AutoFritz: Autocomplete for Prototyping Virtual
Breadboard Circuits

Jo-YuLo Da-Yuan Huang
National Chiao Tung National Chiao Tung
University University
lowlow@cmlab.csie.ntu. dayuanhuang@nctu.edu.

edu.tw tw
Jun Gong Teddy Seyed
Dartmouth College University of Calgary
jun.gong.gr@dartmouth. teddy.seyed@ucalgary.ca
edu

@ Autocomplete Suggestions

Autocomplete Suggestions

'_@'K‘E e o=

Tzu-Sheng Kuo Chen-Kuo Sun

National Taiwan University National Chiao Tung
b03901032@ntu.edu.tw University, NTUST
m10615064@mail.ntust.
edu.tw

Xing-Dong Yang
Dartmouth College
xing-dong.yang@
dartmouth.edu

Bing-Yu Chen
National Taiwan University
robin@ntu.edu.tw

Figure 1: Using AutoFritz to create virtual breadboard circuits. (a) A user inserts a LED in a breadboard, and AutoFritz gives two
suggestions that completes the LED into a function module with the top ranked one (a resistor) shown in a semi-transparent
overlay. (b) In another example, after the user inserts a DC motor, AutoFritz provides a list of suggestions that are commonly
used with the DC motor with stars indicating the popularity of the choice among the maker community. (c) Upon the user
accepting the H-bridge, AutoFritz suggests several choices for wiring connections, and finally (d) an Arduino board and Battery

to complete the circuit.

ABSTRACT

We propose autocomplete for the design and development of
virtual breadboard circuits using software prototyping tools.
With our system, a user inserts a component into the virtual
breadboard, and it automatically provides a user with a list
of suggested components. These suggestions complete or ex-
tend the electronic functionality of the inserted component
to save the user’s time and reduce circuit error. To demon-
strate the effectiveness of autocomplete, we implemented
our system on Fritzing, a popular open source breadboard

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

CHI 2019, May 4-9, 2019, Glasgow, Scotland UK

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5970-2/19/05...$15.00
https://doi.org/10.1145/3290605.3300633

circuit prototyping software, used by novice makers. Our
autocomplete suggestions were implemented based upon
schematics from datasheets for standard components, as
well as how components are used together from over 4000
circuit projects from the Fritzing community. We report the
results of a controlled study with 16 participants, evaluating
the effectiveness of autocomplete in the creation of virtual
breadboard circuits, and conclude by sharing insights and
directions for future research.

CCS CONCEPTS

« Human-centered computing — Graphical user inter-
faces; User interface toolkits; User interface design.

KEYWORDS

Circuit design, breadboard, autocomplete

ACM Reference Format:

Jo-Yu Lo, Da-Yuan Huang, Tzu-Sheng Kuo, Chen-Kuo Sun, Jun
Gong, Teddy Seyed, Xing-Dong Yang, and Bing-Yu Chen. 2019. Aut-
oFritz: Autocomplete for Prototyping Virtual Breadboard Circuits.

https://doi.org/10.1145/3290605.3300633

In CHI Conference on Human Factors in Computing Systems Proceed-
ings (CHI 2019), May 4-9, 2019, Glasgow, Scotland UK. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3290605.3300633

1 INTRODUCTION

Designing and documenting breadboard circuits using soft-
ware prototyping tools (e.g., Fritzing [36], VBB [17], and
123D Circuits [2]) has become a common practice in the
maker community and beyond, with these tools being heav-
ily used by those without a strong electronics background.
However, much of the existing software requires the circuit
components to be manually added and connected by user,
which can be error prone and time-consuming. Common
hardware errors, such as missing components (e.g., not using
a resistor with a LED) or miswiring [41], also occurs in the
virtual world, and can lead to significant time and efforts
from the users to debug.

In this paper, we introduce the concept of autocomplete,
commonly seen in web search, text editing, and program-
ming, to the construction of virtual breadboard circuits. With
autocomplete, software provides the user with a list of sug-
gested components based on the one that is newly inserted
in a virtual breadboard by a user (Figure 1). The suggested
components complete or extend the functionality of the in-
serted component to save the user’s time and reduce circuit
error. For example, when a user inserts an LED into the vir-
tual breadboard, the system suggests that a resistor can be
used, whose absence may cause damage to the LED or an
Arduino board. The user can ignore the suggestion or accept
it, in which case, a resistor will be placed and connected
automatically to the LED on the virtual breadboard. With
this feature, it becomes less likely for a novice user to miss
the resistor. A user does not have to spend time on searching
and reading the datasheet schematic of a component to learn
how it should be used properly with basic components like
resistors or inductors, to function properly.

In this example, the completed LED circuit is an electrically
functional module, defined by an I/O or IC component with
a supporting component (e.g., resistor). Once a module is
created, the system suggests a list of other modules often
used by others from the maker community for extended
functionality. For example, a possible suggestion for the LED
module is the button module to control the LED. Aside from
the modules, the system can also suggest a battery or Arduino
board to complete the circuit. If the suggestion is accepted
by the user, wire connections between the two modules are
also suggested by the system.

To demonstrate the proposed autocomplete features, we
implemented them in Fritzing, a popular open source bread-
board circuit prototyping software [11], used by novice mak-
ers. Our system (called AutoFritz) supports autocompleting

58 common electronic components (I/O and IC) into func-
tional modules based on the components’ datasheet schemat-
ics. Our system can also provide module-to-module sugges-
tions based on how commonly the modules are used together
by the Fritzing community [10]. We evaluate the effective-
ness of our system with 16 expert and novice users in a lab
evaluation, where participants were asked to use AutoFritz
to create virtual breadboard circuits in two levels of complex-
ity (low vs high). We found that with AutoFritz, participants
were able to accomplish the tasks with significant less er-
rors, mental effort, and frustration. They were also more
confidence about their answers. We also discuss insights
gained from the study and propose the other features that
can be investigated in the future, including circuit validation
on-the-fly and suggestion of component values.

The primary contributions of this paper are: 1) autocom-
plete features in prototyping virtual breadboard circuits; 2) a
software tool that demonstrates the utility of these features;
and 3) the results of a controlled experiment, measuring
the effectiveness of the proposed autocomplete features in
prototyping virtual breadboard circuits.

2 RELATED WORK

In this section, we discuss existing research on autocomplete
in various application domains, as well as efforts made on
circuit design, prototyping, and debugging.

Autocomplete in Varying Application Domains

Autocomplete has been widely used in web search, text edit-
ing, and programming to improve the experience of users
by speeding up text entry and helping to avoid spelling mis-
takes [18, 20, 26, 27, 42, 49]. It can also help a user discover
relevant search terms, build confidence with an unfamiliar
search topic, and formulate better queries [49]. A typical
technique used in autocomplete is to provide the user a list
of suggested words according to their input and presented
them in an order based on certain criteria (e.g., word fre-
quency). This is similar to modern recommender systems
(e.g., [30, 39]) in the sense that personalized suggestions are
provided to users to improve task efficiency and user experi-
ence. Researchers have found a strong bias towards exam-
ining and using top-ranked suggestions, which effects task
engagement and search effectiveness [32]. Work in this field
has motivated innovations in query suggestions and ranking
though techniques considering contextual information [44]
and input semantic [33]. A survey in query autocomplete
can be found in [24].

