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ABSTRACT 

We present a self-powered module for gesture recognition 

that utilizes small, low-cost photodiodes for both energy 

harvesting and gesture sensing. Operating in the photovoltaic 

mode, photodiodes harvest energy from ambient light. In the 

meantime, the instantaneously harvested power from 

individual photodiodes is monitored and exploited as a clue 

for sensing finger gestures in proximity. Harvested power 

from all photodiodes are aggregated to drive the whole 

gesture-recognition module including a micro-controller 

running the recognition algorithm. We design robust, 

lightweight algorithm to recognize finger gestures in the 

presence of ambient light fluctuations. We fabricate two 

prototypes to facilitate user’s interaction with smart glasses 

and smart watches. Results show 99.7%/98.3% overall 

precision/recall in recognizing five gestures on glasses and 

99.2%/97.5% precision/recall in recognizing seven gestures 

on the watch. The system consumes 34.6 µW/74.3 µW for 

the glasses/watch and thus can be powered by the energy 

harvested from ambient light. We also test system’s 

robustness under various light intensities, light directions, 

and ambient light fluctuations. The system maintains high 

recognition accuracy (> 96%) in all tested settings.  

Author Keywords 

Gesture recognition; visible light sensing; energy harvesting.  

INTRODUCTION 

Gestural input is essential for interacting with small wearable 

devices or smart sensors (Internet of Things). Sensing and 

processing finger gestures, however, consume power. 

Limiting the energy footprint of gestural input is essential to 

bringing it to devices with highly constrained energy budget, 

or without batteries (e.g., battery-less cell phones [50], 

displays [13,16], cameras [40,41]). Prior studies have 

explored low-power gesture sensing with various sensing 

modalities (e.g., electric field, TV or RFID signals, pressure, 

and capacitance) [9,12,23,53], most requiring on-body 

sensors dedicated solely to gesture sensing.  
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In this work, we consider empowering energy-constrained or 

battery-free devices with energy harvesters for both energy 

harvesting and gesture sensing. In particular, we exploit 

ambient light as the sensing medium and energy source for 

its ubiquity and high energy density
1
. Our approach relies on 

arrays of small, low-cost photodiodes as energy harvesters 

while reusing them for always-on recognition of finger 

gestural inputs (either via touch or in midair near the 

photodiodes), without the need of battery sources (Figure 1). 

As the key departure from many existing light-sensing 

systems [44], photodiodes operate only in the photovoltaic 

mode, thus requiring no input power and only harvesting 

energy from ambient light [52]. In the meantime, we monitor 

the instantaneous power harvested by each photodiode and 

utilize it as the clue to recognize finger gestures. Harvested 

energy aggregated from all photodiodes powers the whole 

gesture-recognition module including both its sensing and 

computation components. Surplus energy
2
 can further power 

other components of the device, which is particularly 

beneficial for battery-free or ultra-low-power devices.  

To develop this approach, the main technical challenge we 

had to overcome is the uncontrollable ambient light 

conditions (e.g., light intensity levels, light directions), which 

often exhibit unpredictable fluctuations caused by user 

movements or environmental dynamics (e.g., luminary’s 

inherent flickering, clouds passing by, tree leaves waving in 

the wind). We tackle this challenge using an efficient and 

                                                           
1

 The typical energy density of light is 100 mW/cm
2
 

outdoors and 1 mW/cm
2
 indoors, which is higher than 

alternative sources (e.g., radio signals, kinetic energy) 

[11,27,56].   

2
 The surplus energy is most significant outdoors, where 

tens of milliwatts can be harvested under sunlight with 40+ 

photodiodes (300 mm
2 
total sensing area).  

Figure 1: Integrating our prototype with a glasses frame (a) 

and a watch (b), where arrays of photodiodes harvest energy 

while being reused for sensing finger gestures. 
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lightweight recognition algorithm based on constant false 

alarm rate (CFAR) pulse detection [47]. Without the need of 

training, the algorithm dynamically estimates current ambient 

light intensity to ensure that finger movements on or near 

photodiodes can be reliably detected even under a noisy 

signal background. Additionally, we exploit the locality of 

the finger blockage to mitigate the impact of sudden, drastic 

changes in ambient light (e.g., lights switching off), which by 

contrast cause global declines in the harvested energy across 

all photodiodes and thus can be differentiated from the 

blockage effect of the finger.  

We demonstrate our approach using two prototypes, tailored 

to interactions on smart glasses and smart watches
3
. We 

optimize the circuit designs to minimize the energy overhead 

of monitoring the harvested energy from each photodiode. 

We implement the recognition algorithm on an off-the-shelf 

micro-controller. With a gesture set of five smart glass 

gestures and seven smartwatch gestures, we have tested our 

prototypes extensively under diverse ambient light conditions 

both indoors and outdoors. Results demonstrate system's 

ultra-low power consumption (34.6 µW in the smart glass 

form factor and 74.3 µW in the smartwatch form factor), 

while achieving 98.9% (SD=1.7) gesture recognition 

accuracy across all tested lighting conditions. 

The main contributions of our work include (1) the concept 

of a self-powered gesture recognition module, utilizing the 

harvested energy from photodiodes in the photovoltaic mode 

for sensing touch and near-range finger gestures; (2) a robust 

and lightweight gesture recognition algorithm without the 

need of training; (3) the design and implementation of our 

system in two wearable form factors; and (4) the results of a 

series of experiments demonstrating the system's sensing 

accuracy, energy consumption and harvesting, and 

robustness in diverse ambient light conditions. 

SENSING PRINCIPLE 

 

Figure 2: Equivalent circuit of a junction photodiode. 

