condition.   
DISCUSSION AND FUTURE WORK 
We discuss insights gained from this research, propose future 
research, and acknowledge the limitations of our work. 

Overhead of Recalibration. As suggested by our study, 
recalibration may be required upon the change in user or 
environment. However, our calibration process only requires 
a single touch from the user (e.g., a long one to distinguish 
from input) with a workload similar to unlocking an iPhone 
via the home button. It is simpler than the existing 
approaches based on machine learning, involving the 
collection of training data in various settings. 

Spacing Resolution. The sensing resolution of our approach 
is affected by the operating frequency of the system. As 
suggested by Sato et al. [19], a wider operating frequency 
may likely introduce more observable changes in the signal 
spectrum in response to the user input. The spacing 
resolution can also be improved with an increased impedance 

per sensor length. This allows the signal caused by a small 
displacement of the finger to be more noticeable. Note that 
the sensor board used in our current implementation only 
supports an operating frequency of up to 100 kHz and 
maximum impedance measurement of 10 MΩ. We expect 
that the sensing accuracy of our approach can be improved 
with better hardware. 

Evaluation. We presented a technical evaluation that 
demonstrated promising results for sensing accuracy for our 
approach. The result should be considered as a high bar of 
what our sensing technique could achieve since the samples 
were collected under controlled conditions. Future 
evaluations should look at whether and how sensing 
performance may be affected if the sensor is bent. 
ThreadSense could also benefit from formal user studies to 
understand how the device and the proposed interactions 
would be used by end users in the proposed scenarios. For 
example, a user study may help us find preferred gestures for 
these applications,  

Sensor Fabrication. Although the sensor in our current 
implementation was created using an FDM 3D printer, we 
believe that it can be manufactured using fibers. One possible 
approach is to coat a fiber thread using conductive ink. 
Another possibility would be utilizing materials like 
conductive polycarbonate to create the thread. The challenge 
of course is in the requirement for the conductive to be 
evenly distributed along the thread, which requires a precise 
manufacturing process to overcome. 

Possibility of User Recognition. The validation result shown 
in Figure 4 suggests that the impedance profiles differ across 
the users. This is primarily due to the difference in their body 
impedances. Such individual differences can potentially be 
useful for differentiating input from different people. The 
key challenge, however, lies in the mixture of the effects on 
measured impedance caused by user's body and the finger 
touching at different locations. We plan for future work to 
investigate methods that can separate these effects for user 
differentiation.  
CONCLUSION 
In this paper, we discussed an approach to enabling 1D touch 
sensing on an interactive thread based on impedance sensing. 
Our technique can locate up to two touches with a spacing 
resolution unachievable by the existing methods. Our system 
is also unique in that it employs a model-based approach, 
which locates touches based on a mathematical model 
describing the change in stripe impedance in relation to the 
touch location. By sweeping the frequency of injected 
current during impedance measurement, the system requires 
only a quick calibration without training. The simplicity of 
the calibration allows the system to quickly adapt to various 
environments and users. We foresee that the proposed 
approach can go beyond 1D touch sensing and serve as an 
important groundwork for future investigations in sensing 
techniques on extremely thin and soft objects. 
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APPENDIX  
We present the equations for 𝑍(𝛼:, 𝛼>, 𝑓C) and �⃗�9>. 

Estimating 𝒁(𝜶𝟏, 𝜶𝟐, 𝒇𝒊) 
To calculate the theoretical impedance introduced by two 
concurrent touches at locations 𝛼:, 𝛼>  under certain 
excitation frequency 	𝑓C  , we performed two star-to-delta 
transforms to simplify the equivalent circuit.  

As shown in Figure 5 (A), with two touches, the original 
sensor impedance 𝑍$ is divided into 𝑍:, 𝑍> and  𝑍�. 

𝑍: = 	𝑍$ ∙ 	𝛼:	 (𝑎1) 

𝑍> = 	𝑍$ 	 ∙ 	 (𝛼> − 𝛼:) (𝑎2) 

𝑍� = 𝑍$ 	 ∙ 	 (1	–	𝛼>)	 (𝑎3) 

For each 𝑍9>,C in 𝑍9> (obtained from calibration), we applied 
a star-to-delta transform on 𝑍9>,C	  and 𝑍>  to convert the 
equivalent circuit into a form shown in Figure n (B). 
According to the equation for a Δ to Y transformation, the 
impedance of 𝑍�, 𝑍�, 𝑍] can be expressed as: 

𝑍� = 𝑍� =
𝑍> ∙ 𝑍9>,C

2 ∙ 𝑍9>,C + 𝑍>
(𝑎4) 

𝑍] =
𝑍9>,C>

2 ∙ 𝑍9>,C + 𝑍>
(𝑎5) 

We further simplified the equivalent circuit by merging the 
series impedance (𝑍: , 𝑍� ) into 𝑍&  and (𝑍� , 𝑍�)  into 
𝑍((Figure 20-c), where: 

𝑍& = 	𝑍: +	𝑍� (𝑎6) 

𝑍( = 	𝑍� +	𝑍� (𝑎7) 
Note that the effect of ground coupling needs to be 
considered before we further transform the equivalent circuit. 

Similar to the one touch condition, we use 𝑍) to denote the 
integrated shunting impedance of ground 𝑍%,C  (𝑍%  obtained 
from calibration) and 𝑍], connected in parallel, which can be 
calculated using the following equation. 

𝑍) = 	
𝑍%,C ∙ 𝑍]
𝑍%,C + 𝑍]

(𝑎8) 

As shown in Figure 20-c, the simplified equivalent circuit is 
in the same form as the one for a single touch, which can be 
converted into the form shown in Figure 20-d using a second 
star-to-delta transformation. Since both 𝑍&%  and 𝑍(%  in 
Figure 20-d are connected to the ground, 𝑍&(  is the only 
factor related to the theoretical impedance 𝑍(𝛼:, 𝛼>) . 
Therefore, 𝑍(𝛼:, 𝛼>) can be calculated using the following 
equation. 

𝑍(𝛼:, 𝛼>, 𝑓C) = 𝑍&( = 	𝑍& + 𝑍( +
𝑍&𝑍(
𝑍)

(𝑎9) 

Computing �⃗̂̂�𝑻𝟐 
The same approach can be used to computer 𝑍9>, except that 
this time 𝛼:	and	𝛼> are known. We assume that 𝑍(𝛼:, 𝛼>, 𝑓C) 
equals to measured impedance 𝑍GH under every frequency 𝑓C. 
This way we have the following 𝑁  equations, ∀	i ∈
{1, 2, … ,𝑁}: 

𝑍�𝑍9>,C, 𝑓C� = 	𝑍& + 𝑍( +
𝑍&𝑍(
𝑍)

= 𝑍GH (𝑎10)
 

where 𝑍�𝑍9>,C, 𝑓C� denotes the impedance with an unknown 
𝑍9>,C . By calculating the 𝑍9>,C  for every frequency 𝑓C , �⃗�9> 
can be obtained by: 

𝑍9> = 	 (𝑍9>,:, 	𝑍9>,>, … , 𝑍9>,Q) (𝑎11)
 

Figure 20 Diagram of a two-touch circuit simplified into an equivalent impedance 𝑍&(.  

 