Aside from the text-based applications, autocomplete has
also been used in gestural input [21, 22], sketch tools [34, 43,
46, 52], photo editing tools [29, 38], and information visu-
alization tools [37]. For example, SimpleFlow [22] provide
suggestions of standard gestures from a database to the user,

https://doi.org/10.1145/3290605.3300633

based on the user’s input trajectory. Tsang, et al’s sketch
tool [46] can suggest a geometry to the user by approxi-
mately matching the user’s input strokes against a database
of pre-made 3D models. Hays and Efros’s photo editing tool
[29] can complete a missing region specified in an input im-
age with matching scenes from a database of similar photos.
VisComplete [37] can help the user construct visualization
pipelines by automatically suggesting construction modules
based on the database of previously created ones. These
works demonstrate that autocomplete is an effect technique
in a wide range of applications.

Circuit Design Tools

Software tools have been developed for professional users
to design and document electric circuits on PCBs efficiently
[1, 4], but they are hard to use by novice users. Breadboard
circuit prototyping software [17, 36] has been well received
by the novice community. Fritzing [36], for example, offers
a simple interface for novice users to create virtual bread-
board circuits using common electronic components. It also
provides an online environment for the community to dis-
cuss and share their projects. Virtual Breadboard [17] is a
commercial product, which provides a similar environment
but with a simulator that can be useful for users to debug
circuits. Other tools can be used to facilitate the process of
circuit design. For example, given a set of electronic compo-
nents, EDASolver [9] uses a searching algorithm to find wire
connections between the components. Circuito [8] is the
most relevant to this work, which automatically completes
an inserted component into a functional module. However,
the tool does not provide any suggestions on alternative de-
signs, which we consider to be the most important feature
to have and study for the users with varying levels of ex-
pertise in electronics. Our tool also provides the users with
the suggestions on module-to-module completions based
on community projects. Finally, our work defers from the
previous work in a user study, which investigates the effec-
tiveness of autocomplete as a design tool in assisting in the
creation of virtual breadboard circuits.

Circuit Prototyping Tools

Creating circuit and electronic hardware artifacts is difficult
for novice users, who do not have a strong electronics, engi-
neering, or programming background. However, the recent
development of open-source hardware platforms (e.g., Ar-
duino [5], Phidgets [28], or Microsoft .NET Gadgeteer [47])
has significantly reduced the technical barrier for the novice
users. With technologies like [31, 35], the users can even
print their circuits at home on plastic sheets using a modi-
fied inkjet printer. CircuitStack [48] uses a computationally-
generated PCB layer to ensure that the breadboard compo-
nents are correctly connected. The device, however, was not
designed to prevent users from making mistakes other than

wiring errors. Another line of research in this space leverages
the concept of generative design. Trigger-Action-Circuits
[19], for example, provides the user with a list of candidate
circuits based on a high-level behavioral description of the
user’s goal. However, even with these efforts, prototyping
electronic circuits on a breadboard is still prone to software
and hardware errors [23, 41]. Booth, et al. [23]’s study with
20 participants identified a number of common errors, includ-
ing missing components, incorrect components, miss-wiring,
and bad seating, as part of the typical experience of novice
users. Similar result were found from Mellis et al’s study [41],
which also suggested that debugging hardware and software
errors can be frustrating for inexperienced users. Little re-
search has been conducted to reduce circuits errors when
they are designed and created. This served as motivation to
explore autocomplete features in this work.

Circuit Debugging Tools

Since errors are inevitable, tools for debugging becomes
necessary. Scanalog [45] is a circuit debugging tool, which
provides a software environment for the user to view the
behaviors of hardware components when manipulated by a
user. Toastboard [25] is an interactive breadboard, provid-
ing hardware (e.g., LED) and software interfaces to facilitate
debugging breadboard circuits using a known schematic pro-
vided by the user. Bifrost [40] integrates both hardware and
software debugging tools in a unified environment. Digilent
Electronics Explorer [3] is a commercially available product
in a breadboard form factor, with built-in debugging tools
including an oscilloscope, pattern generators, and logic ana-
lyzer. CurrentViz [50] can sense and visualize electric current
flowing on a breadboard and CurrentSense [51] can sense
the location and type of an component on a breadboard. Both
technologies can be used to for debugging breadboard cir-
cuits. Although debugging cannot be avoided, techniques
that can effectively reduce circuit errors during design and
construction can largely reduce the time and efforts the users
spend on debugging.

3 SYSTEM OVERVIEW

In designing the proposed system for circuit autocomplete,
we overcame a number of challenges through a series of
design workshops and interviews with Fritzing users. The
outcome is a system aiming to allow the users to focus on
the functionality rather than the correctness of a circuit, see
alternative solutions, and understand the reason behind each
suggestion. Next, we describe our classification of compo-
nent categories and four types of autocomplete suggestions.

Component Categories

We classify the common circuit components into five major
categories: (1) basic components, (2) I/O components, (3) IC
components, (4) MCUs, and (5) batteries.

Basic components. This category represents primitive elec-
tronic components, such as resistors, capacitors, inductors,
diodes, and transistors, etc. The components in this category
are commonly used as primitive building blocks to form
functional circuits for the I/O and IC components. Novice
users without an electronics background may find it hard
to understand in what situations these components are to
be used. Our system shows the user what and when basic
components are needed for a certain I/O or IC component to
function properly (as a module). This reduces the technical
barrier for designing circuit projects.

1/O components. This category represents the major user
interface components, including input devices (e.g., push
buttons), sensors (e.g., pressure or light sensor), and output
devices (e.g., LEDs and motors). Many require being used
with basic components or the modules of other components
in order to function properly. An example for the former is
LED with a resistor. An example for the latter is a flex sensor,
which needs an amplifier module (an amplifier clip with a
resistor) for increased signal amplitude for high-resolution
data processing. The instructions on the requirements of the
supporting modules or basic components are documented
in the circuit schematics in the datasheets provided by com-
ponent manufactures. Our system provides autocomplete
suggestions related to such requirements according to a com-
ponent’s datasheet schematics.

IC components. This category includes varying types of inte-
grated circuits (ICs), such as H-bridges and amplifiers. ICs
are, in general, the most difficult to use for novice users. It
requires users to understand the datasheet and schematics in
terms of terminal functionality, requirements for supporting
modules or basic components in order for an IC to work
properly. Our system provides autocomplete suggestions for
the ICs based on their datasheet schematics.

MCU and batteries. Hardware platforms (e.g., Arduino) and
batteries are provided to the I/O or IC components as auto-
complete suggestions.

Component Module

In our system, a module is an electrically functional circuit,
composed of one of the following two options: (1) an I/O or
IC component or (2) I/O or IC component with a supporting
base component(s) or module(s). A module is defined by the
component’s schematic from manufacture’s datasheet for the
component to work properly. In our case, a module should
work on its own if powered by a battery or an open-source
hardware platform (e.g., Arduino). For example, a photocell
module is composed of a photocell (I/O component) and a
resistor (base component), which can be used directly with
an Arduino board for power and data. An I/O or IC compo-
nent may be associated with multiple modules according to

its datasheet schematic. For example, the photocell module
can also be created by replacing the resistor with a capac-
itor. In this case, sensor data needs to be retrieved from a
digital pin of the Arduino board. Our system presents both
options to a user to decide. The order of their presentation is
based on how frequently they are used in the existing circuit
projects shared by the Fritzing community. The one with
higher frequency is ranked higher. A user can also use the
module with another module for extended functionalities.
For example, the user can connect an H-bridge module to a
DC motor module to change the rotation direction of motor
dynamically (Figure 1).

