
 

 
                  

        
        

 

  
 

                 

    
 

 
 

 

 
         

    
         

    
     

        
     

     
         

      
     

         
      

    
   

     
    

 

  
   

  
   

       
 
 

    
     
    
         

    
    

   
      
        

     

         
     

      
       

      
      

   
          

    

          
       

 
             

        
           

         
        

          
 

          
     

 
 

 

Proxino: Enabling Prototyping of Virtual Circuits 
with Physical Proxies 
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Figure 1. Proxino allows users to (a) interact with virtual circuits using physical proxies (e.g. linking a virtual 
component to a physical flex sensor and interacting with it), (b) remotely collaborate and share resource with 
others (e.g. a buzzer can be controlled by a remote IR transmitter and receiver), and (c) prototyping circuits 
ubiquitiously with build-in proxies (e.g.  using built-in proximity sensor as the physical proxy of distance sensor). 

ABSTRACT 
We propose blending the virtual and physical worlds for 
prototyping circuits using physical proxies. With physical 
proxies, real-world components (e.g. a motor, or light sensor) 
can be used with a virtual counterpart for a circuit designed 
in software. We demonstrate this concept in Proxino, and 
elucidate the new scenarios it enables for makers, such as 
remote collaboration with physically distributed electronics 
components. We compared our hybrid system and its output 
with designs of real circuits to determine the difference 
through a system evaluation and observed minimal 
differences. We then present the results of an informal study 
with 9 users, where we gathered feedback on the 
effectiveness of our system in different working conditions 
(with a desktop, using a mobile, and with a remote 
collaborator). We conclude by sharing our lessons learned 
from our system and discuss directions for future research 
that blend physical and virtual prototyping for electronic 
circuits. 
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CSS Concepts
• Human-centered computing → Human computer 
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interface toolkits 
INTRODUCTION 
Software-based tools for circuit prototyping (e.g., Tinkercad 
Circuits [10]) are increasingly used by novice makers in 
projects that involve electronics. Typically, these tools 
include a virtual breadboard to help a user construct and test 
a circuit. However, circuits designed and created on a virtual 
breadboard cannot be interacted with physically. This 
becomes an issue when prototyping interactive artifacts that 
involve input or output (I/O) components (e.g. sensors and 
motors), as a user typically needs to interact with the 
components physically, in a real environment. 

To address this challenge, we propose a new breadboard 
circuit prototyping environment that blends the virtual and 
physical world, by enabling for the use of real I/O 
components (e.g. a motor, or flex resistor) as a physical 
proxy of their virtual counterparts, in a circuit designed and 
constructed in software. The physical proxies themselves 
behave as though the entire circuit created virtually is real. 
Using this approach, a user can then interact with virtual 
components physically (Figure 1a). 

By allowing users to take the advantage of both the virtual 
and physical world, we create a new environment that 
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enables several other scenarios for novice makers, in which 
I/O circuits can be designed, constructed, and tested. One 
example scenario is when the user is working on a project but 
missing a crucial I/O component to test an idea, such as a 
motion detector for security. The user can now receive help 
from a remote collaborator with whom they can share their 
virtually created circuit. The remote collaborator uses a real 
IR sensor as a remote proxy of the circuit and shows the user 
how it functions when motion is detected (Figure 1b). This 
way, the user does not need to have the sensor to test and 
iterate upon the idea. Essentially, it is now possible for both 
users to share their physical resources (e.g. sensors and 
actuators) using remote proxies. 

Another example is when a user desires to continue learning 
a circuit but has no access to their breadboard or physical I/O 
components (e.g. they are using a tablet or mobile device on 
a long bus ride). The user can now continue to develop the 
circuit on a tablet and use the built-in I/O components (e.g. 
proximity sensor or accelerometer) of the tablet as a proxy 
for physical interactions. (Figure 1c). 

To demonstrate technical feasibility and new possibilities 
enabled by this new circuit prototyping environment, we 
developed a tool, called Proxino. The tool is comprised of 
three parts: (1) frontend software, developed as a part of 
Fritzing [7], that allows novice users to create virtual 
breadboard circuits and program them in Arduino, (2) a 
hardware device in the form of an Arduino UNO shield, that 
interfaces physical proxies and a virtual breadboard circuit, 
and (3) a backend server that runs the virtual breadboard 
circuit in a simulator and handles data synchronization 
between the shield, the user’s Arduino code, and remote 
nodes during remote collaboration sessions. 

The contributions of this paper are: (1) the concept of using 
real I/O components as a physical proxy to interact with 
virtual circuits; (2) an exploration of the application space of 
using a physical proxy; (3) the implementation of a 
prototype, Proxino; (4) a system evaluation and initial user 
feedback of our tool; and (5) a set of applications and 
interactions enabled by Proxino. 
RELATED WORK 
Hardware Circuit Prototyping Tools
Prototyping interactive artifacts with electronics has become 
increasingly accessible due to the recent development of 
open-source hardware platforms (e.g., Arduino [2], Phidgets 
[19], or Microsoft .NET Gadgeteer [38]). However, novice 
makers often lack basic knowledge in electronics before they 
can start building things. Tools that leverage generative 
design [12] are very useful for the beginners to test their 
ideas. One challenge with this approach is that (novice) users 
may forego the opportunity to learn and enjoy the process of 
designing their own circuits. However, physically 
constructing electronic circuits on a breadboard have been 
shown to be prone to many types of errors [15, 32]. A study 
conducted by Booth, et al. [15] showed that hardware errors 
are almost always inevitable despite experience level in 

electronics. Common errors reported from their study include 
miss-wiring, incorrect component, missing components, and 
bad seating. Projects like CircuitStack [39] can mitigate 
wiring errors, while many other hardware errors (e.g., bad 
seating) do not occur in software. As such, software circuit 
prototyping tools are becoming increasingly popular. 

