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The proxemics of social interactions (e.g., body distance, relative orientation) in�uences many aspects of our everyday life:
from patients’ reactions to interaction with physicians, successes in job interviews, to e�ective teamwork. Traditionally,
interaction proxemics has been studied via questionnaires and participant observations, imposing high burden on users, low
scalability and precision, and often biases.

In this paper we present Protractor, a novel wearable technology for measuring interaction proxemics as part of non-verbal
behavior cues with� ne granularity. Protractor employs near-infrared light to monitor both the distance and relative body
orientation of interacting users. We leverage the characteristics of near-infrared light (i.e., line-of-sight propagation) to
accurately and reliably identify interactions; a pair of collocated photodiodes aid the inference of relative interaction angle
and distance. We achieve robustness against temporary blockage of the light channel (e.g., by the user’s hand or clothes) by
designing sensor fusion algorithms that exploit inertial sensors to obviate the absence of light tracking results.

We fabricated Protractor tags and conducted real-world experiments. Results show its accuracy in tracking body distances
and relative angles. The framework achieves less than 6� error 95% of the time for measuring relative body orientation
and 2.3-cm – 4.9-cm mean error in estimating interaction distance. We deployed Protractor tags to track user’s non-verbal
behaviors when conducting collaborative group tasks. Results with 64 participants show that distance and angle data from
Protractor tags can help assess individual’s task role with 84.9% accuracy, and identify task timeline with 93.2% accuracy.
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Fig. 1. Example of using Protractor to track team interaction when conducting a creative task (the Marshmallow challenge).
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1 INTRODUCTION
Face-to-face social interactions play a signi�cant role in di�erent contexts. In the workplace, serendipitous
interactions between employees have been demonstrated to be key in team coordination, cohesiveness, and
productivity [24, 60, 68]. Architects have studied how to increase unplanned interactions by changing the layout
and design of physical spaces [22, 38, 69, 106, 113].

Traditional sociology has placed high importance in observing the non-verbal aspects of social interactions such
as interaction proxemics (e.g., interaction distance and relative body orientation). Non-verbal cues on interaction
proxemics reveal user attitudes and emotions [14, 99]. They also shed light on the role of culture [42, 48, 105] in
in�uencing people’s interaction behaviors. Observing these cues can facilitate many important applications. We
list four speci�c examples:
• team collaboration: interaction details such as body distances and relative angles are important cues to study
team collaboration (e.g., task timeline, individual roles) on creative tasks and assess team’s creativity [95];

• job interviews: non-verbal skills such as eye contact, energy level, and a�ect (expressed with hand gestures and
body movement) can be the subject of training to improve the interview outcome [32, 85];

• doctor-patient interactions: patient satisfaction is a�ected by the physician’s expressiveness that includes
non-verbal behaviors like more forward leaning, nodding, gestures and gazing [83, 110];

• marketing and sales: customer’s engagement with the sales representative depends on his engagement abilities,
which are therefore also important in sales training [79].

For all these examples, an accurate monitoring of body distance and relative orientation is crucial. The interaction
distance between people has been estimated to be in approximately 7-cm intervals with a temporal granularity
of 7 seconds in social interactions [98]. Angles of interactions are signi�cant to study communicator’s attitude
towards his interlocutor and should be estimated to the nearest 10� based on prior study [86].

To monitor interaction proxemics continuously, conventional approaches in behavioral sciences have relied on
questionnaires, participant observations, or the use of non-human objects (e.g., life-sized photographs, miniature
dolls or silhouettes) [64]. Based on self-reporting, these approaches not only impose high burden on users, imply
various biases, but also fail to provide behavioral information during a contact. Technology has progressed
substantially in capturing� ne-grained face-to-face interactions [28, 29, 52], however existing work still falls short:
some either infer only user proximity [28, 29, 88] or body distances [52, 119], or analyze speech-related non-verbal
signals with no information on interaction distance and relative orientation [89]. Others focus on very speci�c
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contexts reproduced in the lab (e.g. job interviews, public speeches) and require cameras that bring privacy
concerns and entail heavy environmental instrumentation, limiting the� exibility of the system [16, 17, 33].
The goal of this work, thereby, is to seek a more scalable and accurate approach to continuously measuring

interaction proxemics as part of non-verbal behaviors during social interactions. To eliminate the need of
infrastructure support, we consider a lightweight wearable tag resembling an access badge worn with a lanyard
or clip (Figure 1). We leverage such tags to track both the actual interaction distance and relative body orientation
of users involved in a social interaction. Speci�cally, each tag emits wireless beacons encoded with its tag ID and
listens to beacons from other nearby tags. Based on the received beacons, the tag then identi�es other tags/users
within its sensing range, and estimates the relative angle and distance to each of these tags/users. These angle
and distance numbers are used to identify participants and recorded as their interaction proxemics during an
interaction. At� rst sight, the problem appears to be a standard problem of relative device positioning. However,
the context of tracking interaction proxemics presents three new challenges. We next overview each challenge
and our solution.
First, accurately identifying the participants in an interaction is challenging. Two users in close distance

may not be in an interaction, as they may stand with other people in between or are not facing each other
(see examples in Figure 2). Thus, it is key to recognize both the line-of-sight proximity and user’s relative body
orientation. To this end, prior methods using radio frequency (RF) signals (e.g., Bluetooth, Wi-Fi) [22, 75, 88] or
microphones [76, 107, 119] are all prone to false positives, since RF signals and sound penetrate human bodies.
Also, relative body orientation cannot be simply obtained by compass sensors, which measure only the absolute
orientation of the user/tag itself, rather than how it relates to other tags, as shown in § 4.1.

To reduce such false positives and enable accurate tracking without the need for expensive and cumbersome
infrastructure, we choose near-infrared (NIR) light as the wireless medium for tags to transmit beacons. With
wavelengths in nanometers, NIR light is imperceptible, directional, and cannot penetrate opaque macroscopic
objects (e.g., human body). Thus, it is the ideal medium for measuring line-of-sight proximity in our context.
Furthermore, to infer relative angles and distances to other tags, we leverage two collocated infrared photodiodes
each pre-con�gured with a di�erent orientation (§ 4.1). By analyzing the di�erence of light intensity sensed by
the photodiodes, we can compute the incident angle and distance to each sensed tag.
The second challenge lies in enabling reliable tracking using infrared light beacons. Light beacons can be

accidentally blocked by user’s hands, clothes, another user passing by, or other objects (e.g., book, paper)
introduced during the interaction; the motion of user body can cause tags suddenly moving beyond each other’s
sensing range. In all these cases, the tracking results using NIR light can either become unavailable or have
low� delity. To deal with these artifacts and realize reliable tracking, we augment light-based tracking with
inertial sensors (i.e., accelerometer, gyroscope). Although inertial sensors measure only the motion status (e.g.,
velocity, orientation) of the tag itself, we design a data fusion algorithm (§ 4.2) that leverages inertial sensor data
to extrapolate missing relative angles and distances upon losses of light beacons.
The third challenge is to ensure that tags operate with low power to avoid frequent charging and to ease tag

distribution for various studies. Certain components (e.g., NIR LED) consume relatively higher power than others,
and directly detecting short (e.g., 1.8 µs) NIR light pulses imposes energy burden of high analog-to-digital (ADC)
sampling (e.g., 500 KHz). To improve system energy e�ciency, we design strategies (§ 4.3) for a tag to adapt its
operation mode to the current context (e.g., presence of nearby tags, user’s motion status). It selectively switches
o� more energy-demanding modules to save energy without much sacri�cing sensing temporal granularity. We
also judiciously design the NIR sensing circuit to eliminate the need of high ADC sampling (§ 4.1).

We have implemented our designs and fabricated Protractor tags using o�-the-shelf, low-cost hardware. Each
tag is measured 74 ⇥ 54 ⇥ 15 mm in size and 40 g in weight. We have evaluated the e�cacy of our tags in ranging
and angle detection using controlled experiments. To examine its practical implications, we have further deployed
our tags to track user interaction proxemics when users collaborate on the Marshmallow challenge as the creative
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task. We conduct the deployment with 16 groups of 4 users each and seek to examine the feasibility of using
�ne-grained angle and distance data to understand complex processes comprising interrelated sets of human
actions such as team creativity in an organizational environment. Our main� ndings are as follows:
• Protractor achieves 2.2� mean angular error and 5.2� 95th percentile in estimating interaction angles and
2.3-cm – 4.9-cm mean error in ranging;

• Protractor is robust in diverse settings (e.g., tag height o�sets, indoor lighting variations, re�ections from
nearby objects) and e�ectively mitigates occasional missing or unreliable NIR tracking results with data fusion;

• Protractor is capable of running continuously for 5 days with a single charge by switching into low power
modes based on contextual information;

• Protractor is capable of supporting organizational science studies by providing objective data that can be used
to predict subjective assessments (e.g., task role, task timeline) with an accuracy from 84.9% to 93.19%, which
outperforms similar prior studies [117].
We see the potential of Protractor not only in the support of social research but also for practical applications

(e.g., providing real-time behavioral feedback during interactions, novel human-computer interaction interfaces).
In comparison to approaches using cameras, Protractor serves as a more lightweight and scalable alternative. Its
unobtrusive nature and the wearable form factor could ease privacy concerns and potentially reduce biases for
accurate behavioral monitoring.