A component can also be a module itself if the component
can function on its own once powered. For example, a DC,
stepper, or servo motor is an I/O component, but they are
also modules because no other basic component or module
is needed for them to spin. Examples of such components
include slide/rotary potentiometer, rotary encoder, infrared
proximity sensor, barometric pressure sensor, and peltier
element. Note that for many components, even though their
datasheets may suggest that working on their own is pos-
sible, a basic component like a resistor is often required in
most cases to protect the components or circuit. An LED
is an example because for most cases it will burnout with-
out a resistor. Similar examples include push button, feed
switch, toggle switch, and tilt switch. For such components,
a resistor(s) is suggested by our system.

Modules defined by the datasheet schematic do not neces-
sarily represent the minimum requirement for an I/O or IC
component to work. For example, an ID-20 RFID chip has a
leg dedicated for visual feedback using an LED. Although the
LED is included in the datasheet schematic, the chip works
without it. Presenting this information to users through auto-
complete creates an opportunity to learn the functionalities
of the chip.

Autocomplete Suggestions

Our system provides four types of autocomplete suggestions:
(1) Module Completion, (2) Module-to-Module Completion,
(3) Wire Connection Completion, and (4) MCU or Battery
Completion.

Module Completion (A1). Based on a newly inserted I/O or IC
component, our system suggests ways to form a component
module based on its datasheet schematic. The suggestions
are ranked based on their frequency in our circuit database.
Aside from saving time and reducing errors, this feature also
allows users to learn alternative ways to create component
modules.

Module-to-Module Completion (A2). After a module is com-
pleted, the system suggests other modules that could be
used for extended functionality. For example, the system can

O Autocomplete Suggestions

A T €

Figure 2: An example of the system walkthrough demonstrating the construction of a Distance Alarm (see details in System

Walkthrough).

suggest a H-bridge (module) to the user if a DC motor is
inserted into the virtual breadboard. This is done based on
how frequently a candidate module is used together with
the current one in the past by the community. The most
frequent candidates are ranked at the top of the list. We only
consider modules that are immediate neighbors in the circuit
database as candidates to each other. For example, in the
situation, where three modules A, B, and C are connected
in series (e.g., A-B-C), only B is considered to be a candi-
date suggestion for A, not C because the order of connection
often matters. For example, with a circuit connecting (A) a
piezo speaker, (B) a 555 timer for generating signal waves
to the speaker, and (C) a photocell module for resetting the
timer, in series, the photocell is unrelated to the function of
the speaker. Modules that are connected in parallel are also
considered as candidate suggestions to each other, except
that they are both connected to the power and ground since
this way their functions are loosely related to each other.

Wire Connection Completion (A3). If a candidate module is
accepted by the user, the system suggests wiring the current
module according to a source project. Our system can also
provide suggestions to complete wire connections if the user
connects the first wire between two modules.

MCU or battery completion (A4). Upon completing a mod-
ule, our system can also suggest a battery or hardware plat-
form such as Arduino to complete the circuit. We considered
these four features the most fundamental to demonstrate
the promise and usability of AutoFritz. Advanced features
like suggesting based on component model or suggesting
component values were left outside the scope of this work.

4 SYSTEM WALKTHROUGH

This section demonstrates a running example to illustrate dif-
ferent capabilities of AutoFritz. We demonstrate constructing
a circuit for a distance alarm, which uses a distance sensor
to measure the distance of a nearby object. If the distance
is shorter than a threshold, the device turns on an LED and
plays a sound using a piezo speaker.

With AutoFritz, a user drags a piezo speaker component
into the virtual breadboard (Figure 2a). Once the piezo speaker
is added, AutoFritz shows a grid of four suggestion icons
in the Suggestion Panel, each represents a different way to
complete the speaker component to a speaker module (A1)
(Figure 2b). The suggestions are shown in a descending order
from left to right (and up to down). Below each suggestion
icon, the user finds a list of 1-5 stars, representing how fre-
quently the suggested way of completing a module appears
in the existing circuits in our database. For example, 5 stars
indicates that the suggestion appeared in more than 40% of
the circuits in the database. Four stars indicates the range
between 30% to 40%, etcetera. The top-ranked suggestion is
shown in the semi-transparent overlay on the breadboard.
In this case, nothing is shown indicating that most people
used the piezo speaker as a stand-alone module. If the user
wants to further examine the suggestions, they can hover the
cursor over a suggestion icon, which shows the suggested
circuit in semi-transparent on the breadboard. The user finds
that the first suggestion seems to be the one they need and
click the icon to complete the module.

Next, the system updates the suggestion panel to show
the modules (A2), MCUs, or batteries (A4) that are often used
with the speaker module (Figure 2c). The user can browse
the icon images to have a brief idea of what component is

suggested. She also places different suggestions on the bread-
board to examine them closely. She undoes the unwanted
elections. Finally, the user places the cursor over the first
suggestion (e.g., Arduino Uno), and notices that in the Source
Panel, there is a list of links that provides source projects,
based on the suggestion. The user clicks the links and finds
that they are all projects involving a speaker directly con-
nected to the Arduino Uno. The user is now confident about
their choice and selects the Uno for the piezo speaker. The
system now updates the Suggestion Panel (Figure 2d) to show
varying ways of wire connections (A3). The user selects one
that seems viable for her circuit. Following a similar proce-
dure, the user inserts the LED (Figure 2e) and distance sensor
modules (Figure 2f). She connects them to the Arduino board
by following AutoFritz’s suggestions.

5 IMPLEMENTATION

We developed AutoFritz on Fritzing [5, 33], an open-source
virtual circuit prototyping tool. The software provides a drag-
and-drop interface that allows users to design and construct
circuit projects on a virtual breadboard. Our system has two
parts: (1) a database, storing autocomplete logic; and (2) a
frontend user interface integrated into the Breadboard and
Parts view of Fritzing for showing suggestions.

Data Collection

Our autocomplete suggestions are made based on datasheet
schematics and existing circuits shared by the Fritzing com-
munity [4]. For the circuit data, we included 67 example
circuits provided by the Fritzing software and 4065 circuits
downloaded from Fritzing’s project website [4] (4132 in to-
tal). Circuit data was downloaded in Fritzing’s XML format.
We converted and stored them in an SQLite database. Our
implementation included 84 circuit components commonly
used by novice makers (e.g., 36 I/O, 22 IC, 11 basic, 7 batteries,
and 8 MCU). The components were chosen from the Fritzing
software as well as those used in more than 1% of the 4132
circuit projects we have in our database.

Note that Fritzing does not separate different models of
the same component type. For example, models of the same
piezo speaker are treated the same in the software. One of the
main reasons is that they are not very much different from
each other in terms of functionality and wiring connection.
This is particularly true for the components commonly used
by novices, to whom presenting the classified models may
be unnecessary and likely cause confusion. We adopted the
same strategy by presenting the components based on type
not model. Technically, it makes little difference for most of
our components as we found the datasheet schematics of
common-used models of a component type are mostly the
same. In cases when they are different (e.g., some models of
piezo speakers can work without a resistor, but some cannot),

Component Supplementary Module
INPUT
! LM35 Temperature Sensor

m Trimmer Potentiometer

2 Humidity and Temperature Sensor RHTO3

, Basic Force Sensing Resistor (FSR)
. RFID Reacder

- Basic Flex Resistor
fill Siide Potentiometer
;!; Rotary Potentiometer
W8 |nfrared Proximity Sensor
z Rotary Encoder

88 Hc-s04
Barometric Pressure Sensor

Triple Axis Accelerometer Breakout
B Pushbutton (2 pins) 1 resistor
@ Pushbutton (4 pins) 1 resistor

- Reed switch 1 resistor
] Toggle Switch 1 resistor
\,I Tilt Switch

(@ Photocell (LDR)
l Antenna
OUTPUT
= 128 x 64 Graptic LoD
B L CD screen
_.C 7 Segment Display
r LED Dot Matrix 18mm (0.7 INCH)

q‘ Microphone 1 resistor
’ Piezo Speaker 1 resistor
l‘ LED (2 pin) 1 resistor
@ LED (4 pin) 1 resistor
RGB LED 3 resistors
. Loudspeaker 1 resistor
. Solenoid 1 diode, 1 transistor, 1 resistor
? Stepper Motor - Bipolar
B oC Motor
8 Basic Servo

Peltier Elernent

<
Bl 0P -Relay-D31A

Figure 3: I/O components included in our implementation.
Supplementary Modules are those created by us according
to common practice.

we presented all of them as suggestions for that component.
Since our goal was not to exhaust all the possible models for
different types of components, we surveyed around three
models per component.