Aside from using a virtual breadboard for prototyping, many 
other tools have been developed in the past several years to 
assist in the creation of electronic devices [16, 21-26, 30, 33-
35]. For example, with Exemplar [18] and PICL [15], a user 
can create sensor-based interactive artifacts using 
“programming by demonstration”. Children can develop 
electronic hardware using augmented toys like LEGO bricks 
embedded with sensors and actuators [35]. A major 
difference between these approaches and breadboard 
prototyping, is that these tools are all restricted to a specific 
platform, which means that a user does not have complete 
freedom in creation (e.g. platform might be missing an 
accelerometer). In contrast, a breadboard is much more 
flexible but of course more difficult to use. 

Aside from hardware errors, adjusting breadboard 
components (e.g., different resistors) is also challenging on a 
physical breadboard. To address this problem, 
VirtualComponent [27] provides a mixed reality system with 
a custom breadboard that preloads several possible 
components into PCB modules, and a user can dynamically 
place components and see values and potential errors. A 
similar approach can be found in Scanalog [37], whose goal 
is to facilitate the design and debugging of analog circuits 
through a dataflow programming paradigm using functional 
modules, instead of components and breadboard circuit. 
LabView [8] is a commercial product, which also uses a 
dataflow paradigm, but for the design of complex electronic 
systems. The tool was designed for professional users and 
requires a specialized hardware setup. 
Software Circuit Prototyping Tools
Many commercial software has been developed to facilitate 
PCB design [1, 14]. However, these professional tools while 
effective, are not especially tailored for novice makers. As 
such, software emphasized on breadboard circuit prototyping 
[10, 11, 28] has gained wide adoption in the novice maker 
communities. For example, TinkerCad Circuit [10] allows 
users to construct a breadboard circuit using a virtual 
breadboard and electronic components. It also offers a 
simulator for users to test and debug the function of their 
circuit designs. The software also supports remote 
collaboration and most noticeably the simulation of the 
behavior of common input and output components. One key 
limitation is that a user’s design is entirely virtual, and thus 
cannot be directly interacted with in the physical 
environment. 
Circuit Debugging Tools
The fact that circuit errors are unavoidable motivated a 
separate line of research and commercial products in 
supporting circuit debugging. For example, Digilent 
Electronics Explorer [6] is a breadboard that allows users to 

Session 1B: Software and Hardware Development 
 

UIST '19, October 20–23, 2019, New Orleans, LA, USA

122



 

   
   

     
          

   
    

       
        

  
         

    
      
       

   
      

      
         

      
   

     
    

       
          

         
       

    
       

    
    

        
         

     
     

    
       

         
         

    
    

      
     

        
       

      

   
      

      
    

   
    

    
   

         
   

       
      

      
      

  
   

        
      

         
     

       
        

        
     

        
       

           
          

      
     

        
    

   
     

       
     

   

          
            

    
          

       
     

                    
                    

                     
       

Figure 2. System walkthrough. (a) A user designs a circuit on software and links the photoresistor as a physical proxy, where an 
instruction window will pop up. (b) The user can test the circuit by physically interacting with the component (c) The user can 
remotely collaborate with others for help. The circuit in the both sides are connected and working together (d) Finally, the circuit 
can be directly deployed with a WiFi module. 

debug breadboard circuits through built-in oscilloscope, 
pattern generators, and logic analyzer. The challenge is that 
novices may not have the background to operate these tools. 
As a result, an area of research arose focusing on easing the 
debugging process through the visualization of a circuit’s 
internal state. Toastboard [17], Bifrost [31], and CurrentViz 
[40] are examples. A key observation of these works is that 
sensing the location, type, and value of the breadboard 
components play a key role in easing the debugging process. 
Although little research has focused on this space, 
CircuitSense [41] has shown the feasibility of recognizing 
some of the common electronic components using a sensor 
setup that is somewhat bulkier than a regular breadboard. 
PHYSICAL VS VIRTUAL CIRCUIT 
The benefits of virtual and physical circuits are 
complementary to each other. Taking advantage of both sides 
can enable a much more powerful tool. This section provides 
a brief discussion on some of the benefits of physical vs 
virtual circuit prototyping. 

Physical circuits. Circuit prototyping using a physical 
breadboard and real electronic components is the default 
approach for many novice users. The benefit is obvious as 
the constructed circuit is real and thus can be tried or tested 
immediately in a real environment. This is important for a 
number of reasons. First, the behavior of a circuit can be 
precisely observed and adjusted in the environment, where 
the circuit components are operating. This is particularly true 
for circuits involving sensors or actuators. For example, the 
threshold of a photoresistor can be precisely determined in a 
real environment where the sensor is being used. Similarly, a 
user can only tell if the torque of a motor is strong enough for 
a certain project by testing the real motor itself (without 
doing all the math and physics). Second, with real input and 
output components, the finished project can be demonstrated 
to others. Finally, the project can be deployed right away if 
needed. This is not possible using software as the user must 
first manually replicate the design on a physical breadboard. 

Virtual breadboards. Circuit prototyping with software has 
become increasingly popular among novice makers. A user 
can now use virtual breadboards and circuit components to 
create their projects. Testing and debugging a finished circuit 
is also possible with a simulator. Circuit design using 
software has a number of unique benefits over a physical 
breadboard. For example, the user does not have to maintain 

an inventory of common electronic components that may 
have varying types and values (e.g., ICs, resistors, or 
capacitors, etc.). This is a common barrier for novice makers 
who begin prototyping. Additionally, features like 
copy/paste, undo/redo, tooltips, autocomplete [29], and 
remote collaboration [10] have made circuit prototyping 
through software an efficient and less error-prone experience 
for novices. Finally, virtual circuits can be easily stored, 
documented, and shared among different users, groups and 
even across different locations via the Internet. This is not as 
easy using a physical breadboard. However, the major 
drawback of using software is the disconnection between a 
user’s finished virtual circuit from the physical world. 
Although many state-of-the-art simulators are effective in 
replicating circuit behaviors, a user’s interaction with the 
circuit remains entirely virtual. 
PROXINO WALKTHROUGH 
To embrace the benefits of physical and virtual circuits, we 
propose using a physical proxy as the link between the virtual 
world and physical world. That is, users can augment parts of 
their virtual circuit with virtual components using real 
components, when they need to physically interact with 
components. This section demonstrates a running example to 
illustrate some of the capabilities of our system Proxino. The 
example is a Nightlight circuit, which uses a photoresistor to 
sense the intensity of room light and automatically turns on 
an LED if the light intensity drops below a threshold value. 

