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ABSTRACT

We describe our efforts to empirically validate a distributed spec-
trum monitoring system built on commodity smartphones and em-
bedded low-cost spectrum sensors. This system enables real-time
spectrum sensing, identifies and locates active transmitters, and
generates alarm events when detecting anomalous transmitters. To
evaluate the feasibility of such a platform, we perform detailed ex-
periments using a prototype hardware platform using smartphones
and RTL dongles. We identify multiple sources of error in the
sensing results and the end-user overhead (i.e. smartphone energy
draw). We propose and implement a variety of techniques to iden-
tify and overcome errors and uncertainty in the data, and to reduce
energy consumption. Our work demonstrates the basic viability of
user-driven spectrum monitoring on commodity devices.

CCS Concepts

•Networks → Network design principles; Cognitive radios; Net-
work monitoring; Mobile networks; Wireless access networks;
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1. INTRODUCTION
Radio spectrum is a fixed and increasingly sought after resource.

Licenses to existing spectrum bands are auctioned off by the FCC
for billions to cellular carriers. To open up allocated spectrum for
next generation wireless devices, the FCC is developing new tiered
spectrum access models at multiple frequencies [6, 18]. Secondary
devices can reuse “old” spectrum as long as they do not interfere
with any primary (or legacy) users. Some secondary devices can
become protected entities [18], who receive spectrum access free
from interference by unlicensed secondary users.

The new model creates a contentious environment between dif-
ferent types of wireless devices, and adds further urgency to the de-
velopment of spectrum monitoring tools to be used for transmitter
detection, location and avoidance. Given the high cost in hardware
and human resources for traditional spectrum monitoring, the FCC
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is partnering with industry to deploy online spectrum databases [1,
2] that maintain records for all primary transmitters, protected en-
tities, and high power secondary transmitters. Secondary users can
identify usable spectrum by querying the database by location and
radio configuration. Spectrum databases are transparent, and easy
to understand and utilize by secondary devices without paying for
costly hardware to sense and detect primary users [24].

However, deploying spectrum databases does not address the dif-
ficult challenge of spectrum monitoring. Databases provide a sim-
ple way to catalog legacy wireless devices that are largely station-
ary, but do not simplify the task of sensing and locating new wire-
less devices that can be dynamic in both geographical and spectrum
domains, e.g. portable access points for health and public safety
entities, connectivity hubs for utility agencies, and interim cellular
base stations to cover sudden traffic surges [6, 18]. As these de-
vices continue to grow in number over time, the cost of spectrum
databases will shift from the physical database to the cost of main-
taining and updating entries to accurately reflect the frequency and
physical location of active users. Exacerbating this challenge is the
FCC’s stringent location accuracy requirement of 50 meters [17].

A Case for Commodity Spectrum Monitoring. To date, spec-
trum monitoring is done by government agencies or cellular providers
who perform measurements while driving around an area with spe-
cialized hardware such as spectrum analyzers. This method does
not scale well for real-time, large-scale spectrum monitoring, given
its costs in hardware and manpower [28]. As a result, measure-
ment coverage is porous and sparse in many locations, making it
simply impractical in less densely populated areas. Many trans-
mitters would then evade detection, leading to large location errors
in spectrum databases and undetected spectrum violations. One re-
cent approach sought to address this problem by attaching spectrum
analyzers to buses [47], but the system was severely constrained by
bus routes and availability.

As flexible spectrum access policies grow in adoption around
the world, it is clear that dedicated spectrum monitoring efforts
will not achieve the scalability or coverage required. Instead, we
believe such a system must include low-cost, commodity hard-
ware, and leverage the growing population of active mobile de-
vices, e.g. smartphones with embedded low-cost spectrum sen-
sors. Such a distributed system, perhaps incentivized by network
providers seeking to reduce spectrum monitoring costs, would have
the key advantage of tying measurement density to user usage,
where the system would generate the most dense measurement val-
ues and accurate sensing results in areas heavily frequented by
users. Sensing results would be reported in real-time to a moni-
toring agency, which would process it to identify registered trans-
mitters and locate usage anomalies.

Viability of Smartphone-based Spectrum Monitors. Deploy-
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Figure 1: Commodity spectrum monitoring using collective
measurements on low-cost commodity devices.

ing a highly accurate commodity spectrum monitoring system is
challenging. Low-cost spectrum sensors have limited sensitivity
and bandwidth compared with specialized hardware [31]. User
contributed data also suffers from unpredictable mobility and hu-
man error. These sources of noise and variance can be largely ad-
dressed by taking more samples. But doing so incurs additional
costs in user participation (and possible incentive costs) and energy
dissipation on user devices.

The goal of our work is to validate the viability of a future mea-
surement platform based on smartphones and commodity sensors.
We believe that as demand for wireless capacity continues to grow,
next generation smartphones will come embedded with flexible ra-
dios that expose more low level RF data to the OS. To validate this
approach to spectrum monitoring in the absence of prebuilt devices,
we are using a prototype that combines commodity smartphones
and an external RTL dongle interconnected via USB, monitoring a
wide spectrum range of 52-2200MHz. Our platform, while imprac-
tical for today’s cellular users, provides a lower-bound for analysis
on the possible efficacy of spectrum monitoring using cognitive ra-
dio embedded smartphones. We hope this study and follow-ups can
provide early validation for the viability of the smartphone-based
spectrum monitoring platform. Finally, we also note that US gov-
ernment agencies have included ultra low-cost sensors like RTL
dongles as potential candidates for spectrum monitoring [42].

We implement a “proof-of-concept” sensing platform by con-
necting $20 USB RTL dongles to today’s smartphones (Figure 1),
and collect 17 hours of outdoor spectrum measurements on TV
bands from 48 volunteers. We identify in our monitoring data
multiple sources of error, including RTL hardware noise, dynamic
context, user mobility bias, and RF interference. Untreated, these
artifacts lead to large errors (200 meters) in transmitter location
estimation. To address this, we design multiple mechanisms to ef-
fectively remove artifacts of commodity measurements, producing
accurate estimates of transmitter location (<40 meters error) from
a few minutes of user measurements. Furthermore, we perform de-
tailed energy analysis on our measurement platform, and identify
ways to significantly lower energy dissipation on user devices at
little or no cost on localization accuracy.

Most prior work on spectrum measurements focus on spectrum
occupancy and not transmitter location, and rely on specialized,
high-cost hardware [16, 24, 46, 47, 39]. We show that despite a
variety of error sources and hardware limitations, low-cost com-
modity devices can be an effective approach to baseline spectrum
monitoring. We believe our findings can generalize to systems us-
ing other low-cost sensor platforms (e.g. [33, 48]), which might
experience different levels of hardware noise, but face the same
challenges from user context, mobility bias, RF interference, and
energy overhead.