Figure 3 shows all the different types of I/O components
that was included in our implementation. For each of them,
we found the datasheet of different models and documented
the schematics in the SQLite database. Our database con-
tains information about all the components, functions of
component legs (e.g., polarity, VCC, data, etc.), component
schematics (or modules), and all the collected circuits. We
walked through all circuits in the database. Within each cir-
cuit, we first identified all the I/O and IC components. For
each, we also found its module within the circuit based on
the schematics in our database.

There are several cases where constructed component
modules are different from those in our database since our
collection of database schematics may not cover all the pos-
sible ways the module of an I/O or IC component can be
constructed. Examples include those needing additional pro-
tection from an extra basic component, such as LEDs or
toggle switches that are often used with a resistor. These
methods were missing in our initial database. To address
this type of problem, our program checked whether the use
case of every component in the circuit database matched
the module description in our module database. If any mis-
match exceeded 10% of all the instances, we manually looked
into them and identified the new modules for that particular
component. We created a supplementary schematic in the
database if the module was constructed correctly (see Fig-
ure 3). In cases that a module was created incorrectly, we
corrected it in the circuit. For cases where a circuit compo-
nent was unknown to our system, they were excluded.

For each circuit, we also applied a DFS search approach
to examine if there were any component modules contained
in the circuit. Based on the result, we then calculated how
frequently a module appeared in our circuit database and
present them in a descending order in our suggestions for
Module Completion (A1). With all the component modules
identified in the circuit, we were also able to figure out
whether and how they were connected to each other, by
analyzing if the endpoints of two modules were connected
to each other or not. This information was stored in the
database for providing suggestions for Module-to-Module
Completion (A2) and Wire Connection Completion (A3).

Fritzing-end User Interface

We modified Fritzing’s source code to show the top-ranked
suggestions in its Breadboard view with the suggested com-
ponents and wires, rendered semi-transparently. We also
changed Fritzing’s Parts view by including a Suggestion
Panel and Source Panel (Figure 4). The Suggestion Panel
shows all the suggestions in a grid view. The Source Panel
was implemented to show links to source projects of each
suggestion, so that a user can see the reason why a particular
suggestion was made by our system.

Autocomplete Suggestions & X

Source Projects
collision avoidance car
arduino rc car remote command with ¢ interf
arduino robot chassis servo bluetooth led

ailgorrc
1293d motor driver

construccion de un pegueno carro controlado
ir remote dc motor control

H Bridge.fzz

Figure 4: AutoFritz’s Suggestion and Source Panel.

| X

6 USERSTUDY

We conducted an experiment to evaluate the effectiveness
and usability of autocomplete in the design of virtual bread-
board circuits. In particular, we were interested in under-
standing whether autocomplete could help reduce circuit
errors and improve task efficiency for users with and without
a strong background in electronics. We were also interested
in whether and how the complexity of target circuits may
affect the effectiveness of our tool.

Participants

Sixteen participants (7 female) between the ages of 21 and
26 participated in the study. Half of our participants had a
bachelor’s degree in electronics and the remaining did not
and deemed themselves nonexpert, having some knowledge
from high school and college. Before they came to the study,
participants were given a tutorial about Fritzing and our
autocomplete features demonstrating how virtual circuits
can be created. We gave them a small test to create a simple
circuit to ensure that they were all familiar with the functions
and interfaces of the software.

Task

The tasks involved creating four circuits with two levels of
complexity (e.g., low and high). Participants were asked to
complete two circuits per complexity level (with and without)
using the autocomplete tool. All the circuits were chosen
from Arduino [6] or Arduino Project Hub [7].

The two circuits in the low complexity category involved
modules of simple components, such as LEDs, piezo speaker,
push buttons, or photocell. The first circuit is Morse Code
Communication [15] (Figure 5 top), involveing three I/O
components (e.g., push button, LED, and a piezo speaker). It
takes input from two push buttons, one for dot and another

Figure 5: Low complexity circuits: Morse Code Communica-
tion (top); Mixing Color Lamp (bottom).

one for dash. An LED flashes when a button is pressed. The
input letter is pronounced using a piezo speaker. A resistor
is required for all I/O components expect the piezo speaker,
which worked either way in our implementation. The second
circuit is Mixing Color Lamp [14] (Figure 5 bottom), which
involves two I/O components (e.g., tri-color LED and photo-
cell). It changes the color of a tri-color LED based on lighting
conditions, sensed from three photocells, one per R, G, or B
channel. Resistors are also needed for the components.

The circuits in the high complexity category involve mod-
ules of more complicated components, such as ICs. The first
circuit in this category is a modified Guitar Speed Pick and
Stomp Pedal [12] (Figure 6 top), which involves three I/O and
IC components (e.g., DC motor, push button, and H-Bridge).
It takes input from a push button to turn on/off a 9V DC
motor. Once the motor is turned on, the speed of the motor
has to be controllable through Arduino code (e.g., changing
from the lowest to highest and vice versa). This means that
participants had to figure out that an H-Bridge (L293D) had
to be used in the solution. A battery is also needed to power
the DC motor. The second circuit is LCD Thermometer [13]
(Figure 6 bottom), which involves two I/O components (e.g.,
LCD, thermometer). It shows the temperature readings from
a thermometer on a 16x2 LCD display. Participants had to
figure out how to properly connect the LCD to the Arduino
board. A rotary potentiometer (or resistor) is needed for the
LCD to display in the right contrast. Since the components
involved in this study are quite common, the suggestions
associated with them were all top ranked between 1 to 3.

For evaluation, we only cared about the correctness of the
circuit components and their connections. Participants did
not have to specify the component values, nor did they have
to program in Arduino. The aesthetics of the final circuits
was also not considered in our evaluation.

Figure 6: High complexity circuits: Guitar Speed Pick and
Stomp Pedal (top); LCD Thermometer (bottom).

Procedure

Prior to the study, participants were informed that they
needed to create four circuits using Fritzing. We gave them a
textual description of the functionalities of the circuits that
they had to develop. The text also listed the components
they had to use for all four tasks including some distractor
components, but without telling them how to use them to
complete the task. During the study, participants had access
to the task description sheet, the help content, examples built
into Fritzing, and access to the internet for them to search
for information. They were allowed to search online for any-
thing other than the exact solution. (e.g., do not search for
‘use a 16x2 VISHAY LCD to show temperature’). Half of the
study required participants to finish the tasks with the auto-
complete features. In the remaining half, they completed the
tasks using the standard Fritzing software. The autocomplete
condition, task complexity and task orders under the same
task complexity were counter-balanced among participants.