2 RELATED WORK

Pro�ling User Interactions. We overview prior works on pro�ling user interactions based on their technology.
1) RF technologies: Bluetooth Classic has been widely used for detecting user proximity [9, 10, 35, 53]. However,

its high power leads to low sensing granularity (e.g., sampled every few minutes to avoid draining the battery
quickly [9, 35, 53]). Recent works [20, 56, 57, 88] use Bluetooth Low Energy (BLE) to collect data on user proximity
and mobility. Customized devices have also been used to monitor interactions. Forys et al. used wireless sensors
based on the IEEE 802.15.4 standard to collect human contacts for epidemiology research [40]. Cattuto et al. used
RFID to sense interactions by exchanging low-power radio packets, which are shielded by the human body and
cannot be received if people are not facing each other [26].
2) Microphones: Another source of data is the microphone on unmodi�ed phones. Lee et al. monitored con-

versation by matching the volume signature with a topography database built during a learning phase [76].
Zhang et al. exploited the Doppler e�ect to detect the trajectories of approaching people and adopted voice
pro�ling to con�rm the occurrence of a conversation [119]. By monitoring the actual conversation, however,
these approaches are sensitive to false positives if other nearby users are in a di�erent conversation. Also, the
use of microphones might raise ethical and privacy issues, preventing the wide adoption of the system. Tan et
al. proposed the use of audio silence pattern to detect collocation in a privacy-preserving manner [107]. The
resulting power consumption, however, still prevents the system from running continuously.
3) Sensor Combinations: Other approaches have adopted a combination of technologies. Choudhury and

Pentland combined infrared transceivers and microphone for measuring face-to-face interactions [28]. The
system has been deployed in many contexts [29, 74, 89]. Ultrasound and RF signals have also been combined
to capture interactions, using the time-di�erence-of-arrival technique. As examples, the iBadge [102] applies
this principle to capture interactions between kids, teachers and objects in a kindergarten classroom; Opo [52]
further boosts the ranging accuracy (5-cm accuracy) with a temporal� delity of 2 seconds.
4) Cameras: Video cameras or more sophisticated versions, such as Microsoft Kinect, have been used for

the automatic recognition of non-verbal behaviors and analysis of group interactions. As examples, in [117],
Zancanaro et al. detect participant’s functional role in group interactions by setting up nine cameras and several
microphones in a room and analyzing video with machine learning algorithms. Jayagopi et al. study conversational
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1 2 3 4 5 6

Fig. 2. The first five are example scenarios with users in proximity but not in an interaction, where two users are 1): in line
with one’s back facing the other; 2) in opposite directions; 3) on either side of a corner, without line of sight; 4) occupying
opposite desks with a partition in the middle; 5) on either side of a wall when working in neighboring o�ices. Scenario 6 is an
actual interaction with users facing each other at a distance of 1 m. We use the last scenario as a reference for comparison.

group dynamics (e.g., conversational topics, leadership styles) [58], and group dominance [59], using nonverbal
cues extracted from an existing dataset with 100-hr meeting recordings [25]. In [54], group cohesion is studied
using hours of audio-visual group meeting data. [100] uses prosodic and turn-taking behaviors to identify
participant’s speaking role. [55] estimates group formations in crowded environments using a graph clustering
algorithm. The analysis is based on video footage of over 50 people presenting scienti�c work in a poster session.
Similarly, [31] estimates F-formations of human interactions using video footage of co�ee breaks in a social event.
[101] infers emergent leaders using nonverbal cues extracted from audio and video channels.

Although camera-based approaches capture rich data of social contacts, they face several limitations. First, they
require considerable e�ort in instrumenting buildings [25, 54, 117] to enable data collection. An infrastructure-free
solution is superior from this point of view since it allows to collect data even in areas that cannot be instrumented,
like public spaces or during large events. As a result, so far cameras have been used in very speci�c and static
contexts reproduced in the lab (e.g. job interviews or public speeches) [16, 17, 33]. Second, in general, the analysis
of non-verbal behaviors through video recording requires a considerable amount of storage space and processing
power, limiting the usability of the system. Finally, cameras raise privacy concerns from the user and from people
being recorded without their consent. This is particularly true for wearable cameras that are always with the
user, even during private or intimate moments [51].
Overall, prior works either commonly focus only on user proximity or interaction distance, or rely on invasive

cameras. Our work di�ers in that we also continuously and unobtrusively capture relative body orientation as an
important part of non-verbal interaction cues.

Relative Device Positioning. Another related line of work is on sensing the relative position and orientation
among devices. Particularly for short-range positioning, existing work has explored the use of ultrasound (18 –
20 kHz, or 40 kHz) and infrared. Ultrasound methods measure time of� ight of acoustic signals to position devices
by multilateration [49, 81, 87, 96] and estimate device orientation by measured phase o�set [97] or positions of
multiple devices [50]. These systems, however, require either additional RF radio [49, 87, 96], or the aid of multiple
nodes (pre-deployed anchor nodes with known locations [81, 97] or multiple peer nodes [50]). Infrared-based
systems have commonly been used in robotics, which measure the re�ected infrared light to detect surrounding
obstacles and distances [19], or use static stereo-cameras to track moving objects that carry active tags emitting
infrared signals [11, 13]. Our scenario di�ers in that we enable mobile tags to track each other without any
infrastructure support. In [41], Frantal et al. measured infrared incident angle using 12 photodiodes each facing a
di�erent direction. Its limited angular resolution and the resulting form factor make it not suitable in our context.

3 A CASE FOR LIGHT-BASED TAGS
Our design of the wearable tag starts with seeking the suitable wireless medium to transmit beacons, which are
exploited to infer incident angles and distances to other tags/users in an interaction. The ideal medium should best
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Fig. 3. (a): Received signal strength of BLE packets for the six scenarios described in Figure 2. (b): Percentage of received
beacons by BLE and Infrared for the six scenarios described in Figure 2.

facilitate the measure of line-of-sight distance and incident angle, so that we can correctly identify participants
in a contact. We now discuss three candidates: RF signals (e.g., Wi-Fi, Bluetooth), ultrasound, and light.

Radio Frequency. Prior studies have utilized RF signals on wearable devices or smartphones to monitor social
interactions [9, 26, 88]. These systems examine the received signal strength (RSS) to infer if users carrying or
wearing these devices are engaged in an interaction. However, RF signals are omni-directional, penetrate human
bodies and objects, and are susceptible to multi-path e�ects. All these characteristics can make the identi�cation
of close encounters and relative orientation di�cult and prone to false positives.
To verify this problem, we take Bluetooth Low Energy (BLE) as an example, and devise simple experiments

that recreate realistic scenarios that involve two people in an indoor environment (Figure 2). These scenarios
represent di�erent combinations of people and objects between the transmitting devices. In each scenario, users
wear on the chest a BLE device (Nordic nrf51822 SoC), transmitting advertisement beacons at 10-Hz rate with �20
dBm TX power1 and scanning for beacons every 100 ms with each scan lasting 20 ms. We collect RSS traces from
each BLE device for 60 seconds in each scenario. The experiments are conducted outside o�ce hours to avoid the
presence of moving people in the vicinity. However, the environment presents various surfaces that could re�ect
radio signals (e.g., walls, the� oor, the ceiling) and there are also 5 Wi-Fi access points active (2.4 GHz).

Figure 3(a) shows box plots of RSS values in dBm in all scenarios, where a higher value indicates a higher received
signal strength. Figure 3(b) shows the percentage of received BLE beacons. We make two main observations. First,
as expected, in all scenarios (1 – 5) where users are not in a social contact, BLE packets can still be received even
when two devices are not in line of sight. The reception ratio of BLE packets is below 30% because the device does
not scan continuously but performs a 20ms scan every 100ms and thus misses advertisement beacons. Second,
although users are stationary, RSS values vary signi�cantly in a single setting and across di�erent settings. This
is because BLE uses three channels (separated by 2 MHz) to transmit advertisement beacons, resulting in fades at
di�erent spatial positions for di�erent channels, even when transmitter and receiver are static [37]. Wi-Fi signals
present similar characteristics. We conclude that RF is not the proper choice in our context.

Ultrasound. Next, we examine ultrasound for transmitting beacons. With wavelengths in millimeters, ul-
trasound has been shown to have line-of-sight propagation and be unable to penetrate objects. This has been
exploited by earlier studies to sense interaction distances [52] or to position devices [87, 96, 97]. In our experiment,
we modify the HC-SR04 [2] ultrasonic transducer (4.5-cm in diameter) with 40 kHz center frequency, commonly
used by prior studies [52, 87, 96, 97]. It sends carrier bursts for 8 cycles periodically (1 transmission every 2.5
seconds in our experiment). Because of the di�culty of modulating ultrasound pulses2, these bursts are treated
as pure pulses at the receiving end without any decoding, and we use an oscilloscope to inspect the signal and
1The same power level has been used on the same BLE chip by the Openbeacon.org project to detect proximity encounters [4].
2A shown in [96], ultrasound su�ers from severe multi-path e�ects and is hard to modulate. Thus, it is commonly used in combination with
RF for ranging.
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its amplitude. We repeat the experiment in the same scenarios in Figure 2. Our results con�rm that ultrasound
cannot penetrate objects in scenario 1, 4, and 5, whereas in scenario 2 and 3, we occasionally observe weak pulses,
possibly due to re�ection. Such pulses can trigger incorrect detection of social contacts if the appearances of
pulses are used for ranging [52].

Light. We now move on to examining light as the� nal candidate. Speci�cally we consider NIR light rather than
visible light3, because NIR is imperceptible to human eyes and keeps the wearable tag sensing unobtrusive. We
repeat the same scenarios in Figure 2, where users wear on their chest an NIR transceiver transmitting one NIR
beacon per second. For each scenario we log the received and decoded beacons for 60 seconds and compute the
percentage of received beacons (Figure 3(b)). We observe that the NIR transceiver does not receive any beacons in
scenarios (1 – 5) where the devices are not in line of sight. The beacon losses in scenario 6 are due to errors during
the decoding at the receiver end, which prevent the identi�cation of the correct beacon 4. NIR light propagates as
a directional beam in a cone shape, thus it serves as a good medium to detect and monitor relative angle and
distance of interacting people. Additionally, typical NIR emitters and receivers have a very small form factor (e.g.,
5⇥5⇥7-mm), which is desirable for building a wearable device to be worn all day.

Based on all above experiments, we decide to choose NIR light as the wireless medium for sensing non-verbal
cues in social contacts.

4 PROTRACTOR DESIGN
The core of Protractor is to measure relative angles and distances of interacting users in an accurate and a reliable
manner. Protractor achieves accuracy by exploiting the propagation characteristics of NIR light for precise angle
detection and ranging. It ensures the tracking reliability by fusing inertial sensors and NIR sensors to compensate
for the occasional loss (e.g., light being blocked) of light tracking results. Above all, as a wearable tag, Protractor
is designed to operate with low power. Next, we elaborate on each design component.

4.1 Angle Detection and Ranging
A face-to-face interaction can occur in various forms. Two important non-verbal interaction cues are the distance
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Fig. 4. (a): Interaction distanced , and relative body
orientation, i.e., interaction angles (�A,�B ), in a
social contact. (b): The same absolute orientation
of B can lead to di�erent orientation relative to A.

between any two involved users and their relative body orienta-
tion [47]. We de�ne the latter as the interaction angle, which is
the angle between the body normal and the line connecting the
two users (Figure 4(a)).