2. BASIC DESIGN
We seek to study the basic viability of spectrum monitoring using

collective user measurements with low-cost commodity devices.
In this section, we set the context for our work by describing our
“proof-of-concept” measurement hardware, and our basic monitor-
ing system.

2.1 Measurement Hardware
While today’s smartphones have multiple built-in radios, e.g.

WiFi, Bluetooth, cellular, they only cover a very limited range of
radio spectrum, e.g. 2.4GHz. To cover other frequencies, especially
TV whitespaces (54-698MHz), our current platform leverages an
external spectrum sensor.

Smartphone + $20 RTL. Our proof-of-concept platform con-
sists of a commodity smartphone and an inexpensive Realtek don-
gle (RTL for brevity) [3] that connects to the smartphone via a USB
cable. The RTL behaves as a spectrum sensor and collects raw
spectrum usage signals; while the smartphone collects GPS data
and acts as a “data processor”, translating the raw data into a data
stream that is more compact and meaningful for the monitoring
system. We pick RTL because of its low cost (<$20), portability
(<2oz weight), wide availability, and superior frequency coverage
— it operates in 52–2200MHz with a sample rate up to 2.4MHz,
and transfers raw I/Q samples to the connected host on the fly.

We built an Android app to run real-time spectrum measure-
ments, by specifying frequency range, sampling rate and time du-
ration. During a spectrum measurement, the smartphone obtains
the I/Q samples from the RTL every 1ms and calculates the cor-
responding RSS value. To account for the impact of channel fad-
ing, the smartphone averages over all the RSS values gathered in
a measurement cycle. For our basic design, we configure the mea-
surement cycle to 1 second, compute 1000 RSS values (one per
1ms), and record the average. Thus the app generates a (time, GPS,
RSS) tuple per second, amounting to 192KB of data per hour. In
this case, the RTL is always on during a spectrum measurement,
mapping to a 100% duty cycle.

Later we show that our design allows the RTL on time to be
significantly reduced without affecting the monitoring result. For
example, we can configure each cycle to be 10 seconds but within
each cycle the RTL only performs measurements for the first 1 sec-
ond, mapping to a 10% duty cycle. This generates 1000 RSS values
which are then averaged to produce a (time, GPS, RSS) tuple once
every 10 seconds.

Measurement Precision. Prior work [31] has shown that RTLs
face two key disadvantages compared with conventional spectrum
analyzers. First, RTLs have limited sensitivity and range, fail-
ing to detect weak signals. Our experiments on TV bands show
that its sensing range is roughly 150m when detecting transmitters
with 20dBm EIRP (100mW power) and 1500m for those with 1W
power. Second, RTLs have a limited sensing bandwidth of 2.4MHz
compared with USRP’s 20MHz. To monitor a wideband, we can
segment the target band into multiple 2.4MHz sections and allow
RTLs to hop across the sections. Each hop faces a small frequency
switching delay (up to 50ms [31]).

Energy Cost. Each RTL draws power from the smartphone via
the USB connection. Detailed energy measurements [10] show that
the total power draw depends on the specific tuner chip used. Be-
tween the two most popular RTL models, the Rafael Micro R820T
dongle draws up to 1.2Watt while the FC0013 dongle draws about
0.6Watt [10]. These values are on par with the power draw of the
LTE (1.5Watt) and WiFi (0.3Watt) radios on today’s smartphones
when operating in the receiving mode [23, 32]. For our study, we



used the Rafael Micro R820T dongle model. Later in §6 we per-
form detailed analysis on RTL energy consumption, and discuss
methods to minimize the per-user energy cost and the correspond-
ing impact on the monitoring performance.

2.2 Spectrum Monitoring
Leveraging user measurements, we design our spectrum moni-

toring system to not only record the current utilization of each spec-
trum band, but also identify and locate active transmitters. Trans-
mitter localization is a basic component of spectrum monitoring,
and critical to the task of interference management and dynamic
spectrum allocation.

Transmitter Identification. The first step to localizing a trans-
mitter is to identify its signal. For TV whitespaces, the FCC re-
quires that all (high power) devices transmit identifying informa-
tion conforming to a standard, allowing observers to identify the
device and its location [17]. Because the identification standard is
not yet defined, in this paper we consider a simple and available
solution: embedding a unique transmitter identifier (defined by the
FCC) inside data transmissions as cyclostationary features [43].

Cyclostationary features are created when signals across some
sequence of radio frequency segments are repeated, generating an
easy to detect energy peak in the spectral correlation function (SCF)
map. Prior work [43] developed a simple technique to achieve
fine-grained control over positions of these signal peaks, encod-
ing unique transmitter identifiers as cyclostationary features. The
result is visible to any monitoring device that can sense signals on
the transmitter’s frequency, without decoding data.

In our system, the measurement devices can detect each feature
by first capturing the RF signal on the transmitter’s frequency and
applying FFT to compute a normalized, discretized version of the
SCF map, and then locating the feature peak using a correlation-
based detection method [41]. This eliminates noise and random
occurrences of cyclostationary property in the packet data itself.
Later in §4.6, we show that our devices can also effectively iden-
tify registered wideband transmitters whose frequency bandwidth
exceeds RTL’s sensing bandwidth (2.4MHz).

Transmitter Localization Our basic design uses collective mea-
surements from mobile users. While walking, a user uses her smart-
phone and RTL to collect spectrum measurements in the local area
and submits the results in real-time to a monitoring agency, e.g. in
snapshots of a few minutes each. The agency then analyzes these
measurement snapshots to produce a complete view of the spec-
trum usage in a wide area, e.g., the physical and frequency location
of each detected transmitter. As users move (and start or stop their
measurements), the system obtains a dynamic view of spectrum
readings that scales with the number, density, and physical reach of
users in the network. Our design does not require any specialized
movement patterns for users.

Locating Registered Transmitters. When a registered transmitter
embeds a valid ID (as cyclostationary features) in the monitored
frequency, our devices can identify the feature location and extract
its RSS traces. To locate a detected transmitter, we can apply a
RSS-based transmitter localization algorithm on the collected data.

Locating Unregistered Transmitters. In the absence of any regis-
tration ID, the estimated transmitter location can be noisy, because
the RSS can come from one or multiple transmitters. Assuming
only a single transmitter is present, we can estimate its location
based on RSS measurements. We leave the task of isolating and
locating individual unregistered transmitters to future work.

2.3 Incentivizing User Participation
Our design assumes the agency can recruit mobile users at tar-

geted monitoring areas. There are multiple forms of recruitment,
including crowdsourcing and incentivizing in-network users [31].
Here a practical challenge is how to ensure adequate coverage. One
potential solution is to leverage an ecosystem of network providers,
where each provider leverages its own users (and their commodity
mobile devices) to perform spectrum measurements. These service
providers are active spectrum users who seek reliable spectrum us-
age to support/augment their services, and thus are incentivized to
participate in spectrum monitoring and protect their own usage.