Alice is a beginner, who reads an online tutorial of a 
Nightlight circuit and starts slowly to build it using Proxino’s 
software. Before she starts, she is worried because she does 
not have the right type of resistor. However, using the 
software, she is glad that it allows her to specify a resistor 
value virtually. She starts to drag a photoresistor, an LED, 
and a resistor one-by-one into the virtual breadboard. She 
copy-and-pastes a second resistor for convenience. She sets 
the resistor value and connects her chosen components one 
by one, following the tutorial. She uses undo a few times to 
recover from errors (Figure 2a). 

Once the circuit is completed, Alice wants to see how it 
works in her room. She brings up a context menu on the 
software by right-clicking the virtual photoresistor. In the 
menu, she clicks “Physical Proxy” to link the photoresistor to 
a physical proxy. She then follows the instructions shown in 
the software to connect her physical photoresistor to the 

Session 1B: Software and Hardware Development 
 

UIST '19, October 20–23, 2019, New Orleans, LA, USA

123



 

     
        

        
   

         
       

            
    

       
         

   
        

             
     

       
         
     

          
          

     
     

        
    

     
       

 
        

      
   

          
    

    
     

    
   

   
  

      
    

  
     

    
       

       
     

    
      

     

       
       
          

        
      

       

     
     

         
    

      
    

       
       

   
        

     
     

      
       

           
        
      

   
   
         

       
   

      
      

       
        

    
   

   
       

     
       

       
    

    
    
     

       
     

     
      

     
   

 
     

 
       
       

             
      

       
      
          

    

desired pins on the Arduino shield (Figure 2a). She repeats 
the same procedure to setup the LED. Once finished, she 
codes in the built-in IDE by following the sample Arduino 
code. She clicks the “Run” button to execute the circuit in a 
simulator. However, the LED does not turn on when she 
covers the photoresistor using her hand (Figure 2b). 

Alice calls her friend, Derek for help on Skype. Derek is an 
experienced maker, who accesses Alice’s virtual breadboard 
remotely from his home computer to help her with debugging 
(Figure 2c). The circuit seems fine when inspected, so Derek 
suspects that Alice’s photoresistor or LED is broken. 
Unfortunately, Alice does not have a second photoresistor. 
Derek offers to try his photoresistor at his home and uses it as 
a remote proxy. Alice disconnects her photoresistor from the 
shield on her side, while Derek connects his on his side. 
Derek is correct. Alice’s LED turns on as expected, when he 
covers the photoresistor (Figure 2c). 

The next day, Alice purchases a new photoresistor to replace 
her defective one. Just like a real breadboard circuit, she can 
deploy the finished project in her room. The system includes 
the photoresistor, LED, an Arduino and the shield. Alice 
further uses Arduino Uno WiFi Rev2 for the communication 
between the proxies and virtual circuit running on her 
desktop computer. Alice is happy that there is no breadboard, 
resistors, and messy wires in her room (Figure 2d). 
PROXY DESIGN SPACE 
We present the design space of using a physical proxy for 
common circuit components in four dimensions. 
A1: Component Type
Different types of electronic components can be used as a 
proxy for a virtual circuit. To facilitate the discussion, we 
describe our classification of components into 3 categories 
based on their roles in supporting physical interactions with a 
breadboard circuit: (1) supporting components, (2) input 
components, and (3) output components. 

Supporting components are the building blocks used to form 
functional circuits for input and output components. 
Common supporting components include integrated circuits 
(ICs) (e.g., H-bridges and amplifiers) and basic components 
like resistors, capacitors, inductors, diodes, and transistors, 
etc. Physical supporting components preserve the behavior 
of the circuits, and thus may lead to more realistic signals. 
However, some supporting components have many different 
types and values. Maintaining an ample inventory of them 
can be challenging for novice makers, especially if they don’t 
entirely understand the function of all the components. For 
our current implementation of the system, we did not support 
components which are not interactive. 

Input components are input devices (e.g., buttons) or sensors 
(e.g., photoresistor). Many input components need to be used 
with basic components or ICs to function properly or safely. 
For example, a PIR sensor needs an amplifier for increased 
signal amplitude for high-resolution data processing. Input 
components can be either virtual or physical. For example, a 

user often needs to interact with input components physically 
to provide input or collect data from the environment. 
Therefore, a physical proxy can be helpful. Virtual input 
components are useful in scenarios where physical 
interaction is not a need, or the required physical components 
are unavailable (e.g. a user did not purchase one). 