Similar to [19, 23], we also constrained task completion
time. Since participants were not required to program in
Arduino, we gave them 20 minutes per task. Participants
were asked to do their best to accomplish the tasks without
using a simulator to test or debug. This way we were able
to measure their confidence and correctness of their initial
answers. Participants were not allowed to modify their an-
swer or view the correct solution once they submitted their
answers. Upon completion of the study, participants filled
out a post-experiment questionnaire where they indicated
subjective ratings for Mental Effort, Frustration, and Confi-
dence (1: very low, 7: very high) using a continuous numeric
scale. Decimal ratings like 3.8 were permitted.

Results
The data was analyzed using Mixed ANOVA. Independent

measures included Expertise (Novice and Expert), Autocom-
plete (with and without AutoFritz), and Task Complexity (Low

and High). we did not analyze task completion time because
time data was noisy including the time spent by participants
on searching and learning online materials.

Task Completion Rate. Among the 16 participants, 11 were
able to complete the four tasks within the time constrain,
with the uncompleted tasks being Guitar Speed Pick and
Stomp Pedal. Table 1 summarizes the reasons for the failures.
Circuit correctness is discussed in the next section.

ID Expertise AutoFritz Reason

Unable to figure out how to use the H-Bridge with
the DC motor.

Unable to figure out how to use the H-Bridge with
the DC motor.

Unable to figure out how to use the H-Bridge with
the DC motor and button with Arduino.
Completed the circuit by mistakenly using the
push button as a toggle button, which left no time
for P5 to figure out how to fix the issue.

Spent all the time trying to power the DC motor
using Arduino.

P1 Novice Yes

P4 Novice Yes

P2 Novice No

P5 Expert No

P7 Novice No

Table 1: Summary of task failures.

Both P1 and P4 failed to complete the tasks even with Aut-
oFritz. In case of P1, the participant was able to find tutorials
about DC motors, H-Bridge, and the (right) suggestion pro-
vided by AutoFritz. However, the participant was unable to
understand if the H-Bridge was the right component for the
task. Digging into the source project of AutoFritz’s sugges-
tions to understand the concept and reasoning was beyond
this participant’s capability within 20 minutes. P4 was simi-
lar, being able to connect the DC motor with the battery by
following the suggestion of AutoFritz. However, the partic-
ipant was stuck at choosing what motor controller to use
because of the same reason. Therefore, some basic under-
standing of the desired components is still needed in order
for AutoFritz to work. Therefore, we expect that AutoFritz
should work better for people who are familiar with stan-
dard electronic components. When AutoFritz was not used,
participants failed to complete the task because they did not
know how to power the DC motor (P7) or use the push but-
ton (P2, P5). These issues did not occur when AutoFritz was
used. For example, both P2 and P5 were able to successfully
complete the Morse Code task, which also required them to
use a push button.

Task Success Rate. Every answer submitted by participants
was examined by an experimenter, excluding the five un-
completed ones. If the components and wire connections are
correct, the circuit was considered successful. The success
rate represents the number of correct circuits participants
were able to create without the help of a simulator.

The success rates with AutoFritz were 86.6% (13/15) and
92.8% (13/14) for the tasks with Low and High Complexity,
which are both higher than those without AutoFritz , such

as 68.8% (11/16) and 69.2% (9/13) for the tasks with Low and
High Complexity. This suggests that AutoFritz helped partic-
ipants build more correct circuits. Being an expert does not
mean they made less errors. Our results showed that experts
made more errors than novice users, even with AutoFritz
(Figure 7).

W autocomplete M without autocomplete

NOVICE EXPERT
100%
90%
80% 7/8
£ 70%
T 60%
50%
g 40%
@ 30%
20%
10%
0%
SIMPLE ~ COMPLEX SIMPLE ~ COMPLEX

Figure 7: Task successful rate shown by Task Complexity
and Expertise.

We observed three types of errors occurring without Aut-
oFritz across the participants of different levels of expertise:
(1) missing basic components. For example, participants forgot
the resistors for LCD, LED, photocell, and push button. (2)
missing wire connections. For example, a participant forgot
to connect a potentiometer’s pin to vcc. Another participant
missed a wire to connect the push button to Arduino’s digital
pin. (3) incorrect use of I/O or IC components. For example, a
participant did not know how to use the H-Bridge correctly.
Another participant connected the photocell to Arduino’s
analog pin and ground. The last participant used the Arduino
to power the DC motor.

All three types of errors can largely be reduced with Aut-
oFritz, as only 3 out of 29 submissions contained errors, and
the reasons for them were very similar, as participants were
not sure about which suggestion to choose for their task
because they were uncertain about the function of the sug-
gested modules. For example, a novice user who did not how
to use the photocell, examined the suggestions provided by
AutoFritz and chose one that did not work for the task. An
expert initially selected the correct suggestion for the push
button but decided to ignore it and develop their own incor-
rect solution instead. Similarly, another expert ignored the
suggestion of H-Bridge, and created a circuit to control the
DC motor directly from Arduino because this participant be-
lieved that it should also work. These two experts appeared
to be unfamiliar with the tested components but were still
quite confident about their electronics skills. We believed
that eventually they might be able to figure out the correct
solutions, but time would be wasted. To address this issue,
AutoFritz should provide more informative suggestions to
help users to understand the functionality of the sugges-
tions. The current way of showing the source projects of the

suggestions did not work as well as we expected because
many of the source projects were unrelated to the tested task.
Therefore, we still saw participants relied on the web to find
relevant tutorials.

An interesting benefit of AutoFritz is that it allowed users
to learn new ways to construct a circuit, in ways that they
might not have thought about. This is something primarily
appreciated by the experts. For example, an expert told us
that "I did not know that the LCD has to be used with a poten-
tiometer until I saw the suggestion, and I googled and found
that it was a common thing to do. I am glad that I learned
something new" (P6). Another expert told us that "I didn’t
know how to drive a DC motor and was thinking about creating
a driver circuit by myself. Then I saw the L293D (H-bridge)
from the software and was happy to learn that it worked" (P3).
This is similar to how software engineers often learn new
comments the autocomplete suggestions in a programming
IDE, and we expect that AutoFritz can also be a good learning
environment for the users.

Mental Effort. The amount of mental effort spent on com-
pleting the tasks was not significantly different (F 14 = 0.52,
p = 0.822) from Novice (3.80, SD = 1.31) and Expert (3.69,
SD = 1.88). As expected, mental effort was higher with tasks
of High (4.34, SD = 1.50) than Low Complexity (3.14, SD =
1.50) (Fy,15 = 21.343, p < 0.01). AutoFritz helped reduce par-
ticipants’ mental effort (Fy, 15 = 18.204, p < 0.05) Participants
found their mental effort higher without AutoFritz (4.44, SD
= 1.44) than with AutoFritz (M = 3.05, SD = 1.48) (Figure 8).

Six out of eight novice users told us tasks were much easier
with AutoFritz. A participant stated "I felt like I was an expert
with AutoFritz as I could create circuits without spending all
the time googling” (P2). This as encouraging evidence high-
lighting the potential of AutoFritz in encouraging novice
learners to be more active in participating in circuit design
and prototyping. Experts appreciated AutoFritz from a dif-
ferent perceptive. Unlike novice users, many of them had a
better idea of how the pins of the components should be con-
nected correctly. However, connecting the wires manually
can be tedious and error-prone. Some of our expert users
told us that they liked the suggestions for Wire Connection
Completion (A3) the most because it "saved a great deal of
effort from tedious wiring" (P10, P14), and essentially "allowed
them to focus on the design of the function of the circuit" (P11).
This is an important benefit of AutoFritz, which we hoped
to achieve when designing the software.