Spectrum measurements will come from two distinctive groups
of users. First, passive measurements will be collected from each
provider’s own user population, by energy-efficient background app
running on mobile devices. To incentivize participation, a network
provider can reward participating users with small credits to net-
work charges commensurate with actual measurements performed.
Recent studies [14, 22] have shown that small monetary incentives
will increase user participation in crowdsourcing tasks.

Second, the system can request on-demand measurements from
users of other networks to augment passive data. Here a local net-
work entity will predict the coverage from in-network users and
trigger crowdsourcing requests from other networks’ users in the
target region. Providers pay non-network users for measurement
tasks. All users, regardless of provider, run a crowdsourcing dae-
mon and listens for locally broadcast measurement requests.

3. QUALITY OF USER-CONTRIBUTED
MEASUREMENTS

For spectrum measurements contributed by end-users and low-
cost commodity hardware, there exists obvious doubt on data qual-
ity and the impact on spectrum monitoring. In this work, we take a
data-driven approach to study this concern. In the following, we
first describe our efforts on collecting real world user measure-
ments, then present our analysis on the quality of these measure-
ments, and their impact on the accuracy of transmitter localization.

3.1 Real World Measurements
We recruited 48 volunteers via email announcements in our lo-

cal area. They are between the ages of 20 and 40 and have dif-
ferent body shape and height. Each user was given a Galaxy SIII
smartphone with our measurement app installed and an attached
RTL device. In each experiment, the users walked (as they nor-
mally do) in a large neighborhood of the target transmitter, at least
200m×200m in size. No further instructions were given and the
users had no knowledge of the transmitter location. For our mea-
surements, we configure the RTLs to operate in 100% duty cycle.
Participants used phones provided by us and walked along areas we
specified, thus no personal information was leaked.

There is no active TV whitespace transmitter in our area with
ground truth location information. Thus we set up our own trans-
mitter using a USRP N210 radio, emitting OFDM signals on a
2.4MHz band or a 6MHz band (for wideband experiments). We
place the transmitter roughly 4m above the ground in each exper-
iment. We consider two available TV whitespace bands (569MHz
and 653MHz)1. The majority of our experiments were on 569MHz.
We configure our transmitter to emit at 100mW (20dBm), thus the
signal detection range of a RTL is roughly 150m.

Measurement Environments. We performed extensive mea-
surements at four outdoor environments, representing scenarios where

1We select the TV whitespace bands by querying two different
whitespace databases, Spectrum Bridge [1], and Google Spectrum
Database [2] to identify the available bands in our local area.
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Figure 2: Artifacts of commodity spectrum measurements. (a)-(b) RTL receiver noise varies over time and frequency and is device-
dependent. (c) Dynamic user and environment context leads to sudden changes in RSS measurements.

(a) Sample Scenario A (b) Sample Scenario B

Figure 3: Sample user routes and RSS measurement results. The reported noise floor is in between -30 and -35 dB.

users perform spectrum measurements during daily (walking) ac-
tivities. Each experiment round involved at most 6 randomly se-
lected volunteers.

• Open area – An open lawn area with minimum obstacles beside
our users. Thus, RSS measurements are mostly in line of sight to
the transmitter, except that the user body can block the signal.

• Areas around buildings – A complex area where users walk in
alleys between buildings and parking lots. Both static (build-
ings, parked cars, trees) and mobile obstacles (pedestrians, mov-
ing cars, and bikes) were present during the measurements.

• Downtown sidewalk – A complex area where users walk on side-
walks between outdoor shopping stores with various obstacles
(e.g. buildings, trees, and pedestrians).

• Outdoor plaza – An outdoor food court area plus a pathway to the
outdoor parking lot, where users walk around during busy lunch
hours.

RSS Dataset. Our measurements took place between January
and March 2015 and generated a dataset of more than 17 hours of
measurement data or 360,000+ (time, GPS, RSS) tuples. Among
them, 1 hour of measurement data was collected by setting up two
transmitters, one as a registered user who embeds its registration
ID inside the transmission and another as an unregistered (and in-
terfering) transmitter.

3.2 Data Quality Analysis
Our analysis on the RSS dataset identified a large amount of

noise and inconsistency across measurements. We also identified
four key sources for these artifacts. The first three factors are re-
sponsible for creating inconsistent and noisy RSS values, while the
last factor leads to uncontrolled and biased spatial coverage.

1. RTL Receiver Noise. The low-cost RTL devices are not cali-
brated and have a high receiver noise figure (also reported by other

studies [4]). We found that the noise level is device-dependent,
and varies over time and frequency, making it very hard to model
and predict. To illustrate this, Figure 2(a)(b) plots the measured in-
stantaneous noise power over time for four randomly-chosen RTL
devices at 569MHz, and for one RTL device at three different fre-
quencies (569MHz, 653MHz, 920MHz).

2. Dynamic Context. Unlike war-driving with a vehicle-
mounted antenna, our measurements are carried out by walking
users holding smartphones and RTLs. Changes in user movement
pattern, body posture and local environment translate into random
fluctuations in the data. Figures 2(c) shows an example where a
user’s reported RSS increases abruptly when her body orientation
changes (from blocking the transmitter to unblocking), and later
drops significantly when she walks behind a building.

3. RF Interference. When an interfering transmission is present,
the measured RSS captures the aggregate power of the original sig-
nal and the interfering signal, and thus is very noisy. This is par-
ticularly harmful when unregistered transmitters “hide” behind a
registered transmitter, i.e. using spectrum without registering as an
authorized user. The corresponding RSS data will produce a wrong
location of the registered transmitter.

4. Coverage Bias. Since we do not control user mobility pat-
terns, user routes and measurement locations are uncontrolled and
unpredictable. For example, Figure 3 plots the 3-minute routes
taken by three RTLs for two scenarios, and the measured RSS val-
ues. For both routes, coverage around the transmitter is unbalanced.
Such uncontrolled user routes create sampling bias, which is highly
undesirable for transmitter localization.

3.3 Impact on Spectrum Monitoring
Together, these factors generate a considerable amount of noise

and artifacts in RSS measurements. They are difficult to model
and calibrate, leading to new challenges not found in conventional



W.Centroid W.Centroid P. Gradient Ecolocation
max mean max mean max mean max mean

100% DC w/o int 82.6 43.1 81.7 35.4 197.1 47.8 117.3 41.2
100% DC w/ int 96.3 68.1 101.7 57.4 193.3 113.8 102.1 65.7

10% DC w/o Int 121.7 41.3 103.1 35.7 173.2 48.3 111.7 42.5
10% DC w/ int 136.2 71.2 113.6 67.5 183.4 143.8 121.9 70.1

Table 1: Localization error (in meters) obtained by applying
conventional solutions on our RSS dataset. 100% DC refer-
ences to 100% duty cycle, and w/o int refers to in absence of
external interference.

spectrum monitoring, i.e. via war-driving with high-end spectrum
analyzers [46, 47]. To quantify their impact on transmitter local-
ization, we applied five popular transmitter localization methods to
our data directly. We organize the dataset into 960 snapshots of 5
minutes each, and perform localization on each instance. We pick
5 minutes because it is roughly the time a user takes to walk 300
meters, i.e. twice of the RTL sensing range. Thus, it represents the
duration that a RTL can capture the transmitter’s signal.