Output components are output devices such as LEDs or 
motors. Similar to input components, many output 
components also require an appropriate basic component or 
IC to work properly. A DC motor is an example as it requires 
a motor driver or transistor to operate with an Arduino. Some 
output components can benefit more from a physical proxy 
than others. For example, a real servo motor has a clear 
advantage over the virtual one if the user wants to test how 
well it works to actuate a physical object. A virtual LED, on 
the other hand, can perhaps be as useful as a physical one for 
the sake of feedback. However, lighting a real LED could 
give the user a more engaging experience. 
A2: Proxy Type
The physical proxy can be a singleton or module. The 
singleton has only one I/O component. Many singletons do 
not function properly on its own without a supporting 
component(s). A module, on the other hand, is an electrically 
functional circuit, composed of an I/O component and one or 
more supporting components. For example, a photoresistor 
module is composed of a photoresistor (input component) 
and a resistor (base component), which works independently 
if powered. 
A3: Proxy Location
Virtual circuit prototyping can take place collaboratively 
among different users either locally or remotely. During 
remote collaboration, the physical proxy can be collocated 
with the user or located in a remote location. This allows 
users in different locations to have shared access to 
distributed physical resources only available in a remote site. 
A4: Proxy Module Form
I/O modules can go beyond their regular form and utilize the 
built-in I/O devices on a smartphone, tablet, or laptop. For 
example, the user can develop a virtual circuit on a tablet and 
use the device’s built-in accelerometer as the physical proxy 
of the virtual one. This way, the software and the physical 
proxies of the virtual components are integrated into a single 
device, largely increasing the mobility of the system. 
EXAMPLE APPLICATIONS 
We implemented 5 applications to demonstrate each point in 
the proxy application space through three areas. 
Circuit Prototyping Using Software and Physical Proxy 
Physical input and output components (A1, A2) 
One of the most useful use cases of Proxino is to create the 
virtual circuit in software and use physical proxies for input 
and output. Not only does this allow a user to interact with 
the circuit physically, it also prevents the user from 
maintaining a large inventory of basic components and ICs in 
order to learn, practice, and prototype breadboard circuits. 
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Additionally, hardware errors, such as lose cabling can be 
largely avoided by using the software. All of these can 
potentially make breadboard circuit prototyping more 
accessible to the novice users. The example with Alice 
shown earlier demonstrates a use case of this scenario. 
Virtual input component and physical output component (A1) 
The flexibility of what can be used as a proxy satisfies 
varying needs for users. If Alice wants to modify her project 
to be a smoke detector, she can try her new idea by replacing 
the photoresistor with a gas sensor in the software and adjust 
the sensor value virtually to see if it works with her current 
circuit and LED (Figure 3a). This way, she does not need to 
buy the sensor first before she can test out her idea. 
Physical input component and virtual output component (A1) 
Alice likes the idea of the smoke detector, but after she 
purchases the gas sensor, she figures that she wants more 
than just an LED. She tries out different output components 
in the software and finds that the buzzer, which makes a 
noise through her computer’s speaker as an alert, is a better 
option for her instead. 
Remote Collaboration and Resource Sharing (A3)
Using the software allows two remote users to collaborate on 
a project via a shared virtual breadboard. With the physical 
proxy, the benefit of Proxino goes beyond remote 
collaboration because the users now have a shared access to 
distributed physical resources, such as I/O component and 
environment only available in a remote site. In the scenario 
with Alice, she does not have to travel to Derek’s home to 
use the photoresistor. It is also possible for the users to access 
the physical environment of a remote site. For example, a 
user can test how well his/her light flicker detector work in a 
remote collaborator’s home by having a photodiode on the 
collaborator’s side as a proxy without having to travel to a 
location with a flickering ceiling light (Figure 3b). 

Figure 3. The applications of Proxino. (a) a user drags virtual 
gas to adjust the value of a gas sensor to test if it works with a 
physical led. (b) a user test how well the light flicker detector 
works at a remote collaborator’s home. 

Ubiquitous Circuit Prototyping (A4)
With Proxino, circuit prototyping is more accessible in 
mobile scenarios as a user only needs to carry the Proxino 
hardware and I/O components. Circuit can be designed on a 
tablet. This way the user can try their ideas anywhere, and it 
can be useful for test the projects in the real environments, 
where the circuits will be deployed. 

In many situations, the built-in I/O devices in mobile devices 
may also be enough for quickly testing ideas when 
inspiration strikes. This way, the proxy is not in its regular 
form, allowing further reduction of the need to carry I/O 
components. For example, the user can use the built-in 
proximity sensor of the tablet as a proxy to simulate a HC-
SR04 ultrasonic distance sensor and quickly test an idea 
similar to the Distance Alarm System [4] where a buzzer 
rings upon the user’s hand covering the sensor. A remote 
collaborator in a stationary environment can take the lead on 
typing Arduino code because doing so on a mobile device 
can be challenging. 

Figure 4. The system workflow. 

PROXINO UNDER THE HOOD 
One area not described in the example with Alice is 
programming. Typically, when a user starts an electronics 
project from scratch, they need to write code (in our case 
Arduino code) to read or write to I/O components that enable 
controlling the behavior of the circuit. With Proxino, the 
construction of a real circuit is not required by a user. 
Instead, the system uses a circuit simulator. Therefore, 
Arduino program’s read or write functions (e.g., 
analogRead() or analogWrite()) now communicate with the 
simulator. The process can be described as the following: 

• When a user constructs a virtual circuit in Fritzing, the 
circuit is also created in the simulator by the system. 

• The Arduino shield takes the real-time input from the input 
proxy by measuring its analog value (e.g., voltage, 
capacitance, and resistance). 

• It then sends data to the simulator running in the 
background of a laptop computer via the shield’s hosting 
Arduino. 

• The data is used along with the mathematical model of the 
user’s virtual circuit by the simulator to recover the 
component’s input voltage. Using Alice’s photoresistor 
circuit as an example, our hardware captures the changes 
in the resistance of the photoresistor through an input pin 
of the shield. It passes the data to the simulator, which then 
recovers the input voltage of the photoresistor using the 
voltage divider equation. 

• If a read function in the user’s program is called, the input 
voltage is returned to the program. For example, when the 
analogRead() is executed, the system converts the current 
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input voltage into an integer value between 0 and 1023 to 
overwrite the return value of the analogRead(). 