Frustration. Frustration scores from Novice and Expert across
all the conditions were 3.66 (SD = 1.72) and 2.83 (SD = 1.68),
but the difference was insignificant (Fy 14 = 4.05, p = 0.06).
Similar to mental effort, participants found the tasks with
High Complexity (4.15, SD = 1.59) more frustrating than Low

Complexity (2.33, SD = 1.38) (Fy,15 = 40.98, p < 0.01). Partic-
ipants were less frustrated with AutoFritz (2.80, SD = 1.75)
than without it (3.69, SD = 1.63) (Fy,15 =4.90, p < 0.05).

Both novice and experts found AutoFritz helpful in a time-
sensitive task in that "it can help me quickly find a solution and
place it automatically on the breadboard" (P2, P10, P11). This
allowed them to "insert an answer first and verify it afterword
using online tutorials" (P8, P14, P15). By having an answer
at hand, even uncertain about whether it is the right one to
user or not, certainly reduced the level of frustration of our
participants. We foresee that this can be particularly useful
for improving the learning experience of novice learners or
students at school, whose engagement in learning electric
circuits is largely affected by frustration.

Experts may not necessarily know the best solution for
a problem that they were unfamiliar with and this can be
frustrating for them. AutoFritz can mitigate such frustration.
For example, one of our expert participants mentioned that I
could have completely missed the H-Bridge and gone for a way
more complicated solution if autocomplete was not provided. I
will definitely be more frustrated as I do not know if my initial
thought works or not." (P11).

Being uncertain about which suggestion to use is a source
of frustration, especially for novice users dealing with a diffi-
cult problem (e.g., tasks of High Complexity). For example, a
participant commented that "I was a bit frustrated when I did
not understand the functions of these suggested modules and
which one was the right one to use” (P3). Many novice users
were not interested in reading the source projects to learn
the components if learning was not their goal, in which case,
AutoFritz could be less effective than alternatives such as
generative design [13].

Confidence. Participants were asked to rate their level of
confidence regarding the correctness of their answer. As
expected Expert (5.48, SD = 1.66) was more confident than
Novice (4.17, SD = 1.85) (Fy,14 = 5.55, p < 0.05). Participants
were more confident about their answers to the tasks with
Low (5.37, SD = 1.50) than High Complexity (4.27, SD =
2.06) (Fy,15 = 18.01, p < 0.05). Participants found themselves
more confident with AutoFritz (5.34, SD = 1.76) than without
AutoFritz (4.31, SD = 1.86) (Fy,15 = 5.95, p < 0.05).

Both experts and novices were confident about their initial
answers with AutoFritz even without using a simulator to
test their answer. This is because they trusted the sources of
the suggestions, since "all the suggestions are from datasheets
and example circuits" (P2, P9, P15). Component datasheets and
online circuit examples and tutorials are the main sources of
information, where participants usually receive help from.
Another reason for them to be more confident when using
AutoFritz is that "the software mainly took care of wire con-
nects so the chance for me to make wiring error is reduced" (P2).

MENTAL EFFORT FRUSRATION

NOVICE EXPERT NOVICE

L=T N A -)

SIMPLE COMPLEX SIMPLE COMPLEX SIMPLE

COMPLEX

M autocomplete
B without autocomplete

EXPERT

CONFIDENCE
EXPERT NOVICE

SIMPLE COMPLEX SIMPLE COMPLEX SIMPLE COMPLEX

Figure 8: Subjective ratings on mental effort, frustration, and confidence.

Note that it may take time for people to develop confidence
on AutoFritz before they completely trust its suggestions.
For example, we found many participants spent more time
on their first autocomplete session than the second one. The
time was spent on googling tutorials first and comparing
their findings with the suggestions from AutoFritz. This
is particularly true for the novice users. Our star ratings
also helped participant develop confidence on their choices
among the suggestions based on their frequency in the ex-
isting circuit projects.

7 LIMITATIONS AND FUTURE WORK

We present insights we learned from our work, discuss its
limitation and suggest future research directions.
Autocomplete & generative design. Providing help to users in
the design and creation of electronic hardware is a fruitful
research topic which has attracted attention recently with
solutions proposed from many different perspectives. One
of these is generative design, which allows a novice user
to specify a high-level description of the needs and lets the
computer generate the solutions (e.g., breadboard schematic)
for the user. This allows a novice in electronics to create
hardware projects. In this context, a user may not have the
desire to design or learn electronics as their goal is to com-
plete the task. Autocomplete is different because the user is
in the center of the loop, where technology assists the user
in the design and creation of virtual breadboard circuits, and
the desire to design and construct is essential. Circuit auto-
complete (at least in our implementation) is lacking in the
consideration of a user’s current goal and context, which was
shown in our study to be important for providing meaningful
suggestions to the users. We believe circuit autocomplete
can benefit from the concepts of generative design in better
understanding the user’s needs. Common grounds can be
found for the two approaches. Al and machine learning tech-
niques can also help improve autocomplete in understanding
the user thus better serving the user’s goal.

Functionality. Our tool provides autocomplete suggestions
without validating the input circuit on-the-fly, which we
think can be very difficult to achieve without the knowledge
of a user’s intention of the next component/module, power
source, or the target circuit. However, circuit validation can

be done using a simulator (e.g., NI Multisim[16]) once it is
completed. Aside from validation, many other features can
be beneficial for circuit autocomplete, including suggesting
component values. With our initial exploration in this new
space, we see opportunities for many future researches.
Implementation. The current implementation of AutoFritz
allowed us to explore of the concept of autocomplete in
the construction of virtual circuits and gain initial insights
into it usability. Our implementation can be improved in
many ways. For example, fine-grained classification of circuit
components should be considered to provide more precise
suggestions and reduce the time and efforts from the user to
search among relative suggestions. Suggesting component
value would also be a useful addition to the current system,
which again requires understanding a user’s goal. Another
improvement is to consider the user’s own search history.
Our database was created using an approach mixed with
manual and automatic operations in parsing circuit data from
the web. This approach is limited in scalability to outside the
Fritzing’s website, where the circuit data may not be stored
in a structured form like XML. This is the main challenge
we had when trying to get data from Arduino’s project hub,
which presents the sample circuits using RGB figures of
breadboard circuits. We intend to develop image processing
techniques to parse the data from the figures and test the
robustness of our system over a larger dataset. With more
data in the database, it is also important to be sure that
querying autocomplete suggestions is up to speed.

Our ranking system is based on frequency, which can

be improved in the future to incorporate user’s goal, con-
text, and the user’s own search history. Existing research in
autocomplete in programming, web search, or text editing
can provide useful insights to improve our implementation.
Finally, it is possible that an inserted component has not oc-
curred historically, meaning there will always be opportunity
for future research to assist in these situations.
Evaluation. Our evaluation focused on the usability of Aut-
oFritz in a controlled environment. We aim to eventually
deploy it in the wild and test it with users who have a variety
of backgrounds and goals, understand the issues with the
current design and implementation, and iterate the improve-
ments in both system and usability design.

8 CONCLUSION

We introduce the concept of autocomplete to the design and
construction of virtual breadboard circuits. With autocom-
plete, the system can provide a user with a list of suggested
components based on the one that is inserted by the user.
The suggestions complete or extend the electronic function-
ality of the inserted component to reduce circuit error. To
demonstrate the effectiveness and usability of the proposed
idea, we implemented autocomplete on Fritzing, an open
source software, based on schematics from datasheets for
standard components and over 4000 circuit projects from the
Fritzing community. Our implementation provides Module
Completion, Module-to-Module Completion, Wire Connec-
tion Completion, and MCU or Battery Completion. Through
a controlled user experiment with 16 experts and novices, we
demonstrated the effectiveness of autocomplete in creating
virtual breadboard circuits of different levels of complexity.
We sheared our insights gained from this research and fore-
see that this work can inspire a fruitful line of future research
in the field of rapid prototyping.