We consider five popular localization algorithms: centroid, weighted
centroid [13], weighted centroid with Gaussian prediction [30],
gradient [20], and ecolocation [44]. We also examined other well-
known solutions like trilateration [36] and calibrated propagation
model, and found they perform much worse. Furthermore, we
study the impact of RTL duty cycle. Since our measurements were
taken by RTL being always on, i.e. 100% duty cycle, we emulate
10% duty cycle by subsampling the dataset by a factor of 10.

Table 1 lists the maximum and mean localization errors under
three different conditions. We omit the Centroid result since it is
worse than weighted Centroid. Overall, the maximum localiza-
tion error can easily reach 100–200 meters, which is too coarse
for common monitoring tasks, and clearly cannot meet the FCC
requirement of accuracy within 50 meters [17]. Furthermore, the
accuracy varies significantly across measurement instances, again
confirming the large uncertainty on the data quality. Finally, we see
that the localization error degrades largely under 10% duty cycle.

4. DEALING WITH NOISY DATA
Clearly the existing localization algorithms are unable to han-

dle the noisy RTL measurements. To overcome this problem, we
propose a robust spectrum monitoring system that combines de-

noising, interference removal with fidelity prediction. These com-
ponents allow us to remove the key noise and interference compo-
nents from the RTL measurements, apply an existing transmitter
localization on the cleaned data, and predict the accuracy of the lo-
calization result. As a result, our proposed solution provides three
key benefits:

• Improving localization accuracy – By suppressing the noise and
interference contribution, our solution effectively reduces the lo-
calization error.

• Overcoming uncertainty – By predicting the fidelity of each lo-
calization result, we enable effective decision-making in spectrum
monitoring. The system can act based on fidelity levels to obtain
quality results; precautionary measures may include skipping a
particular measurement snapshot, or sending police devices with
sophisticated hardware to do close-range verification.

• Reducing RTL duty cycle – By aggregating measurements across
space, our solution reduces the amount of data required for accu-
rate localization. This translates into significant reduction of RTL
duty cycle, e.g. from 100% to 10%, with little impact on localiza-
tion.

In the following, we describe the three components in detail.

But to provide context, we start from briefly describing ecoloca-
tion [44], an existing transmitter localization algorithm used in our
design, followed by a quick summary of our key contributions be-
yond ecolocation.

4.1 Background: Ecolocation
Ecolocation [44] is a widely-known algorithm for transmitter lo-

calization. The high-level idea is to capture the abstract relation-
ship between RSS and link distance: the longer the link distance,
the lower the RSS value. Unlike trilateration that represents the
relationship via a propagation model, it applies a probabilistic ap-
proach to count, for each candidate transmitter location, how often
the RSS-distance relationship is satisfied. The candidate location
with the highest satisfaction rate is the final transmitter location.

Specifically, given a candidate transmitter location l, the algo-
rithm calculates the distance between l and each measurement loca-
tion i, referred to as Dl,i. Consider a pair of measurement locations
i and j (i 6= j). The pair satisfies the RSS-distance relationship if
one of the three conditions is met: (RSSi > RSSj) & (Dl,i <

Dl,j), (RSSi < RSSj) & (Dl,i > Dl,j), as well as (RSSi =
RSSj) & (Dl,i = Dl,j). The satisfaction rate F (l) of the trans-
mitter location l is the ratio between the number of measurement
location pairs that meet one of the three conditions and the to-
tal number of distinct pairs. And the final transmitter location is
TX = argmaxl F (l).

As we will show below, our design leverages ecolocation as the
underlying transmitter localization algorithm. We pick ecolocation
over other candidates because it works well with small amounts of
measurements and offers certain degree of robustness against noise.

4.2 Overview of Our Contributions
We make four new contributions beyond ecolocation.

• Denoising & Localization (§4.3) – To reduce the impact of noise,
we partition the RTL data into context-based segments, apply
ecolocation in each segment and aggregate the satisfaction rate
across segments. Since the noise profile is much more consistent
within each segment, this leads to a much more reliable estimate
of the satisfaction rate, thus a more accurate localization result.

• Predicting localization fidelity (§4.4) – By comparing the mea-
sured satisfaction rate to the ideal value, we predict the fidelity of
the localization result, and use it to aggregate localization results
over time. This effectively reduces the uncertainty of the moni-
toring result.

• Removing external interference (§4.5) – By detecting and ex-
tracting the cyclostationary features of each registered transmitter,
we can separate the RSS contribution of the registered transmitter
and the interference, thus localizing them individually following
the above two steps.

• Wideband monitoring (§4.6) – By scanning through multiple
frequency ranges and combining probabilistic localization met-
rics across frequency (weighted by fidelity), we achieve accurate
identification and location of wideband transmitters.

4.3 De-noising & Localization
After collecting a measurement snapshot (i.e., x minutes of RSS

measurements), we first partition the data into multiple segments
(to isolate the noise), apply ecolocation on each segment S to ob-
tain a per-segment satisfaction map {FS(l)}, and then aggregate
maps of multiple segments (and RTLs) into one ultimate satisfac-
tion map F (l) = 1

|S|

∑
S
FS(l). We then determine the transmit-

ter’s location using {F (l)}.
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Figure 4: The satisfaction heatmaps used for transmitter localization and confidence computation.

10% duty cycle (DC) 100% DC w/ local avg 100% DC w/o avg

max mean max mean max mean

52.6 18.4 44.7 17.3 71.3 21.4

Table 2: Localization error (in meters) for 10% and 100% RTL
duty cycle (DC).

Context based Data Segmentation. As a user walks around, the
RSS value should vary smoothly over time unless the user moves
behind a large obstacle or suddenly changes her body orientation
(e.g., from facing the transmitter to facing backwards and blocking

the signal). When these happen, the RSS value will experience a
sudden change. With these issues in mind, we segment the data
whenever two consecutive RSS observations differ by more than
8dB. We choose this threshold because our benchmark measure-
ments show that human body blockage introduces at least 8dB loss
in RSS (at least for the TV band). This value could be further op-
timized, which we leave to future work. Finally, we apply ecolo-
cation on each segment S, producing a corresponding satisfaction
map FS(l) per segment.