A junction photodiode bears the intrinsic characteristics of an 

ordinary signal diode but differs in that it generates a 

photocurrent when light strikes the junction semiconductor. 

Figure 2 illustrates the inner working of a junction 

photodiode with its equivalent circuit, where the generated 

                                                           
3
 We choose the watch and glasses as examples only to ease 

the prototyping. Our approach is generalizable beyond these 

examples. We plan to integrate our design into battery-free 

devices as our future work.   

photocurrent is denoted as IPD, dark current (leakage current) 

is ID, and CD denotes the diode’s capacitance. The output 

current, IOUT, is a summation of IPD and ID and can be 

converted into a voltage, VOUT, with a load resistance, RL.  

The junction photodiode operates in one of these two modes:  

 Photoconductive mode, where an external reverse bias 

voltage is applied to the photodiode and VOUT is linearly 

proportional to the incoming light intensity. The reverse 

bias also reduces diode’s capacitance CD, thus lowering 

the diode’s response time. This mode is commonly used 

for sensing light intensity.   

 Photovoltaic mode, where zero bias (i.e., no input power) 

is applied and the photodiode generates a more restricted 

flow of photocurrent depending on incoming optical 

power.  This mode is the basis for solar cells.   

Most prior light sensing systems [44] work with photodiodes 

in the photoconductive mode. It achieves high sensing 

responsivity at the cost of external power input. By contrast, 

we focus on diode’s photovoltaic mode. It requires no input 

power while passively harvesting energy from ambient light. 

Our system’s sensing principle stems from the fact that the 

amount of power harvested by a photodiode (VOUT) decreases 

when a near-field object blocks a part of incoming light. As 

such, monitoring the output power of the photodiode allows 

us to detect the blockage of the near-field object. As an 

example, Figure 3 plots the change in the power harvested by 

a photodiode when a user swipes the finger twelve times 

above or on the diode. Here the sensor readings are the 

output of a 14-bit ADC (maximum value = 16383 for 3.3V). 

Clearly, as a finger moves in a close range above or directly 

on an array of photodiodes, it blocks varying subset of 

photodiodes, causing sharp dips in their harvested power. By 

monitoring such dips, we can detect the temporal sequence of 

blocked photodiodes and thus recognize finger’s movement 

direction or touch trajectory. 

 

Figure 3: Time-series of photodiode’s harvested power as a 

finger swipes above it (left) or touches it (right) 12 times. 

Each photodiode is connected to an energy-harvesting circuit 

for harvesting energy and a voltage-reading circuit, e.g., an 

analog-to-digital converter (ADC) of a micro-controller, for 

the system to read the amount of harvested power (voltage) 

from this photodiode. We periodically switch between the 

two circuits to facilitate sensing and powering using an ultra-

low power CMOS single pole double throw (SPDT) switch. 

As shown in Figure 4, the analog input of the SPDT connects 

to the output of the photodiode (anode). SPDT’s analog 



output port, controlled by a logic input Vs, is used for 

switching between the energy-harvesting circuit and voltage-

reading circuit. When Vs is logic HIGH, the photodiode’s 

anode connects to a load resistance, allowing an external 

ADC to read the converted voltage. When Vs is logic LOW, 

the photodiode connects to the energy-harvesting circuit, 

allowing it to harvest energy together with the other 

photodiodes. Since reading the voltage takes less than 5 µs, 

its time overhead is negligible. Therefore, the photodiodes 

are almost completely devoted to energy-harvesting. 

 

Figure 4: Circuit design for reading harvested power from 

individual photodiodes. 

METHOD 

We exploit finger’s blocking effect on photodiode’s energy 

harvesting to recognize finger gestures. Next, we introduce 

the finger gesture set, followed by our recognition algorithm.  

Gesture Set 

As shown in Figure 5, we consider twelve gestures for 

interacting with two example wearable devices (smart glasses 

and watch). These gestures are chosen from known gesture 

sets that have been shown to be useful on smart glasses [15] 

and the watch [2,20,25]. Specifically, there are five glasses 

gestures including forward and backward swipes in midair, 

single tap, double tap and double-finger touch. The seven 

gestures on the watch include swipes in four directions in 

midair (right, left, up and down), single tap, double tap and 

double-finger touch. Note that the swipe gestures are 

designed for performing in midair according to [58]. 

 

Figure 5: Gesture set for the glasses (top) and watch (bottom). 

Gesture Recognition  

Recognizing touch is relatively easy, because touching a 

photodiode almost completely prevents a photodiode from 

harvesting power (Figure 3), regardless of the ambient light 

condition. Thus, touch detection can be implemented with a 

fixed threshold (set as ADC output value 200 in our 

implementation).  

Recognizing midair finger gestures, however, is much more 

challenging in practice, because its blocking effect is more 

subject to the impact of uncontrolled ambient light conditions. 

Figure 6 plots the time series of the power harvested from a 

photodiode above which a user swiping a finger nine times 

(see the dips) while walking in a room (300-600 lux). We 

observe that harvested power fluctuates over time because of 

the uneven distribution of ambient light intensity. Thus, using 

a fixed threshold cannot reliably detect the dips to infer 

midair finger movement. Similarly, using first-order 

derivatives also renders a poor accuracy because of light 

flickering and hardware noise
4
. 

 

Figure 6: Time series of the harvested power of a photodiode. 

The photodiode is carried by a walking user, who swipes a 

finger above the photodiode nine times. 