Output uses a similar approach, as when a write function is 
executed, our system generates PWM signals based on the 
user’s specification of duty cycle in analogWrite(), which 
was then plugged into the simulator to calculate the right 
peak value for the shield to drive the proxy. Figure 4 
demonstrates the system workflow. 
PROXINO SHIELD 
Our custom shield was developed to handle I/O proxies that 
are both a singleton or a module. Many singletons do not 
function properly on their own, thus measuring the analog 
signals from them can be difficult. For example, the 
resistance of a photoresistor cannot be measured unless 
inside a module, where a resistor is used with the 
photoresistor to form a voltage divider. Similarly, a DC 
motor does not work without an actual motor driver. The 
shield handles these situations using a data acquisition 
circuit and a proxy driver circuit. Depending on the type of 
input proxy, the data acquisition circuit forms a voltage 
divider, RC, or pull-down circuit, allowing the device to 
measure input voltage, resistance, capacitance, or switch 
status for varying applications for novice makers. The proxy 
driver circuit can generate PWM signals in a frequency of 
500Hz at a proper duty cycle and peak value to drive 
different types of output singleton. 

A small number of I/O singletons are self-functional without 
the need to be inside a module with supporting components. 
Examples include the temperature sensor, proximity sensor, 
and servo motor. Therefore, getting input or output to them is 
straightforward. The user can even use an Arduino directly. 
Modules are similar, but in cases when a module proxy is 
incomplete (e.g., missing a resistor), its I/O component is 
treated as a singleton so using the shield is necessary. This is 
the easiest way to allow us to properly interact with the 
corresponding I/O component without significantly 
increasing the complexity of the shield. 
SOFTWARE IMPLEMENTATION 
Our software implementation includes (1) a front-end 
breadboard circuit design and programming tool and (2) a 
back-end server handling circuit simulation, data 
synchronization between the simulator and a user’s Arduino 
code, and remote collaboration. 
Front-end 
Virtual circuit design environment 
We implemented our virtual circuit design interface as a part 
of Frtizing [7], a circuit prototyping tool common in maker 
community. Our tool also provides a user with options to 
interact with virtual I/O components through physical proxies 
in the form of either an electronic component or the built-in 
sensors or actuators of a mobile device. The software also 
allows a user to manually adjust the value of an input 
component (e.g., resistance of a flex resistor) to see how the 
constructed circuit behaves accordingly. This is useful for 
testing and debugging the circuit virtually. Remote 

collaboration is supported by enabling multiple users from 
different locations to construct a circuit at the same time, 
using a shared virtual breadboard. 
Arduino programming environment 
Users can develop an Arduino program in Fritzing’s built-in 
Arduino IDE. Despite the use of a virtual circuit and physical 
proxies, the user programs the circuit as though it is real. 
From the system’s perspective however, it is important to 
synchronize the execution of the user’s code, especially for 
input functions like analogRead(), as the simulator runs 
slower than the code. Again, with the photoresistor example, 
nothing beyond analogRead() should be executed until after 
the simulator calculates the input voltage of the photoresistor. 
Output is similar, as the execution of analogWrite() should be 
paused until the output PWM signal for the LED proxy 
arrives from the simulator. Our system achieves this by 
injecting our custom code into the user’s program. For 
example, we replace the calls to analogRead() and 
analogWrite() with our custom functions, that pause the 
user’s code until data from the simulator arrives (Figure 5). 
Our system modifies the user’s code only after the user clicks 
the “Run” button, prior to the code being compiled. 

Figure 5. Our system modifies the user’s program 
automatically by replacing anlaogRead() by a custom function, 
called analogRead_proxino(), to pause the user’s code until 
data from the simulator arrives. 

Note that our system relies on continuous communication 
between the simulator running on the hosting computer and 
the program running on the Arduino. Some applications may 
require interrupts (e.g. such as the communication to a 
computer) be disabled temporarily while reading data from 
an input component. For example, in programing a capacitive 
sensor to count the CPU cycles required to pull up a sensor 
pin, it is often necessary to have all interrupts disabled (e.g., 
by calling noInterrupts()) while reading sensor data. This 
may cause a system failure in our case, as Proxino relies on 
the communication between an Arduino and the simulator to 
exchange data for input and output. Our solution to this 
problem is to run interrupt-sensitive logic on the Proxino 
backend server instead of on the Arduino board and have the 
result to be returned to the board. For example, the number of 
CPU cycles it takes for a sensor pin to be pulled up can be 
estimated by running the counting logic on the hosting 
computer, as the processor cycle of the user’s program is 
known. From a user’s perspective, they do not make any 
changes in their program. 
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Backend 
Circuit simulator 
The circuit simulator was implemented using LiveSpice [9], 
an open source circuit simulation tool for analog circuits. We 
modified its source code to allow the tool to take real-time 
input data from physical proxies and calculate output voltage 
values based on a user’s interaction with a proxy. Since 
LiveSpice does not provide the mathematical models for the 
common I/O components, we selectively implemented 
several of them, such as LEDs, hobby motors, vibrating 
motors, and buzzers. 
Network Server 
We developed a custom server to handle communication for 
remote collaboration. The server takes all changes that occur 
on remote nodes, such as user interactions with remote 
proxies or modifications on the shared circuit. It 
communicates these changes to the simulator and reports the 
results back to remote clients. The server is written in 
Node.js and communicates with each client using Socket.IO. 
HARDWARE IMPLEMENTATION 
Our shield features a total of 16 I/O pins for interacting with 
proxies. Half are used for input components and the 
remaining half are for output components. The shield uses 
pins 8 and 9 to communicate with its hosting Arduino board. 
It also provides pin accesses to all other pins on the Arduino 
Uno board (Figure 6). This is useful in the cases when the 
user wants to use Arduino directly, like Alice’s Wi-Fi 
example. 

Figure 6. Proxino PCB in the form of an Arduino shield. 