Reducing RTL duty cycle. By effectively combining data
across space, we can reduce the amount of data required for ac-
curate localization. Specifically, we find that building a good es-
timate of the satisfaction rate map {FS(l)} does not require RTL
measurements at 100% duty cycle. This is because when comput-
ing the RSS and distance relationship for each location pair (i and
j), i and j need to be sufficiently separated to minimize noise im-
pact (as discussed in §4.1). Thus having fine-grained RSS data over
time is only helpful when we take local average to reduce noise im-
pact, e.g. averaging 10 seconds of measurements into 1 RSS value.
But since each original RSS value is already an average over one
second, the additional temporal average over a longer time window
has limited benefits. For example, Table 2 lists the localization per-
formance for 10% and 100% duty cycle values where 10% duty
cycle refers to measuring every 1 second out of 10 seconds, while
100% refers to measuring in each of the 10 seconds. We see that

10% duty cycle performs similarly to 100% duty cycle with local
averaging. As we will show in §6, such large reduction in the RTL
duty cycle translates into significant reduction in energy consump-
tion.

4.4 Predicting Localization Fidelity
After getting a localization result (from the above step), we wish

to predict the fidelity (or the level of accuracy) of the result. For this
we leverage the spatial distribution of the satisfaction rate {F (l)}.

Consider an ideal scenario where the RTL measurements are
free of any noise, interference and dynamic context, i.e. the RSS
value follows an ideal propagation model, and the measurements
are evenly distributed around the target transmitter, e.g. a dense
grid. The resulting satisfaction rate over space, hereby referred to
the satisfaction heatmap, is shown in Figure 4(a). Here the target
transmitter is located in the center (0,0), and F (0, 0) = 1, and we
assume a log-normal propagation model (for outdoor scenarios).

For comparison, we also plot in Figure 4(b) and (e) two (mea-
sured) satisfaction heatmaps built from two real RTL measurement
sets on the same transmitter. For each, we center the heatmap at the
estimated location. Clearly, we can observe a distinct difference
between the two measured heatmaps, and their difference from the
ideal heatmap (which is the same for both RTL measurements).
These differences are caused by both the noise in the RTL mea-
surements, but also the difference in user route (or coverage bias).
To further illustrate these, we also plot in Figure 4(c) & (f) two
route heatmaps, produced from using the actual RTL measurement
locations but replacing each measured RSS with a model-generated
value. By comparing these heatmaps, we can see that the difference
between the ideal and route heatmaps is mostly on the heatmap
structure, capturing the impact of user route (coverage bias). The
difference between the route and measured heatmaps is the satis-
faction value, reflecting the impact of measurement noise.

Motivated by these observations, we compute the location fi-
delity as the normalized cross-correlation between the ideal and

measured heatmaps: λ = 1
n
Σx,y

(f(x,y)−f̄)(g(x,y)−ḡ)
σfσg

,where f(x, y)

and g(x, y) are the values of point (x, y) in the ideal and measured
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(c) Strong Interference

Figure 5: Raw received and estimated signal strength without and with interference.

heatmaps, n is the heatmap size, f̄ is the average of f and σf is
standard deviation of f . Figure 4(d) plots λ for both snapshots,
0.7 for snapshot A (13.3m location error) and 0.52 for snapshot B
(51.7m location error).

Fidelity-Guided Temporal Combining. The above discussion
shows that the monitoring performance depends on the coverage
of user routes which varies over time. Thus we propose a tem-
poral combining mechanism to further improve localization. For
example, we can partition a 5-minute monitoring snapshot into
3 overlapping 3-minute slots, apply the above described method
to estimate the transmitter location and its fidelity value, (li, λi),
i = 1, 2, 3. We estimate the location as l1λ1+l2λ2+l3λ3

λ1+λ2+λ3
and the

new fidelity as
λ2

1
+λ2

2
+λ2

3

λ1+λ2+λ3
.

4.5 Removing Interference
Under interference, our RTL devices would observe a single trans-

mission formed by the union of the registered and unregistered
transmissions. The resulting RSS captures the sum of signal and
interference power. Localization based on such data is obviously
unreliable.

Feature based Interference Isolation. At each measurement lo-
cation, if the amount of interference is moderate, our RTL devices
can observe a valid cyclostationary feature (related to a registration
ID). From the cyclostationary feature’s peak strength, we can esti-
mate the RSS of the registered transmission that actually carries the
registration ID. This allows us to separate registered transmissions
from those unregistered ones, i.e. the interference, thus locating the
registered transmitter reliably in the presence of interference.

Specifically, the strength of the cyclostationary feature that car-
ries the valid registration ID, is proportional to SINR

1+SINR
[43]. At

each measurement location, we estimate the RSS of the registered
transmitter S∗ from its detected feature strength s and the raw RSS
S0: S∗ = s

ρ
· S0, where ρ is the maximum detectable feature

strength that is hardware dependent; ρ=0.99 for the RTL radios in
our experiments. Our approach can detect features using very few
raw I/Q samples, thus reducing RTL duty cycle has no impact here.

As an example, Figure 5 shows the measurement results at 40 lo-
cations, comparing S0 (raw RSS) and S∗ (feature estimated RSS)
under three scenarios: no interference, weak interference, and strong
interference. The interfering transmitter is placed 90m away from
the registered transmitter, whose power level is either the same as
(weak interference) or 30dB higher than the target (strong interfer-
ence).

In the absence of interference, S∗ is almost identical to S0. As
the interference strength elevates, S0 grows higher than S∗, and
the difference increases gracefully with the interference strength.
At locations where interference is strong, we are unable to extract
features and mark S∗ as the noise level -40dB. Overall, as long as

we can detect the feature, S∗ is a reasonable replacement of S0, the
raw RSS value, which we use to locate the registered transmitter.
Our results in §5 also confirm that even under strong interference,
our method can still locate the registered transmitter reliably.

Finally, we can estimate the total interference RSS at each loca-
tion as S0 − S∗ and use it to approximate the interferer location
assuming only one interferer is present.

4.6 Wideband Monitoring
We now extend our design to wideband monitoring. Consider the

task of monitoring a predefined frequency band, e.g. TV whites-
pace channels (6MHz each). We can split the band into 3 sections
of 2MHz each; let each RTL hop across the sections sequentially
and aggregate the results. This is feasible and efficient since RTLs
have a small frequency switching delay (<50ms). An alternative
is to divide the sections among users, but this requires higher user
density. For simplicity, we focus on the frequency hopping method.

For robustness, wideband transmitters embed cyclostationary fea-
tures over the entire band (6MHz). Thus to identify registered
wideband transmitters, RTLs need to detect these wideband fea-
tures by “stitching” multiple adjacent frequency observations to-
gether. Specifically, after monitoring each 2MHz section and build
the corresponding SCF map, each RTL concatenates these maps
in frequency to build a wideband SCF map for wideband feature
detection. This requires the transmitter to transmit the same wide-
band feature for at least a time period long enough to complete a
single scan. The stitching happens at each individual RTL and
thus does not require tight user synchronization. We have validated
this design using real measurements.