To overcome this challenge and enable reliable detection of 

the occurrences of midair finger blockage at each photodiode, 

we design a lightweight algorithm based on constant false 

alarm rate (CFAR). CFAR detection has been widely used in 

the radar system to detect pulses with a constant false alarm 

rate in noisy environments [47]. In brief, it estimates the 

current noise using m observations around the current 

measurement. It discards n samples adjacent to the current 

measurement to avoid current measurement polluting the 

noise estimation. CFAR is the best fit in solving our problem 

because with adaptive thresholding, it is robust against 

environmental noises. Additionally, it entails a negligible 

computation overhead without the need of any signal 

smoothing process on the raw sensing data.  

Unlike the traditional CFAR algorithm that samples 

references before and after the current measurement, we only 

consider m reference samples before the current 

measurement at time t for each photodiode i. Let R
i
 be a 

vector of prior readings from photodiode i after removing n 

readings adjacent to the latest reading, where 𝑅𝑖 =

{𝑠𝑡−𝑚−𝑛
𝑖 , 𝑠𝑡−𝑚−𝑛+1

𝑖 , … , 𝑠𝑡−𝑛−1
𝑖 } and 𝑠𝑡

𝑖  is the reading of i 
th
 

photodiode at time t. Then, a pulse (i.e., midair blockage) is 

detected at photodiode i if the following condition holds: 

(𝑠𝑡
𝑖 − mean(𝑅𝑖)) >  𝛼 ∙ (mean(|𝑅𝑖 − mean(𝑅𝑖)| )) (1) 
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 We have also tested various smoothing techniques [39] to 

reduce noises. These techniques, however, either reduce the 

signal-to-noise ratio or entail computational overhead 

unaffordable by the harvested power.  



 𝛼 is a threshold factor computed as below [42], 

α = 𝑓−1(1 − 𝑃𝑓𝑎) 𝑓−1 (
1

2
)⁄  , 

where f is the error function, and 𝑃𝑓𝑎 is the false alarm rate. 

In our implementation, we set m, n, and as 16, 8, and 7‰, 

respectively. f is set as a Gaussian error function based on our 

measurements.  

Since the noise estimation is based on a few reference 

samples (e.g., 16), the estimation results may not be accurate 

when ambient light drastically changes within these reference 

samples. Such sudden ambient light change, however, leads 

to a global change (drop or rise) in the harvested power 

across all photodiodes. By contrast, a finger blocks only a 

subset of photodiodes. Thus, once we detect pulses at all 

photodiodes, we can infer that a global light change occurs. If 

it is a global increase in light intensity, then the photodiode 

experiencing the largest increase is not blocked by the finger 

and its change reflects the ambient light change ∆L. If it is a 

global decrease, then the photodiode with the smallest 

decrease is not blocked by the finger and hence its change 

reflects ∆L. We then subtract ∆L from all reference samples 

before the sudden light change so that the finger blockage 

can be correctly detected.  

After detecting each photodiode’s blockage status, we next 

aggregate their statuses to recognize finger midair gestures. 

Specifically, we consider finger gestures along N sides of a 

device (e.g., N = 4 for a watch bezel and N = 1 for a glasses 

frame). For each side with photodiodes, we compute the 

maximal light intensity change as below:  

𝐿𝑢 =  max
𝑗∈𝑃𝑢

(𝑙𝑗),  

where  𝑙𝑗 = {
|𝑠𝑡

𝑗
− mean(𝑅𝑗)|,  if condition (1) holds

0,          otherwise
 

A potential gesture frame (either touch or midair) is detected 

if any side is larger than zero. For a non-gesture frame, all 

sides remain zero. We leverage Q continuous gesture frames 

that contain maximal light intensity changes for gesture 

recognition. To do so, we first compute the accumulated light 

intensity change for each side of the device. We then 

recognize the side on which the gesture is performed by 

identifying one with the maximal. Finger’s movement 

direction can then be determined based on the index of the 

first and last blocked photodiode within the Q gesture frames.  

To ensure energy efficiency, we set nonuniform sampling 

rates across photodiodes. For midair gestures, we only 

acquire the voltage information from a small set of 

photodiodes, as the blockage information is sufficient to 

derive finger midair motion above the photodiodes. In this 

case, voltage data is sampled at a higher frequency (35 Hz), 

since midair gestures are performed fast (e.g., less than 0.1s) 

and the duration of the finger moving across a photodiode 

can be as short as tens of milliseconds. In contrast, 

identifying the photodiode(s) that are in contact with the 

finger(s) requires reading from every photodiode. However, 

since swiping across a photodiode using touch is slower (e.g., 

50 ms) than in the midair, the sampling rate can be lower (17 

Hz in our implementation).   

 

Figure 7: Integrating the prototype with Google Glass. 

 

Figure 8: Integrating the prototype with a smart watch. 

PROTOTYPES 

We build two prototypes using off-the-shelf hardware, 

considering interaction with smart glasses and a smart watch 

as examples (Figure 7 and Figure 8). Note that the watch 

screen in Figure 8 is only for visualizing the recognition 

results from our prototype and it is powered by an external 

power supply. Each prototype consists of arrays of 

photodiodes, control circuits for switching between energy 

harvesting and voltage reading, and a micro-controller. 

Figure 9 illustrates the schematic. We next explain each 

component in detail.  

Photodiodes and Control Circuits 

We choose off-the-shelf silicon PIN photodiodes (Osram 

BPW34 [66]), providing 21% energy conversion efficiency 

and measured 2.7×2.7 mm in size.  Photodiodes can be 

wired in series or in parallel. The output voltage is equal to 

the summation of each photodiode in the former, and the 

minimum voltage across photodiodes in the latter. In our 

experiment, each photodiode provides 350 mV (900 nm, 1 

mW/cm
2
) output voltage. It is below the start voltage of our 

energy harvester, which is 850 mV without a backup source 

(e.g., super-capacitor) and 300 mV with a backup source. 

