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ABSTRACT

We examine the feasibility of human identification using purely the
ubiquitous visible light. Empowered by the Visible Light Commu-
nication (VLC), the identification system consists of VLC-enabled
LED lights on the ceiling emitting light beacons, and photodiodes
on the floor capturing a continuous stream of shadow maps each
corresponding to an LED light. We leverage these shadow maps to
localize a user’s key boy joints in the 3D space and recognize the
user based on the estimated body parameters (e.g., shoulder width,
arm length). Preliminary results with 10 participants show 80%
success rate, i.e., correctly identifying 8 participants out of 10. The
mean error of the body parameter estimation is 0.03 m. To extend
the system to diverse practical settings, we discuss the our plan of
incorporating advanced behavioral features to enhance the identifi-
cation accuracy and robustness.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless communica-
tion
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1. INTRODUCTION
Human identification is of great interests to a variety of applica-

tions. Recognizing who we are is crucial for user authentication.
Applications running on smart devices (e.g., smartphones, smart
watches) can provide personalized services (e.g., sending person-
alized notifications) and customize system configurations based on
the user identity. Smart spaces can adapt its environmental settings
based on a user’s preferences. Imagine a user walking into a room.
The environment immediately recognizes the user and controls the
ambient smart devices to adapt the room settings (e.g., temperature,
light) tailored to meet this user’s needs.

Existing technologies available for human identification, how-
ever, have been very limited. We divide them into two categories.
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The first category of methods require users to constantly wear on-
body sensors or devices (e.g., bioimpedance sensors [4], ultrasonic
sensors [27]). These sensors or devices continuously measure user’s
biometric features or behavioral information and leverage the infor-
mation to recognize users. Carrying the sensors and devices all the
time, however, is burdensome to users, preventing these methods
from a wide adoption. The second category of methods [3, 13] rely
on cameras to capture video frames and extract user features (e.g.,
facial features, gait) from the image frames to identify users. How-
ever, cameras are high-fidelity sensors. Capturing raw image data
using cameras inevitably brings privacy concerns. Even worse, the
sensitive image data can fall into the hands of the adversary [24,
35]. Recent work has examined the use of RF signals to track
users [1, 5, 14, 23, 34], yet only at the level of recognizing user
gestures and activities, rather than differentiating users.

To address the above limitations, in this paper, we seek a dif-
ferent approach to human identification. In particular, we examine
the feasibility of using the ubiquitous light around us to recognize
who we are, without requiring users to carry any on-body devices,
neither using any cameras constantly monitoring users. The idea of
light-based human identification is enabled by the recent advances
in Visible Light Communication (VLC) [16, 28]. VLC encodes
data into light intensity changes imperceptible to human eyes, and
any devices equipped with light sensors (photodiodes) can detect
the light change and decode data. Human identification using vis-
ible light is part of the vision of integrating communication and
sensing into the ubiquitous light [38].

The light-based human identification system consists of VLC-
enabled LED lights on the ceiling, and photodiodes embedded on
the floor1. Each LED light actively transmits data using VLC to
smart devices in the room. More importantly, leveraging a recent
technique proposed in [19], each LED light also periodically emits
light beacons (i.e., flashing at a unique frequency) using VLC. Pho-
todiodes transform the perceived light intensity values over time to
the frequency domain, separate the light rays coming from individ-
ual light sources, and recover the shadow maps cast by the human
body in the presence of each single light. By examining the shadow
maps cast in different directions, we can extract key body features
(e.g., shoulder width, arm length) of individual users. By analyzing
the continuous shadow maps over time, we can further learn user’s
behavioral and movement characteristics. These body features and
movement characteristics serve as the basis for the system to dif-
ferentiate users.

To realize light-based human identification, the key challenge we
face lies in dealing with the low-resolution, binary shadow maps

1Engineering photodiodes on the floor can be eased with the advent
of smart textile [22], which can integrate photodiodes into the rugs,
carpet, and sofa.



recovered by the photodiodes. Constrained by the photodiode den-
sity, these shadow maps contain much fewer pixels than camera
image frames, which consist of at least tens of thousands of pixels.
Furthermore, image frames contain additional information such as
color, brightness contrast, and texture. As a result, to extract body
features from the recovered shadow maps, existing computer vision
algorithms can not be directly applied, as they are all designed for
processing the image frames with a much higher resolution.