At the� rst look, interaction angles seemingly can be obtained
using the magnetometer/compass sensor, which measures user’s
absolute orientation. Then by exchanging the information with
nearby users, one can estimate relative angles to others. How-
ever, knowing absolute orientation alone is inadequate to infer
interaction angles. Figure 4(b) shows a simple example, where
even if both user A and B’s absolute orientations are known, their
interaction angle still cannot be determined. Because B can be
at location B’ with the same orientation, which yet results into a
di�erent interaction angle �B0 . Adding the knowledge of A and B’s distance does not help either (B’ and B are at
an equal distance to A). Such angle ambiguity can be resolved with A and B’s absolute locations, obtained by

3A recent study [108] uses ultra-short visible light pulses to enable imperceptible communication. It can also be a candidate.
4Note that as a simple proof of concept, this experiment is to compare di�erent media, rather than an extensive analysis of general success
rates in decoding NIR beacons. Our tags achieve much higher success rates in decoding by regulating beacon transmissions and adding
random delays. We will discuss our tag design in § 5 and detailed experiments on its decoding robustness with multiple tags in § 6.3.
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existing user-centric indoor localization methods [72, 80, 118]. But still, user’s 2D location coordinates indicate
little on the actual occurrence of face-to-face contacts. As shown in earlier examples (Figure 2), nearby users can
be separated by other indoor objects (e.g., a wall, desk partitioner) and thus not in a social contact.
Protractor overcomes the above problem by directly measuring the line-of-sight channel between two chest-

worn Protractor tags using NIR light. Its key design elements are the NIR light beacons emitted by each tag, the
detection of incident angle, and the estimation of line-of-sight distance.

NIR Light Beacons. A Protractor tag periodically (1 beacon every 5 s in our implementation) emits NIR light
beacons, each of which encodes the user ID. We choose the NIR wavelength of 940 – 950 nm for the beacon
transmission. It is commonly used in consumer wireless infrared communication such as TV remote control.
To encode data, an NIR emitter (i.e., LED)� ashes at a carrier frequency (38 kHz) in bursts. Among various
IR modulation/coding schemes, Sony IR coding [111] is chosen in our implementation for its popularity. As
illustrated in Figure 5, bit 1 is encoded as 1200 µs carrier frequency burst followed by an o� duration (600 µs),
while bit 0 is 600 µs carrier frequency burst followed by an o� duration (600 µs). To reduce the power consumption,
we decrease LED’s duty cycle of the carrier to 7%. To decode light beacons, we use an infrared receiver module [8],
which outputs logic LOW continuously for carrier frequency (mark) and logic HIGH for o� duration (space). The
micro-controller polls the receiver’s output every 50 µs to detect the duration of each mark and decode bits.
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Fig. 5. Time series of NIR light pulses of an example beacon.

In addition to conveying the user/tag ID, the re-
ceived signal strength (RSS) of a light beacon is uti-
lized later for deriving interaction angles and distances.
Here a light beacon’s RSS equals the peak amplitude
of the light pulse minus the ambient light baseline
(Figure 5). Measuring the RSS is challenging at a low-
power wearable device, because the common IR carrier
frequency is 38 KHz, meaning that the light pulse can
be as short as 1.8 µs (7% duty cycle). Detecting such
short light pulses requires a sampling rate higher than 500 KHz, imposing a high energy overhead to the tag. To
address this problem, Protractor leverages an envelope detector (Figure 5 and 9(b)) that holds the signal at its
peak until the end of a beacon. It allows the micro-controller to sample the peak amplitude with much lower
rates (1 kHz in our implementation).

Deriving Interaction Angle. Protractor reuses light beacons to derive the interaction angle to the user/tag
that each received beacon corresponds to. In the RF literature, estimating the signal’s angle of arrival commonly
relies on multiple antennas placed with known intervals to measure phase o�set [43, 66, 104, 116] or mechanically
rotating antennas [70, 71]. These methods are not applicable in our context, because of the tag’s small form factor.
Also, since LED is incoherent light source, there is no phase information as in RF technologies.

Instead, Protractor leverages the fact that an NIR photodiode responds to incoming light with di�erent
sensitivity depending on the light’s incident angle, which is referred to as photodiode’s angular response. Thus, if
two collocated NIR photodiodes face di�erent directions, incoming light with a given incident angle can result
into di�erent signal strength perceived by each photodiode. If we can obtain the one-to-one mapping between
the light incident angle and the resulting signal strength pattern at photodiodes, we can then derive incoming
light’s incident angle based on measured RSS values at photodiodes.
Before diving into the detail of the above method, we� rst describe the optical channel model characterizing

the propagation of NIR light. For a pair of LED and photodiode with distance d , assume that LED’s light ray
with irradiance angle � hits the photodiode with incident angle � (Figure 6(a)), and I denotes the RSS at the
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Fig. 6. Estimating the interaction/incident angle � using two collocated photodiodes (PD). (a) shows the optical channel
between an LED and a photodiode, with irradiance angle � at the LED and incident angle � at the photodiode. (b) shows
two collocated photodiodes facing di�erent directions. Because of the photodiode’s angular response (c), two PDs perceive
di�erent signal strength I1, I2. The incident angle � and the angle metric in Eq. (2) has a linear relation, which can be used to
estimate � on the fly.

photodiode. I can then be calculated as [65, 80]:

I = A
F (�)G(� )

d2
, (1)

where A is a constant determined by the transmit power and receiver’s gain, F (�) is LED’s irradiation pattern at
irradiance angle �, and G(� ) is photodiode’s angular response at incident angle � .

Now consider two collocated photodiodes that are rotated clockwise and counter-clockwise respectively, by a
pre-de�ned angle � with respect to the reference plane P (Figure 6(b)). Suppose � is the interaction angle, i.e.,
the angle between the incoming light and the normal of P . Then for the� rst and second photodiode, the light’s
incident angle is � +� , and � �� respectively, causing di�erent RSS at each photodiode. Using the optical channel
model (Eq. (1)), we can compute the RSS at each photodiode as:

I1 = I0G(� + �), I2 = I0G(� � �)
where I0 = AF (�)/d2. We consider the same I0 for both photodiodes because � and d are the same for both
photodiodes, given that the distance from the LED to the photodiodes (e.g., 30 cm to 2 m for normal social contacts)
is much larger than the photodiode size (5 mm in diameter). � is a known parameter, so the question now is how
to derive � after measuring I1 and I2. A straightforward method is to exhaustively measure photodiode’s angular
response at di�erent incident angles and to seek the best-�tG(·) function. Then � can be computed by solving
the equation I1/I2 = G(� + �)/G(� � �). This method, however, is ine�ective. Because G(·) can be complicated
(e.g., cosm(� )) or even without analytical form, there is no closed-form solution. Numerical method such as the
Newton’s method are too computationally intensive.
To circumvent the need to solve the complicated equation, we seek a metric that is computed based on I1, I2

and has a simple 1-1 mapping with � . To this end, we de�ne an angle metric i as

i ⌘ I1 � I2
I1 + I2

=
G(� + �) �G(� � �)
G(� + �) +G(� � �) . (2)

Since the angular response of NIR photodiodes are typically symmetric (i.e.,G(·) is an even function), the relation
between i and � has the following properties:�rst, i is zero when � = 0, as G(�) = G(��); second, the relation
between � and i is approximately linear, even when G(·) is non-linear, such as cosm(� ), based on our simulation,
indicating that we can always apply linear regression to seek the relation between � and i .
To verify the relation between i and � , we conduct a benchmark experiment using two NIR photodiodes

(OSRAM SFH 205 F [5]) with the measured angular response in Figure 6(c). We arrange the two photodiodes with
� = 22.5� (Figure 6(b)) on a table and move the IR transmitter to emulate di�erent interaction angles (�90� to
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90�) and di�erent distances (50 cm to 200 cm) (Figure 10(a)). At each location, the transmitter sends beacons for
30 seconds. We measure I1 and I2 at two photodiodes and compute the metric i (Eq. (2)). We then plot all i values
along with � in Figure 6(d). We observe that � is piecewise linearly5 related to i . With the linear relation obtained
o�ine through sample measurements, we can derive � on the� y after computing i based on measured I1 and I2.

Estimating Interaction Distance. Protractor estimates the interaction distance by leveraging the optical
channel model (Eq. (1)) and derived interaction angles. Speci�cally, for a pair of tagsm and n, each tag�rst
detects its interaction angle to the other tag, i.e., �m , �n . Since the interaction/incident angle of a tag is also the
irradiance angle of the other tag, we can compute the distance dmn betweenm and n as dmn =

q
A F (�n )G(�m )

Im ,
where Im is the RSS of light beacons from tag n measured at tagm.

Directly computing the above formula requires knowing the value of A. Instead, we de�ne a distance metric l
as l = F (�n)G(�m)/I and rewrite dmn as

ln(dmn) = a ln(l) + b . (3)
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Fig. 7. Distance measurement model. Both axes
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We compute the logarithm in the above equation because the ex-
ponent of the distance d is not exactly 2, as shown in our mea-
surements. We calibrate parameter a and b using benchmark ex-
periments, where we collect l values6 along with the ground-truth
distance dmn , and ground-truth interaction angles �m , �n . We then
perform a linear regression to determine a and b. Figure 7 shows
our benchmark experiment results and the linear model. With the
trained linear model (Eq. (3)), we then compute interaction distances
based on the derived interaction angles.

4.2 Sensor Data Fusion
While providing precision, NIR light tracking alone is not reliable for a number of reasons: light can be easily
blocked by other objects (e.g., a waving hand, a book, a piece of paper) introduced in an interaction; the chest-
worn tags can occasionally move beyond each other’s sensing range, due to user’s body movement during a
contact. To enhance the tracking reliability, Protractor leverages inertial sensors (i.e., accelerometer, gyroscope)
to compensate for the low� delity of light tracking results in those occasions. We choose inertial sensors because
they are small in size (2.5⇥3 mm) and consume low power (e.g., 2.8 mW). They can be easily� t in the wearable
tag and operate continuously in the background with negligible energy overhead.