Therefore, we connect multiple (2 or 3) photodiodes in series 

as a unit and then connect these units in parallel (as shown in 

Figure 9). The total harvested power remains the same, 

independent of how the photodiodes are wired. 



 

Figure 9: Schematic of our prototype, where q photodiodes are 

wired in series as a group connecting to a switch, and p 

photodiode groups are wired in parallel, connecting to the 

power management, decoder, and micro-controller. 

We choose an ultra-low power dual SPDT switch (ADG 736 

[67]) to link the photodiode to an energy harvester or ADC. 

ADG 736 has two SPDT units and can control two 

photodiodes respectively. SPDT units are controlled by a 

low-power 16-channel decoder (74HC4514 [68]).  

We design and fabricate printed circuit boards (PCB) to host 

photodiodes and control circuits. For the smart glasses, the 

PCB board is a thin (1.6 mm) two-layer board that hosts 16 

× 3 photodiodes on the front and control circuits on the back 

(Figure 7). Three photodiodes in a column form a unit, 

controlled by a SPDT switch on the back. The PCB is 

attached to the side arm of a Google Glass. For the smart 

watch, we fabricate two customized PCBs (Figure 8). The 

first PCB is a two-layer board that hosts 44 photodiodes and 

two photodiodes form a unit, providing 22 channels for 

reading harvested voltages. This PCB surrounds the watch 

screen and its outputs connect to the second board, which is a 

4-layer PCB with 11 duel SPDT switches and two 16-

channels decoders. The additional decoder only requires one 

more port from micro-controller.  

For both prototypes, all units are used for detecting touches 

while a subset of units are used for detecting midair gestures. 

Specifically, only 4 units (column 1, 5, 9 and 13) are used in 

the glasses scenario while 11 units uniformly sampled are 

used in the watch scenario.  

The harvested power fluctuates due to user’s mobility and 

ambient light variations. To maintain a stable power output, 

our power management component is a buck-boost DC/DC 

converter (LTC3106 [69]) combined with a super-capacitor 

(0.22 F) as shown in Figure 9. The super-capacitor stores 

surplus energy to supply the system when the harvested 

energy is lower than the requirement (e.g., in low light 

conditions). 

Micro-Controller 

We use an ultra-low-power micro-controller (MINI-M4 for 

MSP432 board [70]) to control the decoder, digitize output 

voltage of each photodiode and recognize finger gestures. 

We use the MSP432P401R micro-controller in three modes 

[71]: 1) LPM3 mode (660 nA/3.3V, CPU idle); 2) active 

mode (80 µA/MHz/3.3V, 48 MHz clock) running CFAR; 

and 3) ADC_DMA mode (1.4 mA/3.3V, 25 MHz clock) 

controlling the decoder and sampling voltage number. The 

micro-controller is in the active mode for 0.14% (glasses) 

and 0.36% (watch) of the time, in the ADC_DMA mode for 

0.28% (glasses) and 0.39% (watch) of the time, and in the 

LPM3 mode otherwise. Given that an ADC conversion takes 

5 µs, collecting voltage numbers from all units takes 80 µs on 

the glasses and 110 µs on the watch. Thus, photodiodes 

harvest power in more than 99.5% of the time.  

The micro-controller runs the gesture recognition algorithm 

to output detected gesture. Our measurements show that the 

recognizing a gesture takes 10 µs on the glasses prototype 

and 30 µs on the watch. To minimize the power consumption, 

we remove unrelated units (e.g., USB bridge chip and LED 

indicators) on the board. To further reduce the computation 

overhead, we replace all of the multiplications and divisions 

to shift operations, since the multipliers and dividers are 

factor of two. The energy harvested by photodiodes powers 

the whole system, including SPDT switches, decoders and 

the micro-controller. 

STUDY 1: RECOGNITION ACCURACY 

We begin with examining gesture recognition accuracy.  

Participants 

Ten participants (9 males, age: min=20, max=33, 

mean=24.2) were recruited in this study. All of them are 

right-handed. The diameters of participants’ index fingers 

range from 12 mm to 17.5 mm (SD = 1.5) and that of the 

middle fingers are between 12.5 mm and 17 mm (SD = 1.1). 

Data Collection 

Data collection is carried out in an office room (4.5 m × 5.6 

m), which has 6 fluorescent lights on the ceiling. Participants 

perform the task in a sitting position at a desk, 2 m below the 

ceiling. Light intensity is measured using a LX1330B light 

meter. We found the average light intensity around the 

photodiodes of the glasses is between 472 and 544 lux (SD = 

21.1), depending on the participant’s height. The light 

intensity at the watch face is between 860 and 933 lux (SD = 

23.9), depending on the position of participants’ hand. 

Prior to the start of the study, participants are given several 

minutes to practice the gestures. During the study, 

participants perform the gestures using the right hand in their 

normal speed. In the watch scenario, participants rest the left 

arm on the desk and use the right hand to perform the 



gestures. For both the watch and glasses, touch is performed 

directly on the photodiodes whereas midair gestures are 

performed with the finger at roughly 0.5 cm to 3 cm distance 

to the photodiodes. Each gesture is repeated 20 times. A five-

minute break was given between the glass and watch 

scenarios. In total, we have collected 2400 gesture instances 

(10 participants × 12 gestures × 20 repetitions) for analysis.  

Result 

Recognition accuracy is measured using precision and recall 

[6]. Precision is the percentage of the correctly recognized 

gestures among all the detected gestures. Recall is the 

percentage of the correctly recognized gestures among the 

entire gesture set (e.g., 20 for each gesture in our dataset).  