In this work, we take initial steps to tackle the above challenge,
working towards realizing human identification using the visible
light. We examine approaches to extracting body features from
low-resolution, binary shadow maps. We design a lightweight clas-
sifier that can distinguish users on the fly. We implement our sys-
tem in a 3 m × 3 m testbed, with 324 photodiodes on the floor
and 5 LED lights on the ceiling. Initial results with ten participants
show that our current algorithms achieve 80% success rate and 0.08
m estimation error of key body parameters. These results demon-
strate the feasibility of our approach, yet also point out a number of
open research questions that we need to further address. We con-
clude by discussing our plan to boost the identification accuracy
and robustness in practical settings.

2. SYSTEM OVERVIEW
We first introduce the goal and framework of the VLC identifi-

cation system. We aim to overcome the challenge of shadow maps’
low resolution, which limits the number of features we can extract.
Overall, the system identifies a user based on the shadow maps
currently recovered. As the user steps into the system, the sys-
tem gathers signals from photodiodes embedded in the floor, infers
shadows cast by individual light sources, and outputs the identifi-
cation result. That is, whether this is a new user or this user has
been here before. The system either assigns a new ID to the user or
links the user to an existing ID.

For the system to work, LED lights on the ceiling are transmit-
ters and light sensors on the floor are receivers. Using the technique
in [19], each LED light is instrumented to emit periodical light bea-
cons (i.e., flashing at a unique frequency) while providing network-
ing connectivity to smart devices in the environment. When LED
lights cast shadow on the floor with modulated light beams, the
light sensors record the light intensity at different locations. The
perceived light intensity at each light sensor is the summation of all
unblocked light rays from LED lights to the light sensor. The light
intensity data is then transformed to the frequency domain for the
light sensor to separate the light rays from different light sources.
By tracking the frequency power change over time and aggregat-
ing the data from all light sensors, we can recover the shadow map
corresponding to each single light.

Given shadow maps of LED lights from different angles, we can
localize several key points on body in 3D space since human body
shadows have special patterns. The principle is simple: when a
point on body blocks two light beams from different angles, if we
find the two light beams, the intersection of two beams should be
the point we need to localize on the body.

Once we localize the key joints of the user body, we can infer
several body features such as shoulder height and shoulder width.
They describe a body figure from different angles. In addition, by
analyzing user’s shadow maps continuously over time, we can infer
user’s behavioral patterns (e.g., gait) by tracking the locations of
key points. Combining the behavioral patterns with the static body
features can allow finer-grained user identification. After obtaining
a vector of features on body parameters and behavioral patterns, we
can build classifiers to classify users in real time. The system can
recognize whether the current person has been seen before or this

is a new user. In the next two sections, we describe two key steps
(obtaining shadow maps and user identification) in detail.

3. OBTAINING SHADOW MAPS
We now describe how to collect shadow maps for each light

source based on a recent work [19].

VLC Link. As a standard indoor VLC system, a one-way VLC
link includes three components, transmitter, receiver, and the at-
tached device to collect data from receivers. We mount five com-
mon LED lights on the ceiling as transmitters. Each LED light
has one additional Arduino UNO board to control the Pulse Width
Modulation (PWM) frequency of light beacons, so that the LED
lights can send out information in the form of light-on and light-
off. Human eyes cannot perceive the light pulse since it is set from
1.6 to 3.4 KHz. We choose different high frequencies to avoid the
flickering problem [17] and there is an interval between any two
selected frequencies so that it is easy to separate signals without
interference. The receivers are photodiodes on the floor, which can
sense the light intensity at their locations. We connect several pho-
todiodes to a Arduino board. Different light intensity correspond to
the voltage reading on Arduino board. Finally, all Arduino boards
are connected together to a server.

Signal Processing. We obtain a series of voltage readings of each
photodiode. The readings reflect the sum of light intensity at the lo-
cation of photodiode. If all lights are flashing with different pulse
frequencies, we can separate them using Discrete Fourier Trans-
form (DFT), which transforms the received light intensity series
from the time domain to the frequency domain. In the frequency
domain, if a light is unblocked, we can detect a pulse near its mod-
ulation frequency. When the light beam is blocked by human body,
the existing pulse will disappear in frequency domain. That is, by
detecting the change in frequency domain, for each pair of LED
light and photodiode on the floor, the system will know whether the
light beam is blocked. We combine the result of all photodiodesto
derive a binary shadow map for each LED light. Here we deploy
18 x 18 photodiodes on the floor, so each shadow map has 324 pix-
els to show human body shadow from different angles. Based on
shadow maps, we can extract personal features for human identifi-
cation.

4. EXTRACTING FEATURES AND

IDENTIFYING USERS
We next illustrate how to estimate body parameters using the

captured shadow maps. We also discuss potential solutions to de-
riving more behavioral and dynamic features, such as gait. We then
design a classifier using the nearest neighbor method to classify
users on the fly.