The challenges of using inertial sensors lie in sensorymeasurement noise. Such noise is particularly troublesome
when measuring small displacement (e.g., centimeter-level distance change)7. In a social interaction, users tend
to remain static at their 2D locations while changing body orientation by a greater extent. Thus, we consider
fusing only the gyroscope data and the estimated interaction angles, while using accelerometer to sense large
location displacement for determining the start/end of a new sensor fusion process.
To fuse the NIR angle detection results and gyroscope readings, we adopted the Kalman� lter algorithm [36,

45, 61] for its simplicity and e�ciency. Speci�cally, we model the interaction angle as a discrete-time hidden

5We run a linear regression at di�erent intervals ([�90�, �30�), [�30�, 30�], and (30�, 90�]) to obtain the linear relation. For photodiodes with
single-slope linear angular response, the relation will also be single-slope linear.
6We estimate F (·) and G(·) based on sampled measurements.
7Our experiments with inertial measurement unit Bosh BMI160 show non-zero sensor readings (e.g., 0.03 m/s2 at x-axis) in the stationary
mode even after removing the constant o�set. It translates into 1.5-m location drift after only 10 seconds.
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Markov model (HMM):

�t = �t�1 + ��t +wt , wt ⇠ N(0,� 2
w,t )

e�t = �t +�t , �t ⇠ N(0,� 2
�,t )

where �t is the hidden state (i.e., the actual interaction angle) at time t , e�t is the observation (i.e., the estimated
interaction angle using NIR measurements), ��t is the orientation change measured by the gyroscope sensor, �t
denotes the Gaussian observation noise (i.e., the angle detection errors using NIR light), andwt is the Gaussian
noise of gyroscope readings. Given that it is a linear Gaussian Bayesian model, Kalman� lter has been proven to
seek the optimal solution recursively [61].

Our data fusion based on Kalman� lter recursively conducts two steps: prediction and updating. The prediction
step produces the estimated mean and variance of the interaction angle at t , before the arrival of new NIR
measurements at t . It predicts the interaction angle by:

�̂t |t�1 = �̂t�1 |t�1 + ��t

� 2
�,t |t�1 = � 2

�,t�1 |t�1 + �
2
w,t .

Upon the arrival of new NIR measurements and thus newly derived interaction angle e�t , the updating step then
incorporates the new observation into the prior estimate and obtains improved posteriori estimates. It updates
estimates as follows:

�̂t |t = �̂t |t�1 + kt (e�t � �̂t |t�1)
� 2
�,t |t = � 2

�,t |t�1 � kt�
2
�,t |t�1

where kt = � 2
�,t |t�1/(� 2

�,t |t�1 + �
2
�,t ).

The update step can mitigate large accidental errors in NIR measurements, such as incorrect pulse ampli-
tude detection due to ADC malfunction. The data fusion addresses the problem of occasional losses of NIR
measurements, as its prediction step produces estimated interaction angle without new NIR measurements.
We start the fusion with an NIR measurement: �̂0 |0 = e�0, � 2

�,0 |0 = � 2
�,0. We model the variance of noise �t

and wt based on our experimental observations. Speci�cally, our experiments show that NIR angle detection
errors tend to have a small variance when both photodiodes have large pulse amplitude readings. Thus, we model
the variance � 2

�,t of the observation noise �t as � 2
�,t / 1/(It,1 + It,2). We model the gyroscope noise variance as

� 2
w,t / �t , because of the drifting problem of gyroscope sensor. The orientation change is an integration of the
gyroscope readings and thus its error accumulates over time. We terminate the data fusion process when large
location displacement is discovered from accelerometer readings [73], e.g., users walk away from their previous
locations.

4.3 Adaptive Sampling
Given our goal of continuously tracking social contacts, Protractor’s battery life is a critical aspect of our design.
To ensure e�cient use of available power while keeping the tag operational, we apply context-aware duty cycling.
Succinctly, when no interactions are detected for a period or, when the tag is not being used, the more energy-
demanding modules are switched o� or reduced in their capability to save energy. The more energy-demanding
modules are the angle detection module (mainly the transimpedance ampli�er, § 6.4) and the NIR LED, while the
inertial measurement unit (IMU) and NIR receiver consume low energy. We thus use the IMU and NIR receiver to
infer the current context (i.e., presence of other devices nearby and user’s motion status) and adapt Protractor’s
operation accordingly.
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(a) (b) (c) PCB Front (d) PCB Back

Fig. 8. Protractor prototype. (a) and (b) show the assembled tag and its internal components. (c) and (d) is the PCB we design
and fabricate to host the NIR transceiver and angle detection module.

We de�ne three states that a Protractor tag can be in at any given time: 1) High Power: all modules are powered
on, NIR beacons are transmitted every 5 s and the two photodiodes in the angle detection module are sampled at
1kHz; 2) Low Power: the angle detection module is powered o� and NIR beacons are transmitted every 20 s; 3)
System O�: the angle detection module and the NIR transceiver are powered o�.

In High Power and Low Power states, the IMU and NIR receiver are powered on and functional because they
are used to trigger the state change. In System O� state only the IMU is powered on. The NIR transmission rate
(one beacon every 5 s) is selected to reduce the probability of collisions in presence of multiple tags. By contrast,
we adopt a transmission period of 20 s in the Low Power state to save energy but be reactive in case of interaction
and do not severely sacri�ce the temporal granularity of collected data. Additionally, even if NIR transmission
has a relatively high power consumption, its duration is short (i.e., few tens of milliseconds) and thus its impact
on the overall energy consumption is limited (see power pro�les of individual components in § 6.4).
We de�ne two rules for the state transition. Rule 1: no interaction has been detected in the last 20 minutes;

Rule 2: no movement has been detected in the last 20 minutes. Rule 1 is to detect scenarios where people are not
in interactions for long (e.g., when completing individual work). Thus there is no need to monitor angle/distance
with high granularity and the tag switches to the Low Power state. Rule 2 is to infer when the tag is not in use
and triggers the transition to System O� state. Once any above condition is not met, the tag reverts to High
Power state. The 20-min window from the last interaction is chosen to avoid missing short contacts with short
intervals. Similarly, the 20-min window for body movements prevents the transition to System O� state when
the user is stationary for a while with the tag still in use. In § 6.4, we will examine the tag’s energy consumption
and the bene�t of adaptive sampling.

5 PROTRACTOR PROTOTYPE
We fabricate 6 Protractor tags using o�-the-shelf hardware contained in a 3D-printed case. The� nal assembled
tag (Figure 8(a)) resembles an access badge that can be worn using a lanyard or a clip using the loop in the upper
part. It measures 74 ⇥ 54 ⇥ 15 mm in size and 40 g in weight (with a 560 mAh battery). Figure 9(a) shows its main
internal components, including the NIR sensing module, the battery, the IMU, and the micro-controller. We next
describe three key components (NIR sensing module, IMU, and micro-controller) in detail.

NIR Sensing. The NIR sensing components are the NIR transceiver and angle detection module, which are
hosted by a customized printed circuit board (PCB) we design and fabricate (Figure 8(c) and 8(d)). For the NIR
beacon transmitter, we choose OSRAM SFH 4240 [1] as the NIR LED, because it provides ±60� 3dB beam angle
that enables a wide sensing range. Its wavelength peaks at 950 nm. We use an NPN transistor to driver the LED.
We choose Vishay TSOP38238 as the NIR receiver, which includes both the photodetector and pre-ampli�er.
The receiver outputs low when it senses the carrier frequency 38 kHz. Its output signal is connected to the

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 2, No. 1, Article 25. Publication date: March 2018.



Measuring Interaction Proxemics with Wearable Light Tags • 25:13

6-axis 
IMU

SPI
Micro SD 

Card
SPI

Metawear
Micro USB 

Lithium 
Battery

nRF52832
SoC

ADC

Angle 
Detection 
Module

IR 
Transceiver

(a)

LTC
6264

-
+ LTC

6264

-
+

0.2V

3V

SFH 205 F

220k

2.2p

2.2k 56k

56k

3V

1M

22p

1M

Vout
1μ

100R

560k0.1μ

First stage 
amplifier

Second stage 
amplifier

Envelope 
detector

Long term 
average

(b) PD circuit design

Fig. 9. Protractor design. (a) is the block diagram of the components. (b) is the circuit design of the angle detection module,
including a two-stage amplifier, a long-term average to remove the influence of ambient light, and an envelope detector.

micro-controller for decoding. We use the Sony Serial Infra-Red Control (SIRC) protocol (12-bit) to transmit the
tag ID every 5 seconds. We select 5s as transmission period to balance power consumption and resolution of
the collected data. To prevent collisions in case two or more devices have their transmissions synchronized, we
perturb each transmission by adding a random delay (4 – 1020 ms). A collision of multiple NIR beacons makes
beacon decoding impossible. In this case the beacon is discarded and it is not used to infer angle and distance,
hence not a�ecting the inference accuracy.

The angle detection module has two NIR photodiodes (OSRAM SFH 205 F [5]) with spectral range of sensitivity
from 800 nm to 1100 nm. They are arranged on a 3D-printed base and their orientations form a 45� angle.
Figure 9(b) shows this module’s circuit design including a two-stage ampli�er and an envelope detector. We

adopted a two-stage ampli�er in order to detect the light beacons even in environments with high light levels.
The� rst stage is a transimpedance ampli�er with a relatively low gain to avoid saturation in bright conditions.
The second stage is a di�erential ampli�er which measures the di�erence between the average light level (RC
network between the two stages) and the instant light level and ampli�es the signal further with a gain of 17.8.
This con�guration allows to remove the ambient light level which is added to beacon signal and might cause the
ampli�er to saturate preventing a correct measure of the amplitude of the signal.

InertialMeasurementUnit. Weuse the Bosch BMI160 6-axis IMU that embeds an accelerometer and gyroscope
in the same package. The IMU operates with low power (around 950µA with accelerometer and gyroscope in
full operation mode) and contains an on-board FIFO bu�er where sensor readings can be accumulated without
CPU intervention. This allows the micro-controller to sleep for longer periods, leading to a longer battery life.
Accelerometer and gyroscope are sampled at 25Hz.

Micro-Controller. All components are controlled by a Nordic’s nRF52832 SoC that includes a 32-bit ARM-M4F
CPU and a 2.4GHz radio transceiver. We use a nRF52832 developer board from Mbienlab Inc. that contains the
main SoC, the Bosh IMU and associated circuitry. We attach a micro SD card socket to the SoC using the Serial
Peripheral Interface (SPI). The entire device is powered by a 560mAh 3.7V lithium battery that can be recharged
via a micro-USB interface.