The precision and recall for the glasses is 99.7% and 98.3%, 

respectively. The precision and recall for the watch is 99.2% 

and 97.5%, respectively. Figure 10 shows the result per 

participant and the precision and recall averaged across all 

the participants as the ‘overall’ bar. The recall rate for P6 is 

the lowest. This is because P6 occasionally performs the 

gestures more than 3 cm away from the photodiodes, 

resulting into incorrect recognitions of some midair gestures. 

 

Figure 10: Precision and recall of gesture recognition across 

participants. 

Recognition accuracy across different gestures is shown in 

Figure 11. As expected, touch gestures (e.g., tap) receive the 

highest accuracy (precision = 99.5%, recall = 99.5%). This is 

primarily attributed to the significant impact of touch on 

harvested energy. When a finger touches the photodiodes, the 

energy harvested from the photodiode drops to somewhere 

near zero (not zero due to the dark current) allowing the 

gestures to be easily detected. The recognition accuracy of 

midair gestures is higher with the glasses than the watch, 

where the precision/recall is 100%/96.5% for the glasses and 

99.5%/96.1% for the watch. This is partially because the 

glasses has a smaller set of 1D gestures whereas the gesture 

set for the watch is larger, including both 1D and 2D gestures. 

We will discuss how to improve the glasses prototype to 

sense 2D finger gestures in the future work. 

We also analyze the impact of gesture speed on recognition 

accuracy. From the results of participants gesturing in various 

speeds, we do not observe noticeable differences in accuracy 

caused by gesture speed. The reason is that given the length 

of the photodiode array (7.1 cm for the glasses, 5.4 cm for the 

watch) and the ADC rate (35 Hz), the fastest swiping speed 

the system can handle is 245 cm/s (glasses) and 189 cm/s 

(watch), far above our normal gesture speed. Thus, the 

system maintains its recognition accuracy under various 

normal speeds of gesturing.  

 

Figure 11: Recognition accuracy across finger gestures. 

STUDY 2: POWER CONSUMPTION AND HARVESTING 

We next examine the power consumption of our prototypes 

and their ability to harvest energy in various ambient light 

conditions.  

Power Consumption  

We measure the power consumption of our prototypes using 

a Monsoon power monitor [72], averaged over 10-second 

intervals for five testing rounds. As shown in Table 1, the 

overall power consumption for gesture recognition is 34.6 

µW for the glasses and 74.3 µW for the watch.  The watch 

consumes more power because the device has more 

photodiodes. The gesture set of the watch contains more 2D 

gestures that entail slightly higher computational overhead to 

recognize. For both prototypes, 94-95% of the power is 

consumed by the micro-controller running the recognition 

algorithm and by the built-in ADC acquiring voltage data 

(30-40% of the power). The micro-controller consumes less 

than 5 µW in the sleep mode (LPM3 mode) when no gesture 

is detected. It is possible to replace the ADC with ultra-low-

power comparators (e.g., TS881 [73]) to further improve 

energy efficiency. Moreover, the photodiodes do not 

consume any power and their control circuits (e.g., SPDT 

switches, decoder) also consume negligible power.  

Table 1: Breakdown of power consumption for two prototypes. 

 

Energy Harvesting 

We also conduct a study to measure the amount of energy 

our prototypes can harvest in various ambient light 

conditions. A participant (188 cm tall) is recruited for the 



study, where participant is asked to wear the devices in a 

sitting and standing position. The amount of the energy 

harvested by the devices is measured in four indoor lighting 

conditions and three outdoor lighting conditions. The indoor 

lighting conditions include: 1) a dark room (200 lux); 2) 

normal office lighting (600 lux); 3) bright lab condition (1K 

lux), and 4) next to a lab window during noon (2K lux). The 

outdoor lighting conditions include: 1) in the shadow of a tall 

building (4K lux); 2) under direct sunlight in a cloudy day 

(20K lux), and 3) under direct sunlight in a sunny day (110K 

lux). When standing, participant is asked to occasionally 

raise the wrist to the front of the chest to mimic the situation 

where a user is interacting with the device with photodiodes 

facing the sky or ceiling. When the wrist is not held in front 

of the chest, photodiodes face outside the body. When sitting, 

participant rests the arm on a table of 70-cm height.  

Table 2 shows the results of all the tested conditions. In the 

indoor conditions, the power harvested by our devices ranges 

from 23 µW to 124 µW. Even though the glasses prototype 

contains more (48) photodiodes than the watch, it harvests 

slightly less power in most conditions because the light to the 

glasses often comes from larger incident angles. In the 

outdoor conditions, the amount of power harvested by both 

devices is significantly higher, ranging from 1.3 mW to 46.5 

mW. This is because sunlight contains more infrared light, 

which photodiodes can convert to energy more efficiently. 

Overall, our result shows that the energy harvested by our 

prototypes is sufficient to power the entire gesture 

recognition module except when participant is in the sitting 

position in the dark room. This problem can be mitigated by 

the supercapacitor in our prototypes, with which surplus 

energy harvested in other conditions is stored to power the 

system in situations when the harvested energy is insufficient. 

Filling in this power gap (11 - 33 µW) for one hour needs a 

user to stay outdoors for 26 - 91 seconds in shadow, or 5 - 15 

seconds in a cloudy day (20K lux) or 1 - 3 seconds under 

direct sunlight (110K lux).  

Table 2: Harvested energy in various ambient light conditions. 