Patterns in Shadow Maps. Our design is driven by the observa-
tion that shadows cast by users with different body figures exhibit
different features. In Figure 1(a), each row contains a user’s five
shadow maps from the front, top, back, right and left LED lights
using our testbed (Section 5). The shadow map resolution is 18 ×
18 since each light sensor on the floor contributes the status of one
pixel on the shadow map. Here a black pixel means a blocked light
sensor. Figure 1(a) illustrates the posture of the two users. Even on
these low-resolution shadow maps, we can see the difference the
two users, which is the basis for us to extract suitable features. If
a user holds right arm towards front and right horizontally, and left
arm towards front and left horizontally as Figure 1(b), five shadow
maps from different angles illustrate the body shape.



(a) Shadow maps of two users performing the same posture (b) Shadow maps of a user performing two postures.

Figure 1: Shadow maps of three users under five LED lights, located on the front, top, back, right and left with respect to the user.

From the shadow maps in the middle column of Figure 1(a),
we can see several body parts. The upper large square represents
head, the left vertical blocks are like an arm, the middle area is the
shadow of torso, and one leg projects its shadow to the lower left
slim rectangle on the map. Since light sensors are sparse on the
floor, projection of the right leg may be located between light sen-
sors so that right leg does not have a projection on the shadow map.
In Figure 1(a), the shadow from top light does not offer much infor-
mation except the size and shape of body, but the top light shadow
is meaningful if the person has a moving body part which is not
attached to body. When a person stretches out two arms as Fig-
ure 1(b), from back and front angle, we can clearly see the dense
pixels in the middle of torso and two series of blocks on both sides
as two arms.

Feature Extraction. We take shoulder height and shoulder width
as examples to show how to extract features of body figure, since
the shadow of tall people exceeds the edge of testbed, and some-
times arms are attached to the torso so that it is difficult to estimate
the width of torso only.

The inputs are shadow maps from all light sources in a period
of time, when a user is walking on the testbed. We can localize
both shoulders on a shadow map based on the following pattern.
The projection of left/right shoulder will be in the most left/right
column from the front or back angle in Figure 1. In that column,
shoulder should be in the farthest row from the light source. Here
are several key steps.

#1: Select shadow maps. The light source in front of or behind
a user can project shoulders more clearly on the floor than the light
sources on the left/right side, so we compute the user’s orientation
based on the change of user’s location in consecutive maps. If the
direction from light source to shadow’s centroid is close to user’s
orientation, the shadow map of that light source is a good choice.
Here we need two shadow maps for the following operations.

#2: Rotate maps. Shadow map consists of several discrete points,
so we can apply Principal Component Analysis (PCA) to get the
principal component of shadow. It looks like the axis of symmetry
on human body. If it is not parallel to the y axis of light sensor
array, rotate some angle depends on the principle component so as
to achieve an upright shadow, such as the examples in Figure 2(a).

#3: Find projections using histogram. First, draw a histogram
of points in the shadow. In Figure 2(b), x axis shows the column
of points, y axis reflects the number of points in each interval on x
axis. Torso, head and legs cover more points in the middle than two
arms on both sides, so by detecting the change of height in the his-
togram, we can locate the column of each shoulder’s projections.
The furthest point from light source in that column should be the
projection of the shoulder. Since points in a shadow map are dis-
crete, we adjust half unit in both x and y direction on the index of
projection.

(a) Shadow map.
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Figure 2: The histogram of a shadow map.

#4: Intersect light rays. Once we know the projection of left/right
shoulder in two shadow maps, we connect the projection to the cor-
responding light source to obtain two light rays. The intersection
of these two light rays should be the location of left/right shoulder
in space. If they do not intersect, the location of shoulder is the
midpoint of the segment which has the minimum distance between
those two light rays. When we know the locations of both shoul-
ders, we also get the shoulder width and shoulder height. We can
filter the incomplete or noisy shadow maps, and compute the aver-
age values using the other shadow maps to improve the accuracy.
If a user has more static gestures such as waving arms, more body
features are available using the above method. For example, if we
can localize the elbow by a waving arm, we can derive the length
of the upper arm.

Furthermore, when users can walk freely on the testbed, the VLC
system can provide more behavioral features such as gait. These
behavioral patterns are valuable especially when the body features
are not enough to distinguish a group of users. Since the sampling
rate for shadow map is 60 Hz, a time series of shadow maps can
reflect the subtle differences between frames of a movement. It is
feasible to obtain the magnitude of the user stride and the walking
speed by the analyzing changes in consecutive shadow maps.