The micro-controller samples the output of the two photodiodes (after the ampli�er and envelope detection)
every 1ms (1kHz) using the on-board 14-bit ADC and logs the data on the SD card. The sampling is stopped
during the transmission of NIR beacons to avoid the detection of false pulses from the same device.
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Fig. 10. Protractor’s accuracy in estimating interaction angles.

6 SYSTEM EVALUATION
We evaluate the systems performance of Protractor prototypes, aiming to examine Protractor’s accuracy in
determining interaction angle and distance, the impact of practical factors (e.g., di�erences in user body heights,
re�ections, ambient light), its scalability with multiple tags, and its energy consumption. We will also examine
the e�cacy of data fusion in enhancing the tracking reliability.

6.1 Accuracy

Experimental Setup. We conduct controlled experiments with two static tags to examine Protractor’s tracking
accuracy using only NIR light. In particular, we place each tag on a di�erent table and support each tag via a
piece of foam to emulate the actual usage scenario where tags face each other (Figure 10(a)). Two tags are at the
same height and we vary their distance and relative orientation. To obtain the ground truth on the distance d , we
connect tags with a string and measure the string length. To obtain the ground truth on interaction angles � ,
we place a printed angle meter under each tag to measure their relative orientation. For estimated angle e� and
distance ed , we compute the angular and distance error as (e� � � ) and (ed � d), respectively. All experiments are
indoor with normal lighting (300–400 lux,� uorescent lights).

Angle. We start with examining Protractor’s accuracy in angle detection. We rotate the table of a tag (tag 1) and
keep the other table/tag (tag 2)� xed and facing tag 1. As a result, the interaction angle of tag 1 varies while the
interaction angle of tag 2 remains 0�. We vary the interaction angle of tag 1 from �90� to 90� with 10� interval
and the distance from 75 cm to 2 m with a 25-cm step. For each distance/angle combination, we let tags transmit
light beacons for one minute. We then compute the interaction angle of tag 1 using the method in § 4.1.
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Fig. 11. Accuracy of distance measurement.

We plot the absolute angular errors (Figure 10(b))
and the error distribution under di�erent an-
gle/distance combinations, where error bars show the
standard deviation (Figure 10(c)). Because we rotate
each photodiode by 22.5�, one tag will not detect the
other’s light beacons once the interaction angle ex-
ceeds 67.5�. Therefore, the tag’s angular sensing range
spans approximately from �70� to 70�. We observe
that within the sensing range, the mean error is 2.2�
and the 95th percentile is 5.2�, expected to be su�cient
for detecting interpersonal contacts. As we scrutinize the error for each angle/distance combination, we observe
that large errors occur at long distances and large angles (e.g., 2 m and 60�) with weak signal strengths. Since
ADC’s resolution is� xed, the ADC error ratio (error/pulse amplitude) is larger under weaker signals, leading to
less precise RSS and larger angular errors.
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Distance. We next examine Protractor’s accuracy in ranging. Instead of exhaustively testing all possible
combinations of distance and relative angles (⇡1K test cases), we select three representative interaction scenarios
with di�erent con�gurations on the two tags’ interaction angles: (1) face-to-face interaction (0� � 0�), (2) one
people talking to many others (30� � 0�), and (3) two users discussing in front of a white-board (45� � 45�). In
each scenario, we vary the tag distance from 75 cm to 2 m with 25-cm interval. We then measure the interaction
angle at each tag and derive the interaction distance. We plot the CDF of absolute distance errors in Figure 11(a).
We observe that the three scenarios have similar mean errors (2.3 cm, 2.4 cm, and 4.9 cm respectively), while
scenario (3) has a longer tail, with 11.4 cm as the 90th percentile compared to 3.4 cm and 4.7 cm in the other
two scenarios. As we further examine the error distribution across distances for each scenario (Figure 11(b)),
we� nd that the longer tail in scenario (3) is due to the error jump (10 cm) under 2-m distance. The error jumps
in this case because the distance (2 m) approaches the sensing limit, and the interaction angle (45�) at each tag
approaches the half 3dB viewing angle (60�) of our photodiode or LED. It results into weak RSS, increasing ADC
error ratios and ranging errors.

6.2 Robustness
As a chest-worn tag, Protractor can be a�ected by various practical factors, such as height di�erences among
tags, re�ection of NIR light caused by nearby objects (e.g., walls), and ambient light. We now examine the impact
of these factors on Protractor’s accuracy, using controlled experiments with the same setup as Figure 10(a).

Height O�set. We� rst examine Protractor’s performance when tags are at di�erent heights. Such height o�set
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Fig. 12. Influence of height o�set.

can be caused by user’s body height di�erence, or the
way users are wearing tags or interacting with each
other (e.g., a sitting user talking to a standing user).
For this purpose, we test three settings of tags’ inter-
action angles (0� � 0�, 30� � 0�, and 60� � 0�) and two
distances (75 cm and 125 cm). For each combination,
we increase a tag’s height by raising its supporter and
vary the height o�set from 0 cm to 50 cm, which is
proximately the height di�erence between a sitting
user and a standing one. Figure 12(a) shows the an-
gular errors in di�erent combinations of interaction distance and angle. Our main observation is that angular
errors do not exceed 10� even under 50-cm height o�set, which demonstrates that Protractor’s angle detection is
robust against tag height o�set. The reason is that without any pitch rotation of the body, the vertical incident
angle is the same for both photodiodes and thus has been canceled out (similarly to the I0 term) in our angular
metric (Eq. (2)). The height o�set, however, does a�ect ranging. As shown in Figure 12(b), Protractor increasingly
overestimates the distance as the height o�set increases. This is because we currently detect only horizontal
interaction angles. Thus, height o�set leads to a larger vertical angle and higher signal attenuation. Without
knowing vertical angles, our method attributes the increase in attenuation to a longer distance. Overall, the
maximum distance error caused by height o�set is 20 cm. To diminish this error, we can add a pair of photodiodes
to detect vertical angles, with the cost of a slightly bigger form factor and higher energy consumption. In this
case, even if ambient light (e.g., o�ce lighting) might a�ect the upper and lower photodiodes unevenly, it will not
a�ect the angle detection because we deduct the background ambient light when extracting the beacon amplitude.
We leave this extension to future work.

Re�ection. Next, we examine how Protractor’s performance is a�ected by NIR light re�ection from nearby
objects. In this experiment, we set two tags 1-m away. We then arrange another object in parallel to the line
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connecting two tags with a 50-cm perpendicular distance. We test two interaction angles (0� and 30�) for tag 18
while keeping tag 2’s interaction angle as 0�. We test three types of re�ection objects: human bodies, screens, and
walls. We conduct the experiment in a large o�ce for the former two and in a corridor (1.8-m width) for walls.
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Fig. 13. Influence of reflection.

In Figure 13, we plot angular and distance errors for
tag 1 under di�erent types of re�ection objects, where
error bars show the standard deviation. As a reference,
we also include the result when no re�ecting objects
are nearby. We make three main observations. First,
re�ection consistently causes underestimates of tag 1’s
interaction angles. This is because re�ection strength-
ens the RSS perceived by the photodiode closer to the
re�ection object, which biases the incident light to-
wards the re�ection objects. Second, among di�erent
re�ection objects, walls better re�ect NIR lights and thus cause larger angular/distance errors, while re�ections
by human bodies and screens cause absolute errors no more than 4� and 5 cm. Third, as for distance errors,
wall re�ection consistently causes underestimates, because it strengthens RSS and triggers our method to infer
shorter distances. On the other hand, re�ections by human bodies and screens are weaker and do not necessarily
strengthen RSS, leading to possible overestimates. In summary, we observe that only strong re�ections by nearby
walls present a challenge for Protractor, while smaller objects such as human bodies and screens introduce
marginal e�ects.

Ambient Light. We also examine the impact of ambient light on Protractor. From our experiments under
di�erent levels of indoor lighting, we observe that changes in indoor lighting do not a�ect Protractor’s accuracy
in angle detection and ranging. The reason is twofold. First, indoor arti�cial lights (e.g.,� uorescent lights) emit
mainly visible light, whereas our NIR sensor [5] is not sensitive to visible light (390 – 700 nm), as its spectral
sensitivity range is 800 – 1100 nm. Second, the measured RSS at each photodiode is the amplitude after subtracting
the sensed ambient light (§ 4.1). Thus ambient light changes do not a�ect estimated angles/distances, as long as
photodiodes are not saturated.

Table 1. Closest working distance in various ambient lighting.

Ambient light (lux) 250 550 1220
Closest working distance (cm) 10 13 20

However, the saturation problem can occur under high ambient NIR light (e.g., bright sunlight through the
window), which a�ects the closest working distance of our tags. Table 1 lists the closest working distance under
di�erent ambient lighting. The result manifests that our system sustains for common social interaction distance
(longer than 20 cm) even in bright indoor environment (higher than 1000 lux). We also observe that tags cannot
detect light beacons any more when its perceived illuminance exceeds 2500 lux. This level is well below the typical
indoor illuminance that ranges between 300 and 500 lux [6, 7]. For comparison in full daylight (not directed
towards the sun) there is an illuminance between 10k and 25k lux [103]. We are able to achieve this robustness
against variation in ambient light levels thanks to our two-stage ampli�er which removes most of the ambient
light from the beacon signal.

Occasional Low Fidelity in NIR Tracking. We examine the e�cacy of data fusion (§ 4.2) in compensating
for occasional low-�delity NIR tracking results. Using the setup in Figure 10(a), we set two tags 1.25-m away

8For the 30� angle, we rotate tag 1 towards the re�ection object.
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facing each other with 0� relative angle. We emulate two cases: occasional blockage of the light channel, and tags
temporarily moving outside each other’s sensing range.
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Fig. 14. Data fusion of NIR and inertial sensors.

We test three blockage scenarios by considering
whether any tag changes its orientation during the block-
age. Figure 14(a) shows three blockage periods: (1) 50"–
90": we place a cardboard between tags and then remove
it; (2) 130"–190": we place a cardboard, rotate a tag by
40�, and then remove the cardboard; (3) 270"–370": we
place a cardboard, rotate a tag by 40�, rotate it back, and
then remove the cardboard. The tag orientation remains
in period (1), while it changes once and twice in period
(2) and (3), respectively. We observe that although NIR
angular results are absent during the blockage periods, our data fusion can immediately and accurately extrapolate
missing angles using the prediction step9. Scenario (2) and (3) also demonstrate the necessity of data fusion, which
is capable of tracking the orientation change during the blockage. In comparison, methods such as using the most
recent NIR angular result would completely miss the orientation change, which can be important non-verbal
cues in a social contact.