 

STUDY 3: SYSTEM ROBUSTNESS  

Finally, we examine system robustness against diverse 

ambient light conditions. Since recognizing touch is quite 

robust (e.g., 99.5% for both precision and recall) against all 

the tested conditions, we only tested midair gestures in this 

study. In each of the tested lighting condition, we have 

collected 100 gesture instances (5 gestures × 20 repetitions) 

for the glasses and 140 gesture instances (7 gestures × 20 

repetitions) for the watch. Next, we present our results.  

Stable Ambient Light  

We first test our devices under a stable ambient light 

condition, i.e., no sharp change in light intensity. We 

examine the impact of the intensity and direction of ambient 

light on recognition accuracy.  

Varying Intensity Level 

We test six different levels of light intensity, including three 

indoor conditions: dark room (200 lux), normal office (600 

lux) and bright lab (1K lux), and 3 outdoor conditions: under 

shadow (4K lux), under cloud (20K lux) and direct sunlight 

(110K lux). We also test the watch prototype with no 

ambient light (0 lux). In this condition, our systems rely on 

the screen light reflected by the finger. 

Figure 12 plots the results. Both prototypes achieve high 

precision (100%) and recall (99.8%) in the indoor conditions. 

The precisions for the outdoor conditions are slightly lower 

(94.9% for the glasses and 97.5% for the watch because of 

higher fluctuated noises from sunlight. As for the case with 

no ambient light, the devices achieve a precision of 100%, 

solely depending on the screen light reflected from the finger. 

In this case, the CFAR method detects power rises, instead of 

dips to identify the blocked photodiodes for gesture 

recognition. The recall for the no-light condition is slightly 

lower (90%) because the intensity of the reflected light is not 

sufficient enough to guarantee a significant impact on the 

harvested energy. Overall, our result suggests that CFAR is 

effective for detecting the tested finger gestures in various 

levels of ambient light intensity.  

Varying Light Direction 

We also test the robustness of our system under varying light 

directions. In this study, we vary the direction of incoming 

light using a floor lamp. For the glasses, we place the lamp at 

three angles to the photodiodes (-45°, 0° and +45°). When 

the lamp is placed at 0° angle, it faces directly to the 

photodiodes. For the watch, we placed the lamp in four 

Figure 12: Accuracy of gesture recognition under different 

levels of ambient light intensity. 



directions (Forward, Left, Right and Above). Light intensity 

on the watch face is around 300 lux. 

Figure 13 summarizes the results for both prototypes. The 

gesture recognition accuracy for the glasses remains high 

(98.1% precision and 99.2% recall) across all directions, 

since the direction of the incoming light has little impact on 

the sequence in which the 1D array of photodiodes are 

blocked. The watch receives slightly lower recall (96.3-

98.8%) when the light comes from the Left or Right. This is 

because the shadow of the finger occasionally lands outside 

the photodiodes when the finger swipes up or down. In this 

case, the system does not sense any voltage change. The 

same effect appears when swiping the finger left or right with 

the light coming from Front. Additionally, when light comes 

from the right side of the device, the shadow of the moving 

finger can affect certain photodiodes and interfere with the 

sensing of finger motion, and vice versa for left-handed users. 

Overall, our results show that both prototypes can maintain 

high precision/recall in all the tested lighting directions.  

Dynamic Ambient Light  

We then test our prototypes in a more challenging scenario, 

where the ambient light fluctuates. We examine five possible 

causes for light fluctuation, including luminary flickering, 

partial light blockage, moving shadow from a nearby people, 

sudden global light change, and user movement. Figure 14 

summarizes the results for all scenarios.  

Flicker Effect 

The flicker effect appears in some indoor luminaries driven 

by alternating current. In this study, we test our prototypes in 

two offices (light intensity around 600 lux), each has a 

flickering luminary one flashing at approximately 60 Hz and 

another one at 120 Hz. The flicker frequency is measured by 

an OWON oscilloscope. Figure 14 shows that the prototypes 

achieve 100% precision and 97-98% recall. It demonstrates 

that our CFAR method can effectively remove the high-

frequency flickering signals and precisely detects the 

photodiodes blocked by the nearby finger in the midair. A 

light flickering at around 30 Hz can significantly affect 

performance of our system since it is close to our sampling 

rate (35 Hz). However, 30 Hz flickering light is rare in the 

indoor environments because it is noticeable by naked eyes.  

Partial Light Difference 

We then test situations where the photodiodes are exposed to 

nonuniform light intensities. We place a polarizer on the 

prototypes, resulting half of the photodiodes under 900-lux 

while the other half under 400 lux. As shown in Figure 14, 

the precision and recall remain 100% and 98%, respectively. 

Such high accuracy is primarily because of the CFAR 

algorithm, where each photodiode uses its own dynamic 

thresholding. As a result, blockage detection is not affected 

by the nonuniform light intensity across the photodiodes.  

Nearby Body Movement 

We next test the impact of nearby body movement on 

recognition accuracy. Someone passing near the user may 

cast shadow on the photodiodes, thus causing false positives. 

In this experiment, we recruit another participant as a 

distractor, who walks in random trajectories near the user 

wearing the devices or wave the hands 30 cm away from the 

prototypes. Our result shows that the movement of a nearby 

person has negligible impact on recognition accuracy. This is 

because our system’s sensing range is approximately 

between 0.5 cm to 3 cm. A finger in such close distance can 

block a sufficient amount of light to cause noticeable dips in 

harvested power. Whereas, objects further away from 

photodiodes block far less light and have little interference 

with the gesture sensing.  