Fidelity Guided Frequency Combining. To identify registered
wideband transmitters, our monitoring system needs to capture raw
signals (and cyclostationary features) from multiple frequency sec-
tions. But to localize a detected transmitter, do we need to use
data from all the frequency sections or just one? Ideally, one sec-
tion should be enough. In practice, frequency selective fading or
non-uniform interference profiles lead to performance fluctuations
across frequency section and time. Thus we propose to combine lo-
calization results (in terms of the satisfaction heatmap as discussed
in §4.3) across these frequency sections, weighted by their fea-
ture strength. This aggregation introduces frequency diversity into
heatmap construction, further improving its reliability. Later our
results show that it significantly improves localization accuracy.

4.7 Computation Complexity
For our localization design, the bulk of the computation lies in

the satisfaction heatmap computation. Ideally we need to com-
pute a fine-grained heatmap at locations near the target transmitter
(which is unknown). For better efficiency, we first center the search
area at the location reporting the highest RSS value among all the
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(f) Frequency Combining

Figure 6: The localization accuracy of our proposed algorithm. (a) Quantiles (min, 25%, 50%, 75%, max) of the localization error
across 960 snapshots. (b)-(c) Impact of measurement count and average distance from the transmitter on localization accuracy. (d)
Our fidelity metric offers a good prediction of the accuracy level. (e) The effectiveness of our fidelity guided temporal combining. (f)
The effectiveness of our fidelity guided frequency combining.

RTLs involved in the current snapshot. We then apply a multi-
tiered search algorithm, first using a coarse granularity (1 per 10m)
to identify regions of high satisfaction rates, followed by a fine-
grained sampling (1 per 2m) at these regions. With this process,
we limit the processing time per 5-min snapshot to 1 minute, using
an non-optimized MATLAB code running on a standard MacBook
Pro (2.2GHz CPU, 8GRAM). This can be further reduced using a
good native C++ implementation running on a faster machine.

5. EVALUATION: LOCALIZATION
ACCURACY

In this section, we evaluate the proposed spectrum monitoring
system, focusing on the localization accuracy. We use our RTL
RSS dataset described in §3, and 17 hours of measurements (16
hours without interference, and 1 hour with interference). We or-
ganize the dataset into 960 snapshots of 5 minutes each, performing
localization on each snapshot. By default, we assume RTLs operate
at 10% duty cycle, i.e. scan for 1s and then stay idle for 9s, which
we emulate by subsampling our data by a factor of 10.

5.1 Accuracy in Absence of Interference
We start from the narrow band (2.4MHz) scenarios in absense of

external interference. Figure 6(a) plots the quantile distribution of
the localization error (min, 25%-tile, median, 75%-tile, max). Here
we compare our proposed solution, our solution without temporal
combining, the original ecolocation, and the best of the conven-
tional localization methods, i.e. weighted centroid with Gaussian
Prediction (as shown by Table 1). Compared to the two conven-
tional localization methods, our proposed solution significantly re-
duces the localization error. The maximum error is bounded by
53m while the other two reach 112m and 103m (for 10% RTL duty
cycle). When we increase RTL duty cycle to 100%, ours reduces
to 44.8m while the best conventional method provides 82m.

Figure 6(a) also illustrates the breakdown of performance im-
provement by two components: denoising via segmentation and

fidelity guided temporal combining. The difference between the
original ecolocation and our proposed solution without temporal
combining demonstrates the effectiveness of segmentation. The
difference between our proposed solution w/ and w/o temporal com-
bining shows the contribution of temporal combining. We can see
that both components contribute to the accuracy improvement.

Performance Variance and Fidelity Prediction. We are also
interested in understanding why the localization accuracy varies
considerably across snapshots. For our solution, it varies between
5m to 53m, by a factor of 10. First we look at the number of mea-
surements in the snapshot. Figure 6(b) shows that a snapshot with
a smaller number of measurements (mostly because the number of
RTLs is small) is likely to produce less accurate result, but the over-
all correlation is weak. A deeper analysis on the traces shows that
the average distance to the transmitter is a more important factor
(Figure 6(c)). As the user gets further from the transmitter, the
impact of noise and sampling bias elevates, which degrades the lo-
calization performance.

We handle such variance by predicting the result fidelity. Fig-
ure 6(d) shows the predicted fidelity as a function of the localization
error. We observe a good pattern between the two – higher confi-
dence values (> 0.7) indicate more accurate localization (< 30m).

Effectiveness of Fidelity Guided Combining. We first consider
temporal combining for narrowband monitoring. Figure 6(e) plots
the quantile distribution of localization errors of the following four
configurations for each 5-minute snapshot: fidelity (our proposed
solution), (2) averaging the results of the 3 snapshots, (3) dividing
the data into three 3-minute snapshots and selecting the localization
result with the highest fidelity, and (4) no temporal combining. We
see that weighted combining performs the best and significantly re-
duces the error tail. Compared with no combining, it reduces the
maximum localization error from 75m to 52m. This result demon-
strates the effectiveness of the fidelity guided temporal combining.

Next we study the proposed fidelity guided frequency combin-
ing used in wideband monitoring. For this we consider the scenario
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(d) Localization Result

Figure 7: Locating transmitters when both registered and unregistered (interfering) users are present. (a)-(c) The RTL interference
measurement results under no interference, weak and strong interference. (d) The localization error when using feature-estimated
RSS to locate the registered transmitter.

of RTLs monitoring a 6MHz TV channel (566-572MHz) by hop-
ping across 3 sections of 2MHz. To create non-uniformity among
the sections2, we configure the transmitter to emit 4MHz signals
(567-571MHz). Thus the SNRs of the first and last sections are
more than 3dB lower than the second section. Figure 6(f) plots the
localization error over time (snapshots), using three approaches:
weighted combining, averaging, random (in terms of the best and
worst of the three sections). Our proposed weighted combining al-
ways outperforms averaging, and performs as good as or even bet-
ter than picking the best localization result among all the sections.

5.2 Robustness to Interference
We now consider scenarios where both unregistered and regis-

tered transmitters are present. We setup a (registered) transmitter
to emit OFDM signals with embedded features. After a few min-
utes, we turned on an interferer that is about 90m away. Users
walked by the area (without the knowledge of the two transmitters)
recording raw and feature-estimated signal strength. We repeated
this experiment multiple times using different power levels at the
interfering transmitter.