We built the shield around a Nuvoton ARM Cortex-M4 
microcontroller with a data acquisition circuit and proxy 
driver circuit. The data acquisition circuit is composed of an 
8-channel digital-to-analog converter (DAC) 
(AD5628BRUZ, Analog Device inc.), a digital potentiometer 
(AD5270BRMZ-100, Analog Device inc.), an 8-channel 
analog-to-digital converters (ADC) (AD7928BRUZ, Analog 
Device inc.), and an amplifier (AD8066ARZ, Analog Device 
inc.) serving as a voltage buffer for the ADC (Figure 7 left). 
The proxy driver circuit is composed of an 8-channel DAC 
and eight high-output-drive amplifier (TLV4112, Texas 
Instruments inc.), connected to the Arduino’s VIN pin for 
extra current supply (Figure 7 right). This circuit can 

generate output voltage up to 6V and current up to 500 mA, 
needed for different types of motors. The shield is compatible 
with an Arduino UNO and communicates with it using the 
UART protocol with a baud rate limit of 115200 bps. 

Figure 7. The left circuit is a data acquisition circuit, used for 
input components. The right circuit is a proxy driver circuit 
designed for output components. 

SYSTEM EVALUATION 
The goal of this experiment was to measure the difference 
between the output of our system versus that of a real circuit. 
We included four common analog input signals that included 
resistance, capacitance, voltage, and switch status. We also 
tested the PWM output of our system with and without being 
processed by an IC (e.g., a motor driver). 
Analog Input Circuits
We describe our tested circuits for the 4 analog input signals: 

Resistance: Comprised of the potentiometer and a resistor of 
10K Ω connected in series. Examining the Arduino Starter 
Kit [5], we found that this setup is representative of circuits 
for commonly used input components based on resistance, 
such as the photoresistor, the flex resistor, the force sensor, or 
the slide potentiometer. We used a digital potentiometer to 
produce different levels of input resistance. 

Voltage: Comprised of a function generator and a resistor of 
100K Ω connected in series. This setup can also be found for 
many of the common input components based on voltage, 
including the temperature sensor, the proximity infrared 
sensor, and a piezo sensor. We used a function generator to 
produce input voltages of varying amounts. 

Capacitance: Includes a variable capacitor and a resistor of 
1M Ω connected in series. This setup represents a circuit 
typically used for capacitive sensing. We used a variable 
capacitor to produce different levels of capacitance. 

Switch: Comprised of a push button and a 1K Ω resistor 
connected in series. 
Analog Output Circuits
We compared the PWM output of our system with the 
original output from an Arduino UNO. We generated the 
PWM signals of different duty cycles in a circuit containing a 
resistor of 100 Ω connected with an LED in series. Aside 
from the LED itself, this type of circuit is commonly seen in 
many other entry level projects to drive output components, 
like a buzzer, or a vibration motor. Additionally, we included 
in our experiment another common type of circuit composed 
of an output component and an IC, and we used a PNP 
transistor to drive a DC Hobby Motor 130. 
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Data Collection 4 
Data collection for both input and output was carried out 
using the tested circuits on a real breadboard with an Arduino 
Uno, and also on a virtual breadboard with Proxino, where 
the behaviors of the circuits were simulated. 
Input 
For input, the ground truth data includes the resistance values 
ranging from 100 Ω to 100K Ω with an interval of 1024 Ω, 
voltage values ranging from 0 V to 5 V with an interval of 
100 mV, and capacitance values ranging from 100 p to 470 p 
with an interval of 4 p. The switch status was produced by 
clicking the push button 10 times. We also included in the 
ground truth, the corresponding return values from Arduino’s 
analogRead() based on the physical circuits. Note that 
Arduino’s capacitance readings were recorded using 
Arduino’s Capacitive Sensing Library [3]. 

For the testing data, we recorded the actual resistance, 
voltage, capacitance, and switch status measured by the 
shield. We also recorded the corresponding return values for 
analogRead() calculated by the simulator based on the virtual 
representation of the tested circuit. We were interested in 
knowing how the value of analogRead() generated by 
Proxino and Arduino UNO differ comparatively. 
Output 
For the ground truth data, we generated 500 Hz PWM signals 
ranging from 0 to 100% duty cycles at a 4% interval using 
Arduino’s analogWrite(). Next, the corresponding PWM at 
the output pins of the Arduino UNO was recorded as ground 
truth for the tested circuits. 

For the testing data, we recorded the PWM signals calculated 
by the simulator, before the signals were passed to the shield. 
Additionally, we recorded the corresponding PWM signals 
captured at the output pins of the shield. We were interested 
in knowing how the output PWM signals generated by the 
simulator differ from the real ones, and how the output PWM 
captured at the shield differ from the real ones. We compared 
the PWM signals by their duty cycle and amplitude. 
Result 

Analog Input 
We report, in the left column of Table 1, the measurement 
error of Proxino’s shield versus the ground truth. 
Additionally, we report the mean difference in the return 
value of analogRead() calculated by our system versus that of 
a real circuit using the Arduino UNO. 

For the resistance, the measurement error of our shield was 
5.92%. This is acceptable as it is close to a resistor’s 5% 
tolerance range. The value of analogRead() generated by 
Proxino and Arduino UNO differed by 17 units. This 
difference was mainly caused by the measurement error from 
both Arduino UNO and our shield. 

The measurement error of our shield in capacitance was 
12.9%, which is again acceptable as it is within the 20% 
tolerance range of the capacitor. This amount of error could 
be negligible for capacitive sensing. The average return value 

of Proxino and Arduino’s touch library differed by 1082 
units out of a total range of 65535 units. In turn, the return 
value of analogRead() generated by Proxino and Arduino 
UNO is deferred by 6 and 3 units respectively. These 
differences can be negligible for many of the entry level 
applications and circuits for novice makers. 
Input Type Error 

(%) 
Avg. diff in Input Value 

Resistance 5.9% 17 (0-1204) 

Capacitance 12.9% 1082 (0-65535) 

Voltage 2.4% 6 (0-1024) 

Switch 0% 3 (0-1024) 

Table 1. Error rate of Proxino and difference in the return 
value of analogRead() calculated by Proxino versus the 
Arduino Uno. 