Sudden Light Change 

We now examine the impact of drastic, sudden ambient light 

change on the recognition accuracy. We conduct the 

experiment in an office illumined by multiple floor lamps. A 

participant wears our prototypes on at a time when 

performing the gestures, during which one floor lamp is 

turned on and off at roughly 1-3 Hz. This introduces quick 

change of light intensity oscillating between 550 lux and 800 

lux measured at the photodiodes. Results show that the 

systems still achieve high precision (96.7% for glasses and 

95% for watch) and recall (97% for glasses and 96.3%). It 

demonstrates that our method can effectively identify the 

global light change and subtract it from gesture recognition. 

As a result, it filters out the sudden global light change and 

detects midair gesture correctly. 

Figure 14: Accuracy of gesture recognition under ambient 

light in varying directions. 

Figure 13: Accuracy of gesture recognition under ambient 

light fluctuations. 



User Movement 

Finally, we test our prototypes during user movements. A 

participant performs the gestures with our prototypes when 

walking in a hallway, where light distributes nonuniformly, 

ranging between 500 lux and 1K lux. The results show that 

the glasses prototype achieves 100% precision and 97% 

recall. The recall accuracy decreases because participant 

occasionally performs the gestures outside the device’s 

sensing range (e.g., 3 cm). The watch achieves 97.4% 

precision and 95% recall. Four out of eighty midair gestures 

are classified incorrectly, possibly caused by the nearby 

shadows when moving. 

DEMO APPLICATIONS 

 

Figure 15: Demo applications: (a) a user swipes finger to browse 

websites (b) a user plays game on smartwatch. 

We implemented two demo applications to showcase our 

self-powered system’s potential on wearable devices. Our 

first application allows the user to interact with a head-worn 

display using the midair and touch gestures. We place our 

glasses frame prototype on a Google Glass’s touchpad. With 

our glasses frame, most of conventional touch gestures can 

be implemented and additional midair swipe gestures are also 

supported. More gestures can be added which will be 

discussed in future work. In addition, our system provides a 

successful self-powered solution to battery-limited smart 

devices and it can even power other units on smart devices. 

In our application, a midair swipe gesture is a shortcut for 

page turning while browsing websites with smart-glasses 

(Figure 15 (a)).  

Our second application is an additional controller on 

smartwatch with our watch bezel prototype. We created a 

smartwatch prototype using a 2” TFT display, a 3D printed 

case, and our watch bezel. In this application, the user can 

interact with the smartwatch in midair or touching the bezel. 

This provides an external and freedom way and has two 

potential benefits. First, users can set the limited buttons on 

the original smartwatch for some important functions, such 

as answering the phone and activating intelligent personal 

assistant. Other minor function can set on our self-powered 

watch bezel, such as muting the device and rotating the 

screen. Second, our system provides a midair solution to 

extend the interactive area of the screen-limited smartwatch. 

For example, the user can swipe the finger to play mobile 

games on the smartwatch (Figure 15 (b)). 

RELATED WORK 

We summarize related work in low-power gesture sensing, 

visible light sensing and midair gesture sensing in general. 

Low-Power Gesture Sensing  

Existing studies have explored various sensing modalities for 

low-power gesture sensing. Examples include innovative 

sensing with electric fields [9], TV or RFID signals [23], 

pressure [12] and capacitive [53][5] sensors. In particular, 

Gabe Cohn et al presented an ultra-low-power method for 

passively sensing body motion using static electric fields by 

measuring the voltage at any single location on the body [9]. 

Its components consume 6.6 µW. WristFlex uses an array of 

force sensitive resistors to distinguish subtle finger pinch 

gestures. The sensors alone consume 60.7 µW [12]. Allsee 

[23] recognizes hand gestures by examining its reflection of 

existing wireless signals, e.g. TV or RFID signals. Its ADC 

consumes 27-29 µW. Eliminating ADC by comparators can 

further drive down the power to 4.57-5.85 µW.  

We are inspired by these works. Our design follows a similar 

spirit and yet considers a different medium. Our sensing 

component alone (photodiodes and control circuits) 

consumes lower power (1.8 µW for the glasses and 3.5 µW 

for the watch) than that of some prior systems [12]. We can 

consider optimization similar to [23] to eliminate ADC to 

further reduce power consumption. More importantly, our 

sensing component also harvests power to drive the whole 

gesture recognition module including the micro-controller 

running the recognition algorithm.  The high energy density 

of light allows more energy to be harvested compared to 

other medium and the surplus energy can drive other 

components of the device.  

Visible Light Sensing  

Active research [44] has studied the use of visible light for 

indoor localization [4,18,36,60,63], coarse-grained body 

sensing [30,31,55,65] and LED-based finger tracking 

[14,19,21,54,62]. For achieving higher sensing accuracy, 

most systems have used photodiodes in the photoconductive 

mode. Additionally, most designs require active modulation 

of the light source. Our work differs in that we use 

photodiodes in the photovoltaic mode and exploit the 

changes in harvested power for gesture sensing. Our design 

works with existing ambient light without the need to 

modulate the light source.  

Photodiode’s photovoltaic mode has been exploited by prior 

works. In [55], Varshney et al pairs a solar cell with a 

thresholding circuit to sense binary blockage information. It 

then sends the information via backscatter communication to 

another machine that runs the gesture detection algorithm. It 

supports three hand gestures. The sensing and 

communication consumes 20 µW. With a fixed thresholding 

circuit, it is challenging for the system to adapt to various 

ambient light conditions. In comparison, we consider arrays 

of photodiodes for gestures sensing and design algorithm for 

robust gesture detection in diverse ambient light conditions. 