We next test the scenario when tags move outside the sensing range. Our prior experiment (§ 6.1) shows that
the maximum half sensing angle is 70� for our current prototype. Thus, we start with two tags directly facing
each other, rotate a tag by 90�, and later rotate it back. Figure 14(b) plots the estimated angle with and without
data fusion. We see that estimated angles using NIR sensors alone are around 67�, translating into �23� error.
With data fusion, the estimated angle is 85� with only a �5� error. Overall, our results validate data fusion’s
e�cacy in augmenting NIR tracking when NIR tracking is not available or reliable.

6.3 Scalability
After extensive experiments with two static tags, we now examine the scalability of our design with more than
two tags. The presence of more tags can increase the likelihood of NIR beacon collisions, during which signals
from multiple NIR beacons add up, potentially causing errors in signal measurements and the decoding of NIR
beacons. However, since our system discards collided beacons, beacon collisions do not a�ect the accuracy of
ranging and angle estimation (our prior accuracy results with two tags hold); rather, they a�ect only the temporal
granularity of the data.
To examine the e�cacy of our system design – low transmission rate of beacons and random transmission

delay (§ 5) – in reducing beacon collisions, we perform a test with six tags. We set up the tags on a table in two
rows, where the front row is 80 cm away from the second row. Tags send and receive beacons with the con�gured
transmission rate (0.2 Hz) for 21 hours. For each pair of devices (30 pairs in total), we compute the percentage
of received beacons that are successfully decoded. Overall, we observe that the average success rate is 79.5%
with 78.3% as the minimum and 80.8% as the maximum. The average duration between received beacons is 6.3
seconds. We conduct similar experiments with four tags and the average success rate in beacon decoding is 84.7%.
Our results shows that our system gracefully scales to larger number of tags by recording su�cient number
of beacons and thus providing satisfactory temporal granularity. To support applications that require denser
deployment of tags and� ner temporal granularity, we will examine more sophisticated beacon designs that allow
beacons to be extracted under collisions. We plan it for future work.

9We smooth gyroscope data using a sliding window of length 25.
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Fig. 15. Power profiles of Protractor’s main operations and activities in the High Power state.

6.4 Energy Consumption
Finally, we report on the energy consumption of our prototype. We� rst analyze the power pro�le of each
component using a Monsoon power monitor. Figure 15(a) shows the power trace of NIR beacon transmissions.
For each transmission we repeat the same code 4 times to increase the chances of a successful decoding and to
have enough data to infer distance and angle. A longer burst (i.e., > 4 beacons) would provide more data for the
angle and distance estimation but also increase the power consumption substantially.
Figures 15(b) and 15(c) show the power pro�les of the ADC and IMU data logged on the micro SD card. The

power consumed by the ADC during a conversion is low (⇡700µW). The constant high power in Figure 15(b) is
due to the transimpedance ampli�er used to amplify photodiode signals in the angle detection module. This is the
most power-demanding component in our prototype. To save energy, we bu�er ADC and IMU readings (512-byte
and 1024-byte respectively) and then log on the SD card only when the bu�ers are full. The power consumed by
the NIR receiver is negligible in comparison, as it only entails the digital reading of a GPIO pin every 50µs.

We also measure the average power consumed in each of the three power states (§ 4.3) and we obtain: 51.75mW
for High Power, 9.42mW in Low Power and 7.96mW for System O�. The tag is powered by a 560-mAh (2.07Wh)
battery, however, the battery life of the tag depends on its usage pattern. To estimate the battery life, we compute
the average energy consumed per hour as:

Phour =
Phi�hthi�h + Plowtlow + Pof f tof f

24
, (4)

where thi�h , tlow and tof f are the number of hours spent respectively in High Power, Low Power and System O�
state while Phi�h , Plow and Pof f are the respective power levels in each state. Assuming on a normal working
day a user spends 5 hrs interacting with people10 (i.e., tag in High Power state), 4 hours on individual work (Low
Power state), and does not interact for the rest of the day (System O� state), we can compute the battery life by
dividing the battery capacity (560mAh) by Phour

3.7V and obtain an estimated lifetime of about 120 hrs (i.e., 5 days
with a single charge). If the device was con�gured to stay in High Power state (9 hrs per day), without adaptive
sampling, the battery would last 85 hrs.

7 REAL-WORLD DEPLOYMENT
In this section we explore the potential of Protractor for the use in the context of organizational science and
human resource management research. We conduct experiments using a team creativity task.

7.1 Task Motivation
Social dynamics happening in small groups of people are usually complex and might a�ect the performance of
teams in corporate settings. Regardless of the impact of the context on social contacts, the common aspect is
that people do not interact with one another as anonymous beings. They come together in the context of speci�c
environments and with speci�c purposes. Their interactions involve behaviors associated with de�ned statuses and
10Previous work found that university students spend on average 4.5 hrs per day in face-to-face conversation[76].
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particular roles. These statuses and roles help to pattern our social interactions and provide predictability[109]. Given
the importance of roles in the understanding and of social interactions, in this section we propose to employ
Protractor for the automatic recognition of roles people take while working on a de�ned task. We conducted
experiments in a controlled setting, where we assigned participants an creative problem-solving task widely
used for assessing teams’ creative potential [115], to simulate a team working together within an organizational
environment (e.g. in new product development).

Although human networks and social structures have been featured prominently in the� elds of organizational
behavior and human resource [84, 94], recent research also highlights the importance of taking actions and
tasks as analytical focuses in understanding people working within organizations [46, 92, 93]. This research
though has tended to focus on higher-level perspectives such as organizational routines [39, 92], and not yet
on leveraging the capacity of sensor technologies to examine micro-space and proxemic behavior as a basis
for studying actions [47], which has been the case with other research on interactions and dynamics [90, 91].
The goal of this deployment is to provide an initial exploration of the possibilities o�ered by Protractor in the
understanding of complex, and often abstract processes, comprising multiple, interrelated sets of human actions
such as creativity in an organizational environment. In particular we explore the possibility of predicting, using
only proxemics information (i.e., angle and distance between pairs of participants), two aspects of team dynamics:
(1) task role: the verbal role assumed by each participant, and (2) task timeline: the di�erent building phases
of the creative task.

7.2 Experimental Setup
We employed an existing creativity task “The Marshmallow Challenge” [3], which was designed to help teams
experience fundamental collaboration dynamics in creative problem solving. We recruited participants from
the Computer Laboratory at the University of Cambridge (U.K.), and the Department of Computer Science at
Dartmouth College (U.S.). We formed 16 teams of four participants (n = 64)11. 90% of the participants were aged
18 to 29 years old and 79% of our participants were men. The participants have been compensated by entering a
ra�e for an Amazon voucher (6 vouchers available valued £50 or $50 each).

Angle AB

A

B

0°

90°

180°

distance

Fig. 16. Illustration of angle and
distance in the classification.

The teams were welcomed in the experiment room and then given the
instructions and rules for the building process upon receiving and wearing
the Protractor tags. The participants were given eighteen minutes to build the
tallest freestanding structure using 20 sticks of spaghetti, one yard of tape,
one yard of string, and one marshmallow which, most importantly, had to be
supported by the freestanding spaghetti construction. All participants wore
the Protractor and were video recorded during the entire building process.
At the end of the eighteen minutes, the building process was stopped; each
participant then� lled out a survey assessing the creative exchanges of ideas
between herself and every other team member on a� ve-level Likert scale, and
demographics.
To summarize, two main sources of data were collected for this study: (1) angle and distance data recorded

by Protractor for every two participants (i.e., for every dyad) at approximately� ve-second resolution; (2) team
members’ verbal interactions (i.e., their individual task role described by their verbal exchange) and the timeline
of the teams’ building process (i.e., the timeline of the building task of each team), which we coded from the
video recordings using Atlas.ti12.

11Ethical approvals have been obtained from both local institutions before the study.
12http://atlasti.com/.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 2, No. 1, Article 25. Publication date: March 2018.



25:20 • A. Montanari et al.

Angle and Distance. The raw angle values detected by Protractor range from -90� to 90� for every A-B dyad
approximately at� ve-second intervals, where 0� represents participants A and B facing each other, the negative
interval indicates B to the left of A, and the positive interval indicates B to the right of A. We rescaled the raw
data to the [0�, 180�] interval to make the results more interpretable whilst preserving the left-right dichotomy.
Thus, as shown in Figure 16, in the rescaled dataset, 90� represents participants A and B facing each other, 0�
to 90� interval indicates B to the left of A, and 90� to 180� interval indicates B to the right of A. Distance is
measured in centimeters and captures the distance between dyads of participants. Just as the angle data, distance
is measured approximately at� ve-second intervals (Figure 16).

Task Roles. We coded the team members’ verbal behaviors during the building process by using the Advanced
Interaction Analysis (act4teams) video coding scheme from Lehmann-Willenbrock et al. [77]. This coding scheme
has been employed to code verbal behaviors in video recordings of team interactions. The scheme covers four
main categories13 of statements, namely:

• Problem-focused (labeled ProblFcs): it identi�es communication directly related to the issues subject of
the meeting. Problem-focused communication includes discussions about the problems, formulation of
ideas, solutions and their analysis. This category includes the following types of statements: identifying a
problem, connections with problems, de�ning the objective, identifying a solution, describing a solution,
problem with a solution, arguing for a solution, organizational knowledge, and more.

• Procedural: this kind of communication describes statements related to the structure and organization of
the discussion. It is possible to distinguish between Positive and Negative statements. Positive statements
are the ones that are bene�cial for the organization of the discussion while the Negatives have a negative
in�uence and lead to a loss of structure and loss of thought. In our dataset we label the two as ProcedPos
and ProcedNeg respectively.

• Socio-emotional: it captures the social relationships within a team. Also in this case it is possible to
have Positive (labeled SocEmPos) and Negative behaviors (labeled SocEmNeg). The Positive category
includes statements used to show solidarity and support, release tension or agreement. On the other hand,
Negative behaviors comprise self-promotion, criticizing, o�ending or interrupting others and having side
conversations that demonstrate disengagement.

• Action-oriented: it describes statements aimed at improving the team’s work by showing willingness to take
action. Positive statements (labeled ActOrtPos) show proactive behavior, willingness of taking responsibility
or planning of concrete actions. By contrast, negative statements (labeled ActOrtNeg) manifest no interest
in change, complaining, lack of initiative, seeking someone to blame or denying responsibility.