Analog Output 
Table 2 summarizes the difference between the PWM signals 
of an Arduino UNO and those calculated by our simulator or 
captured at our shield. In general, the difference between the 
real and simulated signals are relatively small. Our shield 
was also able to preserve the signals from the simulator with 
a small amount of error in both duty cycle and amplitude. 
Overall, we expect that this amount of system errors would 
not significantly impact user experience in prototyping entry 
level circuits. 

We measured the data transmission rate and the delay caused 
by data transmission and simulation. The data transmission 
rate of Proxino was 3 k/s, which in our implementation was 
bound to the serial port communication between the shield 
and Arduino. The delay caused by data transmission was 5 
ms between the shield and our software running on a 2015 
iMac. The delay caused by the circuit simulation was 
measured at 19 ms and 11 ms for the LED and motor circuit 
respectively. We expect the delay to increase with the 
increase of circuit complexity and network traffic. 

Circuit Diff. in PWM Duty Cycle Diff. in PWM Amplitude 

Simulator Shield Simulator Shield 

LED 0.9% 1.2% 49 mV 55 mV 

Motor 1.3% 1.7% 200 mV 208 mV 

Table 2. Difference in the duty cycle and peak value of the 
PWM signal per tested circuit. 

INFORMAL USER EVALUATION 
To solicit initial user feedback of Proxino, we conducted an 
informal user study by asking participants to create the 
Nightlight circuit in (1) a desktop environment, (2) a mobile 
environment, and (3) with a remote collaborator. 
Participants
Nine participants (3 female) between the ages of 18 and 26 
participated in the study. All were novice makers with 
limited experiences in prototyping breadboard circuits. 
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Apparatus
The study apparatus included Proxino along with an LED 
and photoresistor, serving as proxies. Participants created the 
circuit on a Lenovo Yoga X laptop, which was switched to 
tablet mode in a mobile condition in a car. The built-in 
ambient light sensor of the laptop was used as the proxy of 
the photoresistor in the mobile condition. Participants used 
Skype to communicate with the collaborator in the remote 
collaboration condition. 
Task and Procedure 
Participants were then asked to construct the Nightlight 
circuit using Proxino in three conditions: (1) on a desk in an 
office alone, (2) on the desk working with an expert 
collaborator from a remote site, and (3) as a passenger in a 
car. In all conditions, participants created the circuit using the 
software and were encouraged to try the LED and 
photoresistor as proxies. In the remote collaboration 
condition, participants constructed the circuit together with a 
collaborator (with 5-years of circuit prototyping experience) 
and were encouraged to try the proxies on both sides. In the 
mobile condition, participants were given the laptop in tablet 
mode and were encouraged to use the device’s ambient light 
sensor as a proxy for the photoresistor (Figure 8). Note that 
readings from the tablet’s ambient light sensor given from 
the Windows Sensor API is converted into the resistance 
value of the photoresistor (proxy) based on its datasheet, 
which is then treated as input data from the proxy. Thus, the 
behavior of the built-in ambient light sensor is the same as 
the photoresistor. The three conditions were counter-
balanced among participants. After the study, participants 
reflected on their experience of using Proxino, the three 
scenarios, and how their experience differed from using only 
software or a physical breadboard. 

Figure 8. The three conditions of the informal study. (a) on a 
desk in an office (b) on the desk working with an expert 
collaborator from a remote site (c) as a passenger in a car 

Result 
All participants completed the nightlight prototype 
successfully in all three conditions. Through the interviews, 
we were able better understand their experiences and identify 
potential usability issues in our current implementation. 

From a software perspective, participants stated that circuit 
prototyping using our software allowed them to construct and 
test their circuits quicker and less error-prone than using a 
physical breadboard. From the hardware perspective, 
participants mentioned that the most enjoyable feature of 
Proxino was that they were able to use much fewer physical 
components and jumper wires to construct the same circuit 
while still being able to interact with it physically. This 
allowed our participants to be more focused on the design of 

circuit functions rather than cumbersome logistics, such as 
cutting wires or fixing loose pin connections. 

For example, a participant told us that “When I work on a 
real breadboard, I usually have to spend much of my time 
cutting wires into proper lengths or identifying the right type 
of resistors or other components. This is tedious. But Proxino 
allowed me to focus more on getting the right design of my 
circuit functions. For example, I had more time to try out 
resistors of different values. I knew I could use software 
before, but it was not a true option because I was unable to 
test my circuit real. Proxino gave me the best from both sides 
and I think it is really amazing.” (P2). 

Our study results also provided useful insights into the 
usability issues that are uniquely related to the introduction of 
a physical proxy into software circuit prototyping processes. 
For example, debugging a virtual circuit could now be more 
complicated in a blended physical and virtual environment. A 
participant told us that “it was difficult for me to locate a 
problem I had because I was unsure about whether the cause 
was a defective photoresistor or LED, or something went 
wrong in my circuit” (P1 and P5). We believe a better design 
in this case is to program the virtual photoresistor or LED to 
react upon the function of the circuit, even if a proxy was not 
used. However, in a broader sense, debugging tools 
combiningn both hardware and software, such as 
ToastBoard[13] and CurrentViz[36], should be considered as 
a part of Proxino to allow users to better understand how the 
virtual and physical components work together in their 
prototyped circuit. 