We also build a standalone module that runs the gesture 

recognition algorithm. The power harvested by photodiodes 

drives the whole module. In [41], Nayar et al exploit 

photdiode’s photovoltaic mode for both sensing and energy 



harvesting and study the feasibility of building self-powered 

image sensors. We apply the concept for building a self-

powered gesture recognition module and fabricate two 

complete prototypes to demonstrate its feasibility.  

Midair Gesture Sensing 

Midair gesture is one of an effective solution to extend the 

interaction space [1]. A variety of sensing techniques have 

been developed to detect midair gestures. They have 

considered the use of cameras [8,10,26,32,34,48,51,57,59], 

infrared sensors [7,22,25,28,35,43,46,58], WiFi signal 

[5,45,49,61], GSM signals [64] and other wearable sensors 

[17,33,37]. Camera-based methods are commonly used by 

existing products such as Xbox Kinect [74], Leap Motion 

[75], PointGrab [76] and CrunchFish [77]. These methods 

often involve higher computational overhead. In comparison, 

our work detects midair gestures with a much more 

lightweight algorithm and the gesture recognition module 

requires no external power input. SideSight [7] and FlexAura 

[35] require multiple (10 in SideSight, 384 in FlexAura) 

infrared emitters. Each emitter in SideSight/FlexAura 

consumes 165/180-mW peak power. Latest infrared 

proximity sensors (e.g., APDS 9130 [78], APDS 9190 [79]) 

consume 140-157 µW at 20 Hz sampling rate. In 

comparison, our system is passively reusing ambient light 

and powers itself as a complete module. 

DISCUSSION AND FUTURE WORK 

In this section, we discuss the limitations of our study, 

insights gained from this work, and plans for future work.  

Enriching Sensing Capabilities. As a proof of concept, our 

current prototypes are built for recognizing a small set of 

simple finger gestures (Figure 5). The system principle, 

however, can be extended to recognize a richer set of 

gestures. Touch-related gestures can be expanded by 

including multi-touch, rotating or sliding fingertips on the 

photodiodes. These gestures can be used to create self-

powered interaction buttons on any energy-limited devices. 

As for midair gestures, we will consider adding finger 

drawing various shapes (e.g., circle, rectangle, triangle, tick, 

cross) or numbers. We will examine various lightweight 

machine learning algorithms (e.g., kNN, boosted trees) to 

classify these more sophisticated movement trajectories. 

These learning models can be trained with data collected 

across participants. We will start collecting data and examine 

the feasibility. Furthermore, current midair gestures mainly 

differ in finger movement direction. Moving forward, we 

plan to examine inferring movement distance based on the 

sequence of blocked photodiodes. The recognition of 

movement distance can enable finer-grained input control, 

e.g., tuning down/up volume, adjusting screen brightness. 

Moreover, our current glasses prototype recognizes only the 

horizontal movement of a midair finger, because the 

photodiodes in each vertical column are connected in series 

as a unit, mainly to ease the arrangement of SPDT switches 

on the back of the circuit board. We will further optimize our 

circuit design and connect fewer photodiodes in series to 

sense vertical movement. It can enable a richer set of finger 

gestures to interact with the glasses.  

Hardware Optimization. The power consumption of our 

prototypes can be further reduced with following hardware 

optimization. First, we currently use micro-controller’s built-

in ADC to ease the programming and debugging. To further 

reduce power, we will consider the use of external lower-

power ADCs, such as ads7042 (< 1 µW at 1 kSPS) [80]. 

Furthermore, for the recognition of gestures (e.g. touch) 

requiring fixed thresholding, we can consider replacing ADC 

with low-power comparators that directly compare analog 

signals for gesture recognition, similarly to the prior 

study[23]. It will greatly lower system power given that ADC 

currently consumes 30-40% of power. Second, our current 

micro-controller is a development board that embeds many 

units unnecessary for gesture recognition. A customized 

computing unit with only relevant calculation units can 

further lower the power consumption of running the gesture 

recognition algorithm (currently consuming 55-65% of 

power). Third, our current prototypes directly use an internal 

timer to control the sampling rate. We will consider an 

external timer to achieve lower power, which has been 

successfully applied in a prior study [24]. Finally, the whole 

system can be implemented as an integrated circuit with all 

hardware components, including customized ultra-low 

power MCU, ADC/comparator units and switches. This can 

further minimize the total power consumption. 

On the energy-harvesting side, the photodiodes (BPW 34) in 

our current prototypes have 21% energy conversion 

efficiency, thus an individual photodiode can harvest only a 

few microwatts under indoor lighting. It results in 44/48 

photodiodes needed in our watch/glasses prototypes, 

contributing to their bulky looks. We can miniaturize the 

prototype in two directions. First, currently only 39% of the 

photodiode surface (18 mm
2
) is used for sensing. Optimizing 

the fabrication of photodiodes and their arrangement can 

reduce the actual photodiode array size for harvesting the 

same amount of power. Second, with advances in the 

materials of photodiodes and mini solar cells, we can use 

photodiodes with higher energy conversion ratios. For 

example, advanced organic solar cells can achieve energy 

conversion ratio of 50% [3]. It can lead to fewer cells to 

realize the same functionality or enhanced gesture 

recognition ability with the same number of cells. Moreover, 

arrays of more efficient photodiodes can harvest more energy 

to better support energy-constrained or battery-free devices. 

Other Prototype Examples. We demonstrate our approach 

using the smart watch and glasses as two examples only to 

ease the prototyping. Our approach is generalizable and can 

be integrated into other types of devices. We are particularly 

interested in examining the integration of our approach into 

emerging battery-free systems [13,16,29,40,41,50]. In these 

systems, energy harvesters are the must-have components 

and our approach reuses them to simultaneously provide 

gestural input with minimal additional energy overhead.  
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