These categories describe solution-oriented behavior [63] and have been shown to help teams grow aware
of their dynamics in meetings and a�ect team and organizational success [12, 62, 78]. We use these labels (7 in
total) to code our participants’ individual verbal statements in the building process at� ve-second increments. We
nominated starting points for each verbal code and assigned these codes to all subsequent time increments; as a
new verbal behavior occurred, the new code replaced the previous code in subsequent time increments and so on.

Task Timeline. In the original design of the challenge[3], the building phases described are orient, plan, build,
and ta-da or oh-no. Empirically, we adapted the phases to collect a more� ne-grained taxonomy of the teams’
building processes and we labeled our data with:
(1) intro for the introduction time before the actual discussion;
(2) materials and logistics for the discussions covering the tools at hand, planning the building, and starting to

put together pieces of structure or to check their strength and stability;

13For a more detailed description of the four categories refer to the works from Lehmann-Willenbrock et al. [77] and Kau�eld et al. [62].
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(3) building levels one, two, three, and four for assembling the materials and stacking them into the�nal
structure;

(4) consolidating level one for reinforcing the base of the structure to ensure the structure is freestanding;
(5) marshmallow on top for the attempts to place the marshmallow on top of the structure to test the strength

of the construction or to� nalize it;
(6) outro for the time they� nished building to the end of the allocated eighteen minutes.

Once we identi�ed the start and end points of each phase we annotated the angle and distance data within a
phase interval with the relative label.

7.3 Classification of Video Coded Labels
We classi�ed the video coded task roles and task timeline labels. We treat the data as not formally sequence or
temporally dependent, but rather by using all� ve second increments across all groups as separate instances for
classi�cation. We do this to examine the informational value of the angle and distance data collected by Protractor
at the most basic level. Classi�ers were selected from the WEKA machine learning library [82] and applied as
multi-class classi�ers using a one-versus-all approach. We initially compared a selection of classi�ers (e.g., SvM,
MLP, Random Tree, REP Tree and Tree Ensemble classi�ers), before selecting the Random Forest classi�er (run
with 50 and 100 trees, referred to as RF50 and RF100 respectively henceforth) for its simplicity, performance and
ability to minimize over�tting [21]. Analysis comprised the following main steps:

(1) The input features were the angles of each dyad A-B (Angle AB and Angle BA) as well as the distance
between A and B collected by the protractor. The data were then normalized to [0, 1] interval.

(2) Next, we partitioned data into 70/30 splits for classi�er training and testing. We applied the SMOTE
oversampling procedure [27] to oversample the minority classes. Model performance was assessed with
reference to (a) sound precision, recall and F-measure scores across classi�cation targets, (b) reasonable
balance between these scores across targets, and (c) good overall model accuracy.

(3) We further assessed model performance using 10-fold cross-validation with strati�ed sampling (without
any oversampling).

To gain more insights into the role of the features, we also ran a simple forward feature selection loop using
the same multi-class Random Forest Classi�er with 50 trees (RF50 henceforth). Table 2 lists the results. For
the Task Role classes, “distance.b.a” contributes the most to the overall model accuracy (39.45%), followed by
varied contributions from the angle features (the highest being “angle.a.d” with 10.62%, and “angle.a.c” with
11.32%), before peaking at eight of nine features (79.46%). For the Task Timeline classes, “angle.b.d” contributes
28.04% to the overall accuracy result, followed by gains of 15.88% (“angle.c.d”), 16.60% (“angle.a.d”), and 11.44%
(“distance.b.c”). Thereafter, gains are comparatively modest, peaking at� fteen of eighteen features (91.44%). The
intention here is not to show a generalizable pattern of feature contributions, but rather to shed light on the role
of the distance and angle features together as markers of focal task related behaviors and interactions.

7.3.1 Results. We summarize the overall model accuracy results for RF50 and RF100 in Table 3. Overall
accuracy results for cross-fold validation with RF100 are summarized in Table 4. Classes are ordered by F-measure.
Next, we discuss the results for each classi�cation task.

1) Task Role. The Task Role classes represent the nature of the verbal communication that was taking place
among participants during the activities. To predict the instant role of a participant, we use as features her angle
towards each other group member (3 features), the angle of each other member toward her (3 features), and the
distance between her and each other member (3 features). We concatenate these pairwise dyadic features in a
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Table 2. Forward features selection results run with multi-class Random Forest classifier with 50 trees (RF50). The procedure
involves adding features iteratively to the model with the goal of maximizing overall accuracy. Overall accuracy at any
given feature shows the total model accuracy achieved up until that feature. Change shows the increase / decrease in model
accuracy from one feature to the next.

Target Order Added Feature Accuracy Change Target Order Added Feature Accuracy Change

Task Role

9 distance.a.d 79.40% -0.06%

Task Timeline

18 distance.a.c 88.97% -1.44%
8 distance.a.c 79.46% 1.80% 17 distance.c.d 90.41% -0.41%
7 angle.d.a 77.65% 2.71% 16 distance.b.d 90.82% -0.62%
6 angle.a.b 74.95% 3.72% 15 angle.d.a 91.44% 1.86%
5 angle.c.a 71.22% 5.62% 14 distance.a.d 89.59% 0.00%
4 angle.a.c 65.61% 11.32% 13 angle.d.c 89.59% -0.82%
3 angle.a.d 54.29% 10.62% 12 angle.b.c 90.41% 1.24%
2 angle.b.a 43.67% 4.22% 11 angle.a.c 89.18% 0.62%
1 distance.a.b 39.45% 39.45% 10 angle.c.a 88.56% 1.13%

9 angle.d.b 87.42% 2.89%
8 angle.b.a 84.54% 1.24%
7 distance.a.b 83.30% 2.27%
6 angle.c.b 81.03% 5.15%
5 angle.a.b 75.88% 3.92%
4 distance.b.c 71.96% 11.44%
3 angle.a.d 60.52% 16.60%
2 angle.c.d 43.92% 15.88%
1 angle.b.d 28.04% 28.04%

Table 3. Overall accuracy of predicting participant’s instant task role and group’s task timeline. We show precision, recall,
and F-measure scores, as well as the overall accuracy when using Random Forest with 50 trees (RF50) and 100 trees (RF100)
respectively.

RF50 Multi-class Classi�er RF100 Multi-class Classi�er
Task Role Recall Precision F-measure Accuracy Task Role Recall Precision F-measure Accuracy
ProcedPos 0.84 0.84 0.84

79.3%

ProcedPos 0.85 0.84 0.85

80.7%

SocEmPos 0.72 0.87 0.79 SocEmPos 0.74 0.87 0.80
ProblFcs 0.81 0.72 0.76 ProblFcs 0.82 0.75 0.78
ActOrtPos 0.69 0.78 0.73 ActOrtPos 0.70 0.81 0.75
ProcedNeg 0.65 0.65 0.65 ActOrtNeg 0.64 0.75 0.69
SocEmNeg 0.61 0.67 0.64 ProcedNeg 0.61 0.67 0.64
ActOrtNeg 0.43 0.67 0.52 SocEmNeg 0.58 0.68 0.62
Task Timeline Recall Precision F-measure Accuracy Task Timeline Recall Precision F-measure Accuracy
Intro 0.778 1.000 0.875

91.06%

Intro 0.778 1.000 0.875

91.88%

Materialsandlogistics 0.957 0.935 0.946 Materialsandlogistics 0.962 0.944 0.953
Buildinglevelone 0.934 0.901 0.917 Buildinglevelone 0.941 0.905 0.923
Buildingleveltwo 0.883 0.929 0.905 Buildingleveltwo 0.883 0.929 0.905
Marshontop 0.836 0.868 0.852 Marshontop 0.836 0.885 0.860
Consolidatinglevelone 0.896 0.883 0.889 Consolidatinglevelone 0.929 0.903 0.916
Outro 0.750 0.857 0.800 Outro 0.625 0.833 0.714
Buildinglevelthree 0.906 1.000 0.951 Buildinglevelthree 0.875 1.000 0.933
Buildinglevelfour 0.750 1.000 0.857 Buildinglevelfour 1.000 1.000 1.000

Table 4. Model accuracy (recall, precision, and F-measure) of predicting participant’s instant task role and group’s timeline
using Random Forest with 100 trees (RF100) and 10-fold cross validation.

Task Role Recall Precision F-measure Accuracy Task Timeline Recall Precision F-measure Accuracy
ProcedPos 0.96 0.82 0.88

84.9%

Intro 0.75 0.91 0.82

93.2%

ProblFcs 0.80 0.87 0.83 Materialsandlogistics 0.96 0.94 0.95
SocEmPos 0.73 0.93 0.82 Buildinglevelone 0.96 0.93 0.95
ActOrtPos 0.72 0.89 0.79 Buildingleveltwo 0.92 0.94 0.93
ProcedNeg 0.70 0.91 0.79 Marshontop 0.72 0.89 0.80
SocEmNeg 0.38 0.98 0.55 Consolidatinglevelone 0.96 0.92 0.94
ActOrtNeg 0.27 0.92 0.42 Outro 0.87 0.96 0.91

Buildinglevelthree 0.88 0.97 0.92
Buildinglevelfour 0.92 1.00 0.96
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feature vector to perform task-role classi�cation at group level. In total, it leads to 11454 data instances14. We list
the class distribution of these instances in Table 5.

Table 5. Class distribution of all (11454) instances in the task of classifying individual’s instant task role.

Label ProcedPos ProblFcs ActOrtPos SocEmPos SocEmNeg ProcedNeg ActoOrtNeg
Count 5351 3144 1592 1138 110 75 44

As shown in Table 3, the overall accuracy of classifying task role was 79.3% (RF50) and 80.7% (RF100) respectively.
Cross-fold validation with RF100 achieved overall accuracy of 84.9% (Table 4). Recall and precision are strong
among all classes with ProcedPos scoring the highest. SocEmNeg, ActOrtNeg, and ProcedNeg score lower because
they are minority classes with fewer instances, where SocEmNeg has 110 instances, ActOrtNeg has 44, and
ProcedNeg has 75 instances (Table 5). However, our use of SMOTE [27] to oversample minority classes has helped
to improve the recall of minority classes, in comparison to the result without any class balancing. This follows
our objective of reaching a balance between the scores (precision, recall and F-measure) across classes.