Figures 7 show 3-minute snapshots of two user routes in three
scenarios: no interference, weak interference (the interferer has the
same power level as the registered transmitter), and strong interfer-
ence (the interferer’s power is 30dB higher). We see that when there
is no interference, the feature is always extracted (Figure 7(a)).
Next, Figure 7(b) shows that under weak interference, at locations
near the interferer the RTLs detect the difference between the raw
RSS and the feature estimated RSS and mark the locations as “in-
terference”. Finally, as the interferer becomes stronger, the number
of “interference” locations increases and they are located closer to
the registered user (Figure 7(c)).

Finally, we use the feature-estimated signal strength to locate
the registered transmitter. Figures 7(d) shows the localization re-
sults under weak and strong interference using each 5-min snap-
shot. The error tail increases by 5m when the interference level
increases. This is because as the interferer becomes stronger, the
number of locations where a feature can be detected reduces, thus
providing less input to the localization algorithm. But overall, de-
spite strong interference, our system can locate the registered user
at an accuracy similar to that of the scenario without interference.

5.3 End User vs. Vehicle-based Monitoring
Prior works [46, 47] have proposed to use high-end measurement

devices, e.g. spectrum analyzers ($3,500-$12,000), placed on top
of selected city buses, to perform spectrum measurements. As the
buses travel around, this approach enables detection and localiza-
tion of high-power (e.g. 3.8W), static, and always-on TV whites-

2At this 6MHz TV band, the channel is frequency flat so that three
sections have identical channel characteristics.

3 RTLs
Walking
per 5 min

1 RF Explorer
Walking
per 5 min

1 RF Explorer
Driving
10mph

1 RF Explorer
Driving
20mph

25-28 50-120 29-77 42-189

Table 3: Comparing the localization error (in meters) of our
RTL-based solution to those using high-end devices.

pace transmitters. But it faces great challenges when detecting and
localizing low-power (e.g. 100mw) transmitters with intermittent
or dynamic transmissions. Being low-power and dynamic, these
transmitters are often “out of sight” of the buses or vehicles (also
shown by [47]). Yet they can be covered by nearby walking users
within a few minutes.

With this in mind, we compare our RTL based solution to two
alternatives using a high-end measurement device. The first is a
user walking near the transmitter while holding the high end de-
vice. For a fair comparison, we implemented this during our RTL
measurements by a randomly-chosen user holding both a RTL and
the high-end device to perform measurements. The second is a ve-
hicle with the same high-end device driving by the transmitter. In
this case, the transmitter is 90m away from the road. As the vehicle
drives by the transmitter, it can obtain measurements over a short
period of time. This approach is also used by prior work [47] to
detect and localize low-power transmitters, e.g. 100mW. For the
high-end device we chose the RF explorer because recent work [7]
has shown that it has comparable performance to a professional
spectrum analyzer (i.e., Agilent N9344C), where the discrepancy
in signal estimation in TV spectrum band is bounded by 2.8dB.
The antenna attached to the RF explorer has the same gain factor
(0dB) as that used by [47].

Table 3 lists the localization accuracy (in meters) of our RTL-
based solution (with three users) and the RF-explorer based solu-
tions (with 1 user/vehicle). We see that our solution, by provid-
ing more spatial coverage around the transmitter, outperforms the
single user RF-explorer approach. The higher error in the vehicle-
based approach comes from the fact that the vehicle spends only a
short amount of time near the transmitter, which significantly limits
the spatial coverage of the measurements. This observation aligns
with those of the prior work [47].

6. EVALUATION: ACCURACY AND COST
TRADEOFFS

Since an active RTL draws power from the smartphone, a key
concern on our solution is whether the energy consumption can
discourage users from participating. One potential solution is to
reduce the RTL duty cycle to minimize energy consumption, but
will this largely degrades the localization accuracy? In this section,
we answer this question by performing a detailed study of RTL
energy consumption, and exploring the tradeoff between accuracy,
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Figure 8: RTL power draw for monitoring 2.4MHz and 6MHz spectrum.
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energy consumption and user participation.

6.1 RTL Energy Analysis
Using the Monsoon Power Monitor [5], we measure the smart-

phone’s power consumption every 0.2ms. To compute the power
consumption contributed by the attached RTL, we disable all back-
ground activities of the smartphone, turn off the smartphone screen,
and measure the power draw when the RTL is unattached to the
phone. We use this as a baseline and subtract it from the subse-
quent power measurements with the RTL attached. Furthermore,
to study the impact of RTL duty cycle, we fix a 10s period and vary
the RTL active scan duration (per 2.4MHz) between 0.1s and 10s,
corresponding to 1% duty cycle and 100% duty cycle. We pick 10s
because a longer cycle, e.g. 15s, will lead to insufficient monitoring
data in each data segment at 1% duty cycle.

Power Draw of Narrowband (2.4MHz) Monitoring. Fig-
ure 8(a) plots the sample power draw over time using 0.1s and 1s
RTL scan times, when monitoring a 2.4MHz band. We observe an
extra “initialization” phase, which lasts for about 1s, and a 100ms
“tail” phase. These do not contribute to the RSS measurements but
consume power. At 100% duty cycle, these do not exist since the
RTL is always on. Aside from the initialization and tail phases,
the RTL has two states, idle and active. The idle state draws about
450mW power while the active state draws about 1.5W. These two
numbers are slightly higher than those reported by [10], likely due
to the difference in RTL manufacturers (although the devices use
the same tuner type).

Figure 9 plots the total RTL energy consumption (J) over each
10s for different choices of RTL duty cycle. 100% duty cycle con-
sumes 16.1J per 10s, but 10% duty cycle only consumes 6.1J, map-
ping to 62% of energy savings. Further reduction of duty cycles
from 10% to 5% and 1% offers an additional energy saving of 13%
and 19.7%, respectively. The energy reduction is not exactly pro-
portional to the duty cycle reduction, because of the initialization
phase that lasts 1s, and the fact that the RTL idle state also draws
power. We believe that these overheads can be further optimized to
reduce RTL energy consumption. Finally, our RTL devices use the
Rafael R820T dongle which consumes 2x of power than another
FC0013 model. Thus switching to the FC0013 model can poten-
tially lead to more energy savings. We leave these to future works.

Power Draw of Wideband (6MHz) Monitoring. To monitor a
TV band (of 6MHz), the RTL needs to hop across three bands of
2MHz each. Figure 8(b) plots the instantaneous power draw over
time. We observe the same “initialization” phase, and the frequency
switching is fast (<50ms). Thus the wideband monitoring just in-
creases the RTL active period by a factor of 3. However, in terms
of the total energy consumption (per 10s), Figure 9 shows that the
6MHz monitoring leads to less than 3x energy increase for duty
cycles 5% - 10%. This happens because the idle state lasts much
longer than the active state for these duty cycles and has more im-

pact on the final energy.