ACKNOWLEDGMENTS

This research was supported in part by the Ministry of Sci-
ence and Technology of Taiwan (MOST107-2636-E-009-004-
, 106-2221-E-002-211-MY2, 106-2923-E-002-013-MY3, 107-
2218-E-011-016, 107-2633-E-002-001), National Chiao Tung
University, National Taiwan University (NTU-107L10403),
Intel Corporation and Dartmouth Neukom Institute.

REFERENCES

[1] 2017. Altium Designer 17 Overview.
altium-designer/

[2] 2017. Autodesk Circuits. https://circuits.io/

[3] 2017. Digilent Electronics Explorer. https://store.digilentinc.com/

http://www.altium.com/

electronics-explorer-all-in-one-usb-oscilloscope- multimeter-workstation/

[4] 2017. EAGLE PCB Design and Schematic Software.
[5] 2018. Arduino. http://arduino.cc
[6] 2018. Arduino Blink Example. https://www.arduino.cc/en/tutorial/
blink
] 2018. Arduino Project Hub. https://create.arduino.cc/projecthub
] 2018. Circuito. https://www.circuito.io
] 2018. EDASolver. http://edasolver.com
0] 2018. Fritzing Project Hub. http://fritzing.org/projects/
] 2018. Fritzing Software. http://fritzing.org/home/
] 2018. Guitar Speed Pick and Stomp Pedal
https://create.arduino.cc/projecthub/marc_uberstein/
guitar-speed-pick-and-stomp-pedal-35a4e3?ref=platform&ref_
id=424_trending___ &offset=3
[13] 2018. LCD Thermometer. https:
//create.arduino.cc/projecthub/TheGadgetBoy/
making-lcd-thermometer-with-arduino-and-lm35-36-c058{0?
ref=search&ref id=Im35&offset=1

[14] 2018. Mixing color lamp. https://programminginarduino.wordpress.
com/2016/03/01/project-04/

[15] 2018. Morse Code Communication Using Arduino.
https://create.arduino.cc/projecthub/Jalal_Mansoori/

morse-code-communication-using-arduino-{339c0?ref=platform&
ref_id=424_trending___&offset=1

[16] 2018. National Instruments Multisim. http://www.ni.com/multisim/

[17] 2018. VirtualBreadboard. http://www.virtualbreadboard.com/

[18] Serge Abiteboul, Yael Amsterdamer, Tova Milo, and Pierre Senellart.
2012. Auto-completion learning for XML. In Proceedings of the 2012
ACM SIGMOD International Conference on Management of Data. ACM,
669-672.

[19] Fraser Anderson, Tovi Grossman, and George Fitzmaurice. 2017.
Trigger-Action-Circuits: Leveraging Generative Design to Enable
Novices to Design and Build Circuitry. In Proceedings of the 30th An-
nual ACM Symposium on User Interface Software and Technology. ACM,
331-342.

[20] Holger Bast and Ingmar Weber. 2006. When you’re lost for words:
Faceted search with autocompletion. In SIGIR, Vol. 6. 31-35.

[21] Olivier Bau and Wendy E Mackay. 2008. OctoPocus: a dynamic guide
for learning gesture-based command sets. In Proceedings of the 21st
annual ACM symposium on User interface software and technology.
ACM, 37-46.

[22] Mike Bennett, Kevin McCarthy, Sile O’modhrain, and Barry Smyth.
2011. Simpleflow: enhancing gestural interaction with gesture predic-
tion, abbreviation and autocompletion. In IFIP Conference on Human-
Computer Interaction. Springer, 591-608.

[23] Tracey Booth, Simone Stumpf, Jon Bird, and Sara Jones. 2016. Crossed
wires: Investigating the problems of end-user developers in a physical
computing task. In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems. ACM, 3485-3497.

[24] Fei Cai, Maarten De Rijke, et al. 2016. A survey of query auto comple-
tion in information retrieval. Foundations and Trends® in Information
Retrieval 10, 4 (2016), 273-363.

[25] Daniel Drew, Julie L Newcomb, William McGrath, Filip Maksimovic,
David Mellis, and Bjorn Hartmann. 2016. The Toastboard: Ubiquitous
Instrumentation and Automated Checking of Breadboarded Circuits.
In Proceedings of the 29th Annual Symposium on User Interface Software
and Technology. ACM, 677-686.

[26] Stephen R Foster, William G Griswold, and Sorin Lerner. 2012. Witch-
Doctor: IDE support for real-time auto-completion of refactorings.
In Software Engineering (ICSE), 2012 34th International Conference on.
IEEE, 222-232.

[27] Dario Garigliotti and Krisztian Balog. 2017. Generating query sugges-
tions to support task-based search. arXiv preprint arXiv:1708.08289
(2017).

[28] Saul Greenberg and Chester Fitchett. 2001. Phidgets: easy development
of physical interfaces through physical widgets. In Proceedings of the
14th annual ACM symposium on User interface software and technology.
ACM, 209-218.

[29] James Hays and Alexei A Efros. 2007. Scene completion using millions
of photographs. In ACM Transactions on Graphics (TOG), Vol. 26. ACM,
4.

[30] Will Hill, Larry Stead, Mark Rosenstein, and George Furnas. 1995.
Recommending and evaluating choices in a virtual community of use.
In Proceedings of the SIGCHI conference on Human factors in computing
systems. ACM Press/Addison-Wesley Publishing Co., 194-201.

[31] Steve Hodges, Nicolas Villar, Nicholas Chen, Tushar Chugh, Jie Qi,
Diana Nowacka, and Yoshihiro Kawahara. 2014. Circuit stickers: peel-
and-stick construction of interactive electronic prototypes. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 1743-1746.

[32] Kajta Hofmann, Bhaskar Mitra, Filip Radlinski, and Milad Shokouhi.
2014. An eye-tracking study of user interactions with query auto
completion. In Proceedings of the 23rd ACM International Conference