As we further analyze the confusion matrix in Table 6 using RF100, we can see that despite our oversampling
of the minority classes, the classi�er is still slightly biased towards the majority classes (ProblFcs and the positive
ones), resulting in more predictions of these classes. However, we did not want to oversample the minority classes
further, due to the limited number of instances available. At this stage we considered satis�able a precision of
around 70% (or more) for all classes with a loss in recall for the less frequent negative classes (Table 3).

Overall, our results show that task-role classes are quite distinguishable, meaning that the angle and distance
data parallel the verbal behavior. This adds to the qualitative seminal work on verbal and non-verbal behaviors
(i.e., the spatial orientations) that pull people together or push them apart. Most notably, this literature stream that
emerged discretely in the realms of anthropology and mental-health in the mid-sixties [30, 48] is now making its
way to social psychology, where the interconnectedness of behavioral channels is a new research endeavor [18].

2) Task Timeline. The Task Timeline classes represent stages in the building process followed by the partici-
pants. To predict the stage in the building process, we examine the con�gurations (i.e., relative orientations and
distances) of all participants in the group, based on the rationale that these con�gurations vary across di�erent
stages of the building process. As examples, in the intro phase, participants might have longer distances from
each other since they are not yet actively working; in the materials and logistics phase, they might come closer
to one another and form sub-groups (pairs of people with short distance and angle close to 90�) while they get
familiar with the materials or prototype a basic structure. Thus, we concatenate pairwise distances and angles
14The total number of instances theoretically is # of people per group ⇥ # of groups ⇥ # of 5-second intervals in 18 minutes = 4 ⇥ 16 ⇥ 216 =
13824. We obtain a lower number of instances because some groups� nished the challenges before the 18-minute mark and participants
stopped working on the structure and interacting.

Table 6. Confusion matrix of classifying instant task role of each participant using RF100 while training on 70% of the data
(model results in Table 3). We concatenate a participant’s instant angle and distance data to all other group members as the
feature vector and predict her instant role. The matrix contains 3440 testing instances (30% of the total data).

ProblFcs ProcedPos SocEmPos ActOrtPos ActOrtNeg SocEmNeg ProcedNeg
ProblFcs 776 123 8 31 1 2 3
ProcedPos 167 1371 23 36 1 7 1
SocEmPos 40 36 252 12 0 0 2
ActOrtPos 45 90 7 334 1 0 1
ActOrtNeg 1 3 0 1 9 0 0
SocEmNeg 2 11 0 1 0 19 0
ProcedNeg 7 2 0 0 0 0 14
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of all participants in the group as the feature vector to predict the Task Timeline. It results into 3231 instances,
given the� ve-second resolution of Protractor data15. Table 7 lists the class distribution of these instances.

Table 7. Class distribution of all (3231) instances in the task of classifying task timeline.
Label Buildinglevelone Consolidatinglevelone Materialsandlogistics Buildingleveltwo Marshontop Buildinglevelthree Outro Intro Buildinglevelfour
Count 908 701 700 539 183 106 53 28 13

We summarize the overall accuracy of classifying task timeline in Table 3. We observe that the majority of
tasks in the timeline can be distinguished well, achieving 91.06% (RF50) and 91.88% (RF100) overall (Table 3).
Cross-fold validation with RF100 achieves 93.19% accuracy (Table 4). Recall and precision are strong for most
classes, with Intro and Marshontop having a slightly lower recall (Table 4).

From the confusion matrix in Table 8, we observe that the classi�er exhibit inter-class misclassi�cation mainly
between building level one, building level two, materials and logistics, marshmallow on top and consolidating
level one (central section of the matrix). One possible reason for this is that the labels we selected might be too
�ne-grained and represent the same underlining action (e.g. working on the structure). A di�erent coding scheme
might account for these similarities and aggregate some of the labels we employed for this work.

7.3.2 Result Comparison to Existing Works. We also have compared our results to prior similar studies on
social dynamics of small groups using di�erent technologies. These prior studies commonly collected much richer
data (e.g., speaking turn and prosodic cues [100, 101], head and body activity [101]) in both visuals and audios,
while our tags collect only body distances and orientation. The most relevant work is [117], where Zancanaro
et al. used cameras and microphones to analyze the roles played by team members in relation to the tasks the
group has to face (“Task Area”) and in relation to the functioning of the group (“Socio-Emotional Area”). Using
the behavioral traits of speech activity (presence or absence) and� dgeting (e.g. tapping on table, playing with
glasses) the authors were able to predict the manually coded “Task Area” and “Socio-Emotional Area” roles of 10
participants with accuracy between 65% and 68% (F-score between 0.52 and 0.55). The problem setting is similar
to our classi�cation of Task Role, where we achieve better results with an accuracy of 84.9% and F-score ranging
from 0.42 to 0.88 (Table 4).

15The total number of instances theoretically is # of groups ⇥ # of 5-second intervals in 18 minutes = 16 ⇥ 216 = 3456. We obtain a lower
number of instances because some groups� nished the challenges before the 18-minute mark and participants stopped working on the
structure and interacting.

Table 8. Confusion matrix of classifying timeline states, using RF100 while training on 70% of the data (model results in
Table 3). We aggregate the dyadic angles and distances of all members in a group as group-level features to predict the
current stage of the building process. The matrix contains 973 testing instances (30% of the total data).

Intro Materials
and logistics

Building
level one

Building
level two

Marsh
on top

Consolidating
level one Outro Building

level three
Building
level four

Intro 7 2 0 0 0 0 0 0 0
Materials and logistics 0 203 6 2 0 0 0 0 0
Building level one 0 9 257 3 1 3 0 0 0
Building level two 0 0 7 143 0 12 0 0 0
Marsh on top 0 1 3 3 46 2 0 0 0
Consolidating level one 0 0 6 2 5 196 2 0 0
Outro 0 0 1 1 0 4 10 0 0
Building level three 0 0 4 0 0 0 0 28 0
Building level four 0 0 0 0 0 0 0 0 4
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8 DISCUSSIONS
8.1 Implications for Organizational Science
Our deployment study makes three theoretical contributions to the team dynamics and proxemics literature.
First, we identify and validate the conceptual link between� uid spatial arrangements (described by the variation
in angle and distance between team members) and communication content. Second, we extend Hall’s spatial
orientation with distinct dyadic data where left-right orientations demonstrate how proxemics match verbal
behavior. Third, we demonstrate the boundaries of “problem solving” as an only-positive verbal team role.
More broadly, we also address recent calls for research in micro-meso level behavioral processes that have

overwhelmingly been researched using retrospective self-reports [34, 67]; known for being bias-prone and
inaccurate, these tools have been called by social scientists to be supplemented by unobtrusive, data-dense, and
continuous measurement systems [44, 114]. By employing the Protractor we were able to accurately observe
nuances in proxemic behavioral changes. Practitioners such as trainers, supervisors, or team facilitators can use
our� ndings to better understand their teams’ dynamics and intervene (with procedural interpolations) during
intense problem-focused discussions to achieve higher creativity.
Finally, Protractor also allows us to study the impact of culture on proxemics behaviors. Hofstede et al. have

shown that cultural backgrounds can impact the way people think, feel, and act while working with others [42].
Cultural di�erences and personal preferences could alter the way people approach others in terms of interpersonal
distance and relative orientation. Some cultures for example tend to have closer distances when interacting
with strangers than other cultures [48, 105]. These di�erences could have a signi�cant e�ect in today’s highly
international workplaces and would need to be factored in when studying non-verbal cues. We leave these aspects
for future work.

8.2 Other Applications
We see the potential of such system not only in the support of organizational science research but also for
other practical applications. Protractor tags could be used during job interviews or sales training sessions to
collect data that can be later analyzed by the trainee in order to assess her behavior and to improve it over time.
We also envision the possibility of using this system to provide behavioral real-time feedback during social
interactions, similarly to what has been done in the past with cameras in controlled environments [33]. We
believe the unobtrusive wearable form factor could ease privacy concerns and potentially reduce biases.

Another area where Protractor could show its strengths is the design of novel human-computer interfaces based
on people orientation and movements, also called Proxemic Interactions. In this� eld, expensive motion tracking
systems (e.g., Vicon16) are used to create prototypes, but obviously they are not deployable in real applications
at scale [15, 23, 112]. Protractor represents instead a viable less expensive option to gather continuous user’s
orientation and motion without relying on invasive cameras. Protractor devices can be integrated into tangible
objects and in the environment in order to gather accurate information about people orientations in space and in
relation to objects. The data generated by Protractor could then be used to o�er innovative interaction paradigms
for smart and connected objects. Our current prototype can also rely on the availability of Bluetooth Low Energy
which could be used to locate users in the environment.

In our evaluation we have shown the maximum accuracy that we were able to achieve with our prototype.
Given that di�erent applications entail di�erent requirements on accuracy and power consumption, our approach
can be adapted to various requirements. As an example, by tuning the beacon transmission frequency and ADC
sampling rate it is possible to trade temporal granularity and accuracy for battery life. This is bene�cial for
applications that do not need continuous accurate angle and distance measurements but would prefer a longer

16http://www.vicon.com/
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operation period with a single charge. In this situation the beacons can be transmitted less frequently and the
transimpedance ampli�er can be switched o� for longer periods of time.

9 CONCLUSION AND FUTURE WORK
We have introduced Protractor, a wearable technology to accurately monitor non-verbal cues in social interactions.
The novelty of our approach lies in its ability of detecting relative body orientation via judicious use of near-
infrared light and sensor fusion algorithm exploiting inertial sensors. We demonstrated Protractor e�cacy with
prototype experiments and a user study with 64 participants using a team collaboration task.
Moving forward, we plan for the following future work. First, we will conduct larger-scale deployment

of Protractor tags over a longer term, aiming to facilitate studies on human social interactions and deepen
understandings on the role of non-verbal body languages in social contacts. While we have examined team
collaboration with Protractor tags, other applications that we are interested in investigating include sales
representative training sessions and meetings between healthcare practitioners and patients. Second, on the
technology front, we will investigate performance enhancements of Protractor tags, including lower-range
solutions to improve accuracy in very bright settings, alternative NIR beacon designs to allow beacon decoding
upon collisions, and adaptive duty cycling based on sliding-window average. We will also consider outdoor
scenarios where strong NIR light contained in sunlight can saturate light sensors in our tags. We will explore
adaptation of light sensor gains to mitigate the saturation problem and broaden the application scenario of
Protractor tags.
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