Classification. In this paper, we classify a user using a simple
nearest neighbor method. We select two sample body parameters as
the features in our initial design. We initialize the set of recognized
user IDs as an empty set. As users enter our system one by one,
the system captures shadow maps for each light source, extracts
features, compares features of the current user with the features of
users who have been identified before, and determines whether the
current person has been identified or the person is a new user with a
threshold. When more body and behavioral features are measured,
we plan to explore more advanced classifier designs.

5. EVALUATION
We next present details of our experiment setting and evaluate

the accuracy of the body parameter estimation and user identifica-
tion.



Figure 3: The array of light sensors on the floor.

Table 1: Measured features of participants (m).
Feature ID 1 2 3 4 5
Shoulder_h 1.58 1.54 1.45 1.39 1.60
Shoulder_w 0.47 0.36 0.38 0.42 0.46
Arm_l 0.69 0.70 0.59 0.60 0.64
Upper arm_l 0.33 0.36 0.28 0.30 0.27
Feature ID 6 7 8 9 10
Shoulder_h 1.48 1.44 1.27 1.39 1.44
Shoulder_w 0.41 0.39 0.42 0.44 0.43
Arm_l 0.62 0.61 0.56 0.56 0.63
Upper arm_l 0.27 0.27 0.24 0.24 0.29

Testbed. The testbed covers 3 m × 3 m on the floor with 18
× 18 light sensors as Figure 3. The light sensors are deployed in
a square array, the distance between two adjacent light sensors is
0.166 m. 27 Arduino boards collect the light intensity data from all
light sensors (Honeywell SD3410) with a sampling rate of 60 Hz.
The height of ceiling is 2.65 m, on which there are five LED lights
(Cree CXA25) in cross shape. The middle one is above the center
of testbed. The distance between the middle LED light to another
is 0.8 m. More details about the testbed are in [19].

Participants. We invite 10 users with diverse body shapes as
the test users. They move randomly in the testbed yet carefully to
avoid sensors and boards on the floor. They also stay in several
static postures, such as standing (Figure 1(a)), folding arms with
two elbows pointing to the left and right, and stretching out two
arms towards right-front and left-front respectively as Figure 1(b).
Since devices are exposed to space, users movement are restricted,
especially for legs. We ask participants to only move arms freely.
Among the ten participants, seven are male and three are female.
The range of age is from 20 to 31. Their height is from 1.55 m to
1.90 m. The weight is from 45 kg to 87 kg. Table 1 shows body
features of the participants, which are shoulder height, shoulder
width, arm length and upper arm length.

Body Feature Estimation. We choose shoulder height and shoul-
der width as two features to classify people. We estimate features
in the following three settings due to real testbed conditions.

First, users are standing in the middle of the testbed with static
postures and fixed orientation towards the light in front. When they
are standing as Figure 1(a), the problem of finding projections is
simple since we do not rotate the map. Figure 4 shows the mean
error of shoulder height is 0.028 m and the mean error of shoulder
width is 0.032 m for 10 participants. We also estimate two more
body figures with the other static postures, the mean error of arm
length is 0.028 m and that of upper arm is 0.036 m.
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Figure 4: The error between estimated body figures and the

ground truth of 10 participants in static standing.
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Figure 5: The error between estimated body figures and the

ground truth of one participant in 10 movements.

Second, we ask the user with the ID of 1 to move arms randomly
in 10 different meaningful movements, such as waving hands and
opening a door. Each movement generates 550 consecutive groups
of shadow maps in about 9 seconds. Each group contains 5 shadow
maps from all LED lights. However, users still stand in the middle
of testbed with fixed orientation. The error of shoulder height is
0.044 m and the error of shoulder width is 0.016 m for the user’s 10
movements as Figure 5, which are slightly smaller than the user’s
errors in the first case. It supports that the multiple shadow maps in
dynamic movements work better than maps of a static posture.

Third, users can walk on the testbed with free arms, so the ori-
entation is not fixed. However, because of the dense deployment
of exposed devices, users cannot walk freely. It is not the case
when we can estimate orientation by user locations in consecutive
shadow maps. We select 22 time slots in equal interval among 550
groups of shadow maps. The orientation at each time slot is manu-
ally labeled from 8 kinds of directions (right, right front, front, left
front, left, left back, back and right back). Figure 6 reflects errors
of 6 participants. The average error of shoulder height is 0.0278 m
and that of shoulder width is 0.031 m.