http://www.altium.com/altium-designer/
http://www.altium.com/altium-designer/
https://circuits.io/
https://store.digilentinc.com/electronics-explorer-all-in-one-usb-oscilloscope-multimeter-workstation/
https://store.digilentinc.com/electronics-explorer-all-in-one-usb-oscilloscope-multimeter-workstation/
http://arduino.cc
https://www.arduino.cc/en/tutorial/blink
https://www.arduino.cc/en/tutorial/blink
https://create.arduino.cc/projecthub
https://www.circuito.io
http://edasolver.com
http://fritzing.org/projects/
http://fritzing.org/home/
https://create.arduino.cc/projecthub/marc_uberstein/guitar-speed-pick-and-stomp-pedal-35a4e3?ref=platform&ref_id=424_trending___&offset=3
https://create.arduino.cc/projecthub/marc_uberstein/guitar-speed-pick-and-stomp-pedal-35a4e3?ref=platform&ref_id=424_trending___&offset=3
https://create.arduino.cc/projecthub/marc_uberstein/guitar-speed-pick-and-stomp-pedal-35a4e3?ref=platform&ref_id=424_trending___&offset=3
https://create.arduino.cc/projecthub/TheGadgetBoy/making-lcd-thermometer-with-arduino-and-lm35-36-c058f0?ref=search&ref_id=lm35&offset=1
https://create.arduino.cc/projecthub/TheGadgetBoy/making-lcd-thermometer-with-arduino-and-lm35-36-c058f0?ref=search&ref_id=lm35&offset=1
https://create.arduino.cc/projecthub/TheGadgetBoy/making-lcd-thermometer-with-arduino-and-lm35-36-c058f0?ref=search&ref_id=lm35&offset=1
https://create.arduino.cc/projecthub/TheGadgetBoy/making-lcd-thermometer-with-arduino-and-lm35-36-c058f0?ref=search&ref_id=lm35&offset=1
https://programminginarduino.wordpress.com/2016/03/01/project-04/
https://programminginarduino.wordpress.com/2016/03/01/project-04/
https://create.arduino.cc/projecthub/Jalal_Mansoori/morse-code-communication-using-arduino-f339c0?ref=platform&ref_id=424_trending___&offset=1
https://create.arduino.cc/projecthub/Jalal_Mansoori/morse-code-communication-using-arduino-f339c0?ref=platform&ref_id=424_trending___&offset=1
https://create.arduino.cc/projecthub/Jalal_Mansoori/morse-code-communication-using-arduino-f339c0?ref=platform&ref_id=424_trending___&offset=1
http://www.ni.com/multisim/
http://www.virtualbreadboard.com/

(33

(34

(35

(36

(37

(38

(39

[40

[41

(42

]

=

[t

=

—

]

]

[t

—

=

on Conference on Information and Knowledge Management. ACM, 549—
558.

Eero Hyvonen and Eetu Mikel4. 2006. Semantic autocompletion. In
Asian Semantic Web Conference. Springer, 739-751.

Takeo Igarashi and John F Hughes. 2001. A suggestive interface for
3D drawing. In Proceedings of the 14th annual ACM symposium on User
interface software and technology. ACM, 173-181.

Yoshihiro Kawahara, Steve Hodges, Benjamin S Cook, Cheng Zhang,
and Gregory D Abowd. 2013. Instant inkjet circuits: lab-based inkjet
printing to support rapid prototyping of UbiComp devices. In Proceed-
ings of the 2013 ACM international joint conference on Pervasive and
ubiquitous computing. ACM, 363-372.

André Knorig, Reto Wettach, and Jonathan Cohen. 2009. Fritzing: a tool
for advancing electronic prototyping for designers. In Proceedings of
the 3rd International Conference on Tangible and Embedded Interaction.
ACM, 351-358.

David Koop, Carlos E Scheidegger, Steven P Callahan, Juliana Freire,
and Claudio T Silva. 2008. Viscomplete: Automating suggestions
for visualization pipelines. IEEE Transactions on Visualization and
Computer Graphics 14, 6 (2008), 1691-1698.

Jean-Francois Lalonde, Derek Hoiem, Alexei A Efros, Carsten Rother,
John Winn, and Antonio Criminisi. 2007. Photo clip art. ACM transac-
tions on graphics (TOG) 26, 3 (2007), 3.

Justin Matejka, Wei Li, Tovi Grossman, and George Fitzmaurice. 2009.
CommunityCommands: command recommendations for software ap-
plications. In Proceedings of the 22nd annual ACM symposium on User
interface software and technology. ACM, 193-202.

Will McGrath, Daniel Drew, Jeremy Warner, Majeed Kazemitabaar,
Mitchell Karchemsky, David Mellis, and Bjorn Hartmann. 2017. Bifrost:
Visualizing and Checking Behavior of Embedded Systems across Hard-
ware and Software. In Proceedings of the 30th Annual ACM Symposium
on User Interface Software and Technology. ACM, 299-310.

David A Mellis, Leah Buechley, Mitchel Resnick, and Bjérn Hartmann.
2016. Engaging amateurs in the design, fabrication, and assembly
of electronic devices. In Proceedings of the 2016 ACM Conference on
Designing Interactive Systems. ACM, 1270-1281.

Kyle I Murray and Jeffrey P Bigham. 2011. Beyond autocomplete:
Automatic function definition. In Visual Languages and Human-Centric

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Computing (VL/HCC), 2011 IEEE Symposium on. IEEE, 259-260.

Sam Seifert. 2016. Autocomplete Sketch Tool. (2016).

Christian Sengstock and Michael Gertz. 2011. CONQUER: a system for
efficient context-aware query suggestions. In Proceedings of the 20th
international conference companion on World wide web. ACM, 265-268.
Evan Strasnick, Maneesh Agrawala, and Sean Follmer. 2017. Scana-
log: Interactive Design and Debugging of Analog Circuits with Pro-
grammable Hardware. In Proceedings of the 30th Annual ACM Sympo-
sium on User Interface Software and Technology. ACM, 321-330.

Steve Tsang, Ravin Balakrishnan, Karan Singh, and Abhishek Ran-
jan. 2004. A suggestive interface for image guided 3D sketching. In
Proceedings of the SIGCHI conference on Human Factors in Computing
Systems. ACM, 591-598.

Nicolas Villar, James Scott, Steve Hodges, Kerry Hammil, and Colin
Miller. 2012. . NET gadgeteer: a platform for custom devices. In Inter-
national Conference on Pervasive Computing. Springer, 216—-233.
Chiuan Wang, Hsuan-Ming Yeh, Bryan Wang, Te-Yen Wu, Hsin-Ruey
Tsai, Rong-Hao Liang, Yi-Ping Hung, and Mike Y Chen. 2016. Cir-
cuitStack: supporting rapid prototyping and evolution of electronic
circuits. In Proceedings of the 29th Annual Symposium on User Interface
Software and Technology. ACM, 687-695.

David Ward, Jim Hahn, and Kirsten Feist. 2012. Autocomplete as
research tool: A study on providing search suggestions. Information
Technology and Libraries 31, 4 (2012), 6-19.

Te-Yen Wu, Hao-Ping Shen, Yu-Chian Wu, Yu-An Chen, Pin-Sung
Ku, Ming-Wei Hsu, Jun-You Liu, Yu-Chih Lin, and Mike Y Chen. 2017.
CurrentViz: Sensing and Visualizing Electric Current Flows of Bread-
boarded Circuits. In Proceedings of the 30th Annual ACM Symposium
on User Interface Software and Technology. ACM, 343-349.

Te-Yen Wu, Bryan Wang, Jiun-Yu Lee, Hao-Ping Shen, Yu-Chian Wu,
Yu-An Chen, Pin-sung Ku, Ming-Wei Hsu, Yu-Chih Lin, and Mike Y
Chen. 2017. CircuitSense: Automatic Sensing of Physical Circuits and
Generation of Virtual Circuits to Support Software Tools.. In Proceed-
ings of the 30th Annual ACM Symposium on User Interface Software and
Technology. ACM, 311-319.

Jun Xing, Li-Yi Wei, Takaaki Shiratori, and Koji Yatani. 2015. Autocom-
plete hand-drawn animations. ACM Transactions on Graphics (TOG)
34, 6 (2015), 169.

	Abstract
	1 Introduction
	2 Related Work
	Autocomplete in Varying Application Domains
	Circuit Design Tools
	Circuit Prototyping Tools
	Circuit Debugging Tools

	3 system overview
	Component Categories
	Component Module
	Autocomplete Suggestions

	4 system Walkthrough
	5 Implementation
	Data Collection
	Fritzing-end User Interface

	6 User study
	Participants
	Task
	Procedure
	Results

	7 Limitations and future work
	8 Conclusion
	Acknowledgments
	References