In the remote collaboration condition, participants stated they 
were excited that “collaborating on a physical circuit now 
becomes possible” (P2, P3, P4, P5, and P7) and about“what 
the remote component can bring to the table” (P1, P5 and 
P7). What is missing in the current implementation but can 
be improved in the future is to allow collaborators to 
maintain a constant awareness of the status of the remote 
proxy. For example, participants stated “I could not always 
see my collaborator’s LED or how they interactive with the 
photoresistor” (P1). “Sometimes I do not feel that I have 
enough control over the remote proxy” (P7). This indicates 
an interesting direction for future research as the issues of 
remote awareness in a broader sense is an open problem in 
CSCW and now the collaborative circuit prototyping and 
physical proxy have brought forth new challenges to solve. 

In the mobile condition, all of our participants stated they 
saw themselves prototyping a circuit in mobile scenarios. 
They found it handy to use the tablet’s built-in sensors as a 
proxy. For example, a participant said “I like the idea of 
using the built-in sensor as a proxy. Now I can simply take 
my circuit with me and show it to my colleagues on a 
different floor without having to carry the photoresistor and 
Proxino device” (P1). Participants commented that “I do 
have new ideas from time to time especially during my bus 
ride to school, this tool is helpful in the sense that I can test 
my idea anywhere I want” (P4, P7). The same group of 
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participants told us that they hoped “my device can have 
more of such built-in proxies” (P4, P7). It is not surprising 
that the existence of the I/O device in a mobile device limits 
what the users can do in mobile without bringing the proxies. 
A participant (P7) was concerned about the mobile device’s 
built-in sensors may not behavior the same way as the 
physical component, and that they may have to change their 
Arduino code (e.g., threshold value) when switching back to 
a real component. A solution to mitigate this problem is to 
calibrate the behavior of components in software. In our 
previous example with Alice, the output readings of the 
ambient light sensor of the tablet and that of the photoresistor 
can be calibrated to match each other. 
DISCUSSION AND FUTURE WORK 
We discuss the limitations of our current implementation and 
directions for future research. 
Kernel Options. We considered two options when 
implementing this feature. The first option was similar to the 
approach described in VirtualComponent [27], where the 
system employs a pre-defined set of physical components 
preinstalled for future use. The benefit of this approach is 
clear, as the constructed circuits behave as though they are 
real. However, the drawbacks appear to outweigh the 
benefits. For example, the system may fail to work if a 
required component is unavailable. Additionally, maintaining 
a library of extra components increases the size of the device, 
making it inconvenient in mobile situations. Finally, when 
deploying a completed circuit, it can be challenging for a user 
who will have to give up the entire preinstalled package. 
These problems can be mitigated to some extent by using a 
centralized resource management approach like those used in 
remote electronics laboratories [13, 20, 36], but managing 
such a system can be pricey. 
The second approach (which we utilized) uses software to 
simulate circuit behavior. Software simulation is already 
widely used in industry and can be very precise in 
reproducing circuit behaviors. However, the challenge is 
software cannot completely replicate the real world. 
Phenomenon such as environmental noises or conditions 
cannot be fully reproduced by the software. We see this as a 
limitation, but not a significant drawback for a system 
designed for novice makers. Note that computational delay 
can be an issue for real-time circuit execution. Therefore, 
circuits need to be computationally “light” at present, but we 
see it as an issue solved with faster computers. In general, 
using a simulator has benefits in scalability, portability, and 
deployability in comparison to the first approach. 
Hardware capability. The current implementation of our 
hardware does not support applications that require high-
frequency signals, such as antennas or microphones. This is 
due to the bottleneck in the transmission rate between 
Arduino and our shield. This limits the applications from 
those involving audio I/O. This issue can be less pronounced 
on a different hardware platform, such as an Arduino Mega, 
or when using a different data transformation method to 
directly communicate with PC, such as USB or WiFi. 

Our current hardware implementation also does not support 
components that require precise measurements of the input 
voltage signal (e.g., a strain gauge) because many of these 
components require specific circuits, such as a Wheatstone 
bridge circuit or differential amplifier circuit, to amplify the 
input signal. Further, our system does not support 
components that require a current larger than 500 mA (e.g., 
some models of servos, DC motors, solenoids, speakers). 
This is due to the cap of the current electric current supply, 
which is increasable with a higher output amplifier. Our 
future work will address these challenges with new data 
acquisition and proxy driver circuit functions. The new 
circuit board will also be redesigned carefully to ensure the 
compact size of the new device. 
Finally, our system does not support the basic components 
(e.g., resistors) or ICs to be used as a physical proxy. This 
will also be added in our future iteration as we understand 
that allowing the supporting components to be used as a 
physical proxy enables many new applications, especially for 
educational purposes. For example, it may be needed by a 
novice user to learn how to create and fine-turn a real 
amplifier circuit in a noisy real-world environment. 
Ubiquitous circuit prototyping. We believe that mobile and 
remote collaboration has a great potential to improve the 
experience of circuit prototyping by changing the way how 
breadboard circuits are constructed, tested, and shared among 
the users. However, a ton of research has to be done to make 
it happen in the future. The current user experience of remote 
collaboration is still quite limited. Our immediate next step is 
to better integrate the video conference system into our 
software so that the users will not have to frequently switch 
between the breadboard view and camera view. We will also 
explore new ways that can give the user a better control over 
a remote proxy, thus to improve experience. 
CONCLUSION 
In this paper, we propose a new circuit prototyping 
environment that allows users to extend a virtual circuit to 
the physical world using proxies. We explored the usability 
of physical proxies and developed a system to support the 
concept. Our system included software, which has a frontend 
interface and a backend server, and hardware, created in the 
form of an Arduino shield. To demonstrate our approach and 
its benefits for novice makers, we implemented several 
applications such as remote collaboration and ubiquitous 
circuit prototyping. Finally, through a system evaluation and 
informal user study for initial feedback, we demonstrate the 
effectiveness of using physical proxies for virtual circuits. 
We share the insights from our system and envision this work 
as motivation for future research into blending the physical 
and virtual worlds of prototyping. 
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