The high accuracy of body figure estimation proves the feasibil-
ity and availability of methods in Section 4, though we have differ-
ent assumptions in the above three cases. However, several factors
limit the accuracy. The first factor is the low resolution of shadow
map since the interval between light sensors on the floor results in
the uncertainty in searching of projections. The second factor is the
number of LED lights on the ceiling. If more LED lights cast light
rays from different angles, we have more choices when selecting
shadow maps. For the third case of dynamic movement, users look
down at floor to avoid treading devices, which weakens the pattern
in shadow histogram. The labeled orientation is not very accurate,
which disturbs the selection of best shadow maps with the pattern
of shoulders.

Classification. Since the mean error of body feature estimation is
about 0.03 m, the threshold in the classification algorithm is set as
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Figure 6: The errors of two features when users are moving

steps on the testbed with exposed devices.

0.03 for all features, which determines whether body figures of two
people are similar enough. When 10 users are entering the testbed
in a random order, the identification accuracy using shadow maps
of static standing is 80%, since the user pair (4, 9) and the user pair
(3, 7) have a very similar body figures shown in Table 1. Among 45
different pairs in 10 people, the two pairs have a minor difference
in the ground truth of shoulder height and shoulder width. This in-
dicates that the gap of shoulder height or shoulder width is less than
0.02 m. For a user pair, if the gap of shoulder height or shoulder
width is larger than 0.02 m, the classification can distinguish the
two users. Current experiment shows that the granularity of VLC
identification system is 0.02 m. The granularity can vary depending
on the body shape of the participants and their movement types. We
plan to go beyond static body features and incorporate movement
characteristics [3, 12, 31, 32, 33] as our future work.

We also compare the result with the other methods. For example,
in [7], the accuracy of identification using infrared sensors is 78.5%
or 91% with the prior knowledge of the user’s walking path. Ul-
trasonic distance sensor [27] can identify people with an accuracy
between 85% and 95% with the additional help of recording user’s
movement. Overall, the performance of our initial designs align
with prior work and yet remove the need of cameras or on-body
sensors.

6. RELATED WORK

VLC Application. Current VLC applications focus on indoor
localization [15, 17, 18, 37], diverse types of communication such
as screen-camear communication [2, 8, 10, 11, 21, 30] and LED-
to-LED communication [6, 25]. Our work [19] extends VLC appli-
cations by using VLC to sense body gestures.

Human Identification. Active research focuses on user iden-
tification using either computer vision methods to process video
frames, or on-body sensors to capture user behavioral patterns. In
particular, Wang et al. [32] extracts body shapes from videos and
detects the pattern of several body parts in movement. Wang et
al. [33] and Bovick et al. [3] apply statistical methods to extract
features from entire body shape. Iwashita et al. [12] exploits his-
togram to get features in shadow rather than body shape. Kale et
al. [13] combines face recognition and gait analysis.

Vu [29] identify differences between users by the behavior of
capacitive touch. Hayashi [9] uses Kinect to collect body figures
with gestures to identify people. [20, 26] leverage multiple sensors
on a smartphone to learn users’ walking behavior. Wang [31] ex-
tracts features of walking from video and combine them with smart-
phone sensors to creat personal fingerprint. Furthermore, several
advanced sensors are designed for user identification, such as IR
sensor [7, 36], ultrasonic sensor [27] and bioimpedance sensor [4].

RF reflections can track multiple people in [14] with bright area on
a heatmap of reflected signals, and recognize human activities [5].

In summary, our approach differs from existing methods in that
it operates on low-resolution shadow maps without using any cam-
eras, and does not rely on users to constantly wear on-body devices
or sensors.

7. CONCLUSION AND FUTURE WORK
In this paper, we present the framework of human identification

using the visible light. The system leverage VLC to recover shad-
ows of individual light sources. The shadow maps from different
angles help localize key points on human body, thus we can extract
key body parameters and leverage them as features for user identifi-
cation. Preliminary results show that the error of feature estimation
is roughly 0.03 m and the identification granularity of body figures
is 0.02 m for our current participants. The initial results demon-
strates the potential of our approach and yet also point out open
research questions we plan to further pursue.

Moving forward, we plan to address the following remaining
challenges. First, we plan to examine a greater variety of user
movements and examine our initial identification algorithms more
extensively with more participants. To do so, we plan to add a glass
cover atop all the light sensors in our testbed, which will allow users
to move more freely. Second, we plan to incorporate more features
into our classifier to achieve finer-grained identification. In particu-
lar, we are interested in examining the time series of shadow maps
and learn user’s movement characteristics from the shadow map
changes over time. Third, with the enriched user features, we plan
to examine the feasibility of inferring more user information such
as gender, age, and even mood and health status. Fourth, we plan to
examine the multi-user scenario where the shadows cast by individ-
ual users likely overlap. We aim to seek more advanced algorithms
to separate out user shadows and identify individual users.
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