Smartphone Battery Life. Having studied the RTL power con-
sumption in detail, we now examine the amount of smartphone
battery life when a user participates in our commodity monitor-
ing. For this we need to consider both RTL and GPS energy con-
sumption. For fairness, we do not duty cycle the GPS to match
our RTL duty cycle. For the smartphones used in our study (and
most smartphone models), GPS, when enabled, reports one read-
ing every 1s [29]. Since constant location queries (via GPS) are
becoming more commonplace (e.g., Pokemon Go), we can save
energy by reusing cached GPS values. Finally, the energy cost to
transmit data to the monitoring agency is negligible. For the 10%
duty cycle, the app needs to transmit only 19KB of data per hour.
This is implemented as a background activity and runs when other
background activities run on the phone.

Figure 10 plots the battery life comparisons among different choices
of duty cycle, for both narrowband (2.4MHz) and wideband (6MHz)
monitoring. We see that at 10% duty cycle (1s scan time per 10s),
the 2.4MHz and 6MHz monitoring can last about 7 hours and 5.8
hours, respectively. Further reduction of RTL duty cycle has marginal
improvement because the GPS component still draws a consider-
able amount of power (423mW by measurements).

RTL vs. WiFi. A recent study has shown that WiFi sensing can
be used to localize WiFi APs [50]. As a reference, we also measure
the power draw of the WiFi scan and the corresponding battery life
if we use it to perform sensing. For the Samsung Galaxy SIII phone
(Android version 4.4.2) the WiFi scanning period is 3.5s per 10s.
Our measurement shows that such WiFi scan consumes 1.4J energy
over each 10s. With GPS on, the battery life is 10.8 hours, which
is 3.8 hours longer than our RTL at 10% duty cycle.

Potential Energy Reduction. There are several potential di-
rections to further reduce energy consumption, which we leave to
future work. The first is to use more energy-efficient RTL hard-
ware. For example, the FC0013 model offers more than 50% en-
ergy savings compared with our current RTL hardware [10]. Us-
ing this hardware model, we can potentially extend the smartphone
battery life from 7 hours to 10.2 hours at 10% duty cycle. This
closely matches that of the WiFi scan. Second, we can modify the
default duty cycle of GPS to match that of the RTL radio. At 10%
RTL duty cycle, this modification also increases the battery life
to nearly 10 hours using our current RTL hardware, and 20 hours
when we switch to the more energy-efficient hardware. Third, we
can leverage user mobility context to schedule RTL measurements.
For example, only when a user starts walking, which can be de-
tected by the smartphone’s accelerometer, we turn on the GPS and
RTL to perform spectrum measurements.

6.2 Accuracy vs. Energy Consumption
While reducing the duty cycle lowers the energy consumption,

it can also affect the localization accuracy. Figure 11 plots the lo-
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Figure 12: Localization accuracy with
different user counts.

calization error for different RTL duty cycles. For both 2.4MHz
and 6MHz monitoring, reducing RTL duty cycle does increase the
localization error, especially the error tail. For example, the maxi-
mum error of 1% duty cycle is about 25m higher than that of 100%
duty cycle. On the other hand, the localization performance of 10%
duty cycle is on par with that of 100% duty cycle. By comparing
the tradeoff between accuracy and energy cost, we find that 5-10%
duty cycle is a sweet-spot . In this case, a participating user can
expect 5.5-7 hours of battery life, while the monitoring system can
bound the localization error by 60m.

6.3 Accuracy vs. User Participation
Finally, we study the tradeoff between user participation and lo-

calization accuracy. Figure 12 plots the quantile distribution of the
localization error when each 5-min snapshot is gathered by 1, 2, 3,
and 6 users. We see that to bound the localization error by 60m,
our system does require more than 2 users to perform RTL mea-
surements, i.e. they need to move and can capture the transmitter’s
signal. With one user, the localization error can reach 100m. On
the other hand, our system does not require heavy user participa-
tion. Having three users actively walking near the transmitter can
already achieve reasonable localization accuracy.

7. RELATED WORK

Spectrum Sensing & Measurements. Existing studies develop
spectrum sensing techniques on narrowband [8, 34] and wideband
signals [21, 45, 39], and improve robustness and scale using com-
pressive sensing (e.g., [26]) and collaborative sensing (e.g., [16]).
There are also multiple spectrum measurement platforms [16, 24,
46, 47] and some of them are used to refine TV propagation mod-
els [11, 46, 47]. Yet they all require specialized and costly spectrum
analyzers (>$3500). Our work differs by using low-cost commod-
ity radios (<$20) and collective user measurements.

Recent works implement low-cost “spectrum analyzers” using
RTL and smartphone [10, 31], RTL and Raspberry Pi [33] or smart-
phone (WiFi) and frequency translator [48]. They also report the re-
ceiver noise caused by the low-cost radio. Another recent work [10]
examines the energy consumption of RTLs when attached to smart-
phones. Our work differs by designing robust algorithms to deal
with the noisy measurement data, sampling bias and RF interfer-
ence, and by examining in detail the tradeoff between localization
accuracy and energy and user cost.

Spectrum Misuse Detection. Existing studies examined spec-
trum misuse detection where secondary users interfere with an ac-
tive primary user. They consider transmission characteristics such
as the RSS distribution over space [25, 40], RSS variation [12] and
physical channel features [9]. These studies either require dense
sensor deployments or the availability of a sensor near each legit-
imate transmitter, infeasible for large-scale spectrum monitoring.
These works also use data generated by propagation models. In

contrast, our work uses collective measurements by low-cost RTLs
to achieve real-time spectrum monitoring and transmitter location,
and our evaluation is based on measurements from real-life scenar-
ios.

Crowdsourcing Measurements. Recent efforts have leveraged
crowdsourcing to collect large-scale wireless measurements, using
them to characterize signal propagation and user mobility [15, 49],
to understand network performance and coverage [19, 37, 38], and
to improve indoor localization accuracy [35, 27]. Our work adopts
a similar crowdsourcing approach but focuses on achieving real-
time spectrum monitoring using low-cost commodity radios.

8. CONCLUSION AND FUTURE WORK
We propose real-time spectrum monitoring measurements using

low-cost commodity devices where measurements scale naturally
with the number, density and physical reach of mobile users in the
network. We use a proof-of-concept platform, i.e. smartphone +
RTL dongle, to perform empirical validation of the platform. We
show that robust data analysis can help commodity measurements
overcome a variety of error sources and produce meaningful re-
sults.

Moving forward, we plan to perform experiments and take a
data-driven approach to multiple issues. First, we plan to expand
our tests by locating and verifying existing TV whitespace trans-
mitters beyond current measurements. This requires ground truth
data on transmitter locations, which we hope to collect from indus-
try partners. Second, we plan to expand our energy analysis using
other RTL models, and optimize the measurement app to reduce
energy consumption. Third, we will expand our work to account
for false or incorrect data measurements from failures or malicious
attackers, and develop mechanisms to identify and remove such
anomalous reports.
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