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ABSTRACT 
Mobile devices are endowed with significant sensing 
capabilities. However, their ability to ‘see’ their 
surroundings, during active use, is limited. We present 
Surround-See, a self-contained smartphone equipped with 
an omni-directional camera that enables peripheral vision 
around the device to augment daily mobile tasks. Surround-
See provides mobile devices with a field-of-view collinear 
to the device screen. This capability facilitates novel mobile 
tasks such as, pointing at objects in the environment to 
interact with content, operating the mobile device at a 
physical distance and allowing the device to detect user 
activity, even when the user is not holding it. We describe 
Surround-See’s architecture, and demonstrate applications 
that exploit peripheral ‘seeing’ capabilities during active 
use of a mobile device. Users confirm the value of 
embedding peripheral vision capabilities on mobile devices 
and offer insights for novel usage methods.  

Author Keywords 
Peripheral mobile vision, mobile ‘seeing’, mobile surround 
vision.  

ACM Classification Keywords 
H5.2 [Information interfaces and presentation]: User 
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INTRODUCTION 
Smartphones are equipped with powerful sensors, such as 
accelerometers, GPS and cameras that facilitate a variety of 
daily tasks. On commercial and research platforms, such 
sensors have been utilized in numerous contexts such as for 
distinguishing user activity [26], for sensing on, behind and 
around a mobile device [5, 41], for context awareness [46] 
and for interactive document exploration [13]. The 
integration of an ever expanding suite of embedded sensors 
is a key driver in making mobile devices smarter [26]. 
However, current capabilities are mostly focused on 
sensing. We distinguish ‘sensing’ from ‘seeing’ in that the 
latter facilitates some higher level of recognition or 
interpretation of objects, people and places in the mobile 
device’s surroundings. What new applications might be 

possible if mobile devices had advanced seeing abilities?   

We explore the above theme of empowering mobile devices 
with enhanced peripheral vision capabilities. Our prototype, 
Surround-See, consists of a smartphone fitted with an 
omnidirectional lens that gives the device peripheral vision, 
of its surroundings (Figure 1). During active use, Surround-
See effectively extends the smartphone’s limited field-of-
sight provided by its front- and back-facing cameras. With 
an ability to ‘see’ the rich context of the region around the 
device, smartphones can trigger environment specific 
reminders and can respond to peripheral interactions, such 
as pointing at a smart-appliance for efficient access to its 
control panel on the mobile device.  

 

Figure 1 - (a) Surround-See enables peripheral ‘sight’ on 
smartphones by means of an omni-directional mirror attached 
to the mobile device’s front facing camera. (b) Surround-See 
image shows the corresponding scene. (c) The unwrapped 
image can be used for recognizing the device’s peripheral 
environment (after removing the user’s body – shaded in red) 

The scenario below captures some of the rich applications 
Surround-See enables. John, a professional is often using 
his mobile device. In the morning, he reads the news on 
Surround-See while his car engine warms-up. Recognizing 
this, Surround-See triggers a reminder on the danger of 
eyes-busy mobile use and driving. Later, as he settles into 
his office while checking email on Surround-See, he points 
at the speakers in the office, which Surround-See 
recognizes and provides a control panel to increase the 
speakers’ volume. Laura, a colleague enters his office and 
asks about his weekend. John picks up his smartphone to 
show Laura pictures on the phone which Surround-See 
reorients as the device is positioned closer to Laura. Finally, 
Laura asks John for directions to the restaurant, which John 
draws using a stylus and his finger to erase, both of which 
are recognized as distinct by Surround-See. Shortly after 
doing some work he decides to step out for only a few 
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minutes. Surround-See recognizes this activity and asks 
whether he wishes to take his device. As he is uninterested, 
he declines by gesturing to the device remotely and 
Surround See sets the mobile into voicemail mode.  

The above scenario captures the various possibilities made 
available when augmenting a mobile device with peripheral 
vision. During active use Surround-See can (a) trigger 
reminders based on an environment it recognizes, (b) it can 
perceive specific objects in the mobile device’s periphery 
(i.e. speakers), which the user can control by (c) pointing at 
them. In idle mode, such as when resting on a table, 
Surround-See can also identify certain activities in the 
vicinity of the device, such as (d) when the user walks away 
from it or (e) if the user is  remotely waving at it to alter its 
state, i.e. setting it to voicemail mode. 

Our contributions include: (a) the concept of enabling 
mobile devices to ‘see’ their surroundings; (b) a 
demonstration of its value through an implementation of a 
self-contained proof-of-concept prototype, Surround-See; 
and (c) a set of applications that demonstrate Surround-
See’s unique capabilities over current smartphone usages. 

RELATED WORK 

Mobile ‘sensing’  
Researchers have investigated the possibility of embedding 
sensors on mobile devices to facilitate tasks in the 
background. An extensive review on mobile sensing is 
available in [36]. We briefly discuss state and context 
awareness enabled by mobile sensors. Hinckley et al.’s [25] 
seminal work on sensing techniques for mobile interaction 
opened a new wave of interfaces that exploit a mobile 
device’s state, such as its orientation. Such capabilities, 
among others, have enabled a significant suite of 
interactions including the ability to control virtual objects 
on a mobile screen [47], for automatically reorienting 
images [25], to support navigation in applications [15], or 
to facilitate different gesture based interactions [28]. Many 
of the sensors proposed in these earlier systems are now 
common on commercial mobile devices, and have been 
used to create a wide ecosystem of applications that depend 
on sensing a device’s state.  

Researchers have also demonstrated methods to sense a 
mobile device’s environment to alter the state of the device. 
Schmidt et al. [46] augmented mobile devices with tilt, light 
and heat sensors to identify if the device is resting on a 
table, is in a pocket, or is being used outside. Such sensor-
based information can be used for automatically changing 
the device state such as lowering its volume. Context 
information is also possible with geo-locating sensors that 
incorporate information about the user’s location to provide 
more relevant and targeted services [15, 34]. 

Beyond sensing a device state or context, researchers have 
introduced novel sensor-based interaction techniques to 
facilitate input outside the device’s physical space, in its 
periphery. Single finger interactions around a device are 

possible with SideSight [5] and HoverFlow [35] which use 
IR distance sensors to capture gesture-based interactions 
above and to the sides of the device. Similarly, Abracadabra 
[21] facilitates input by activating states of a magnetic 
sensor and maps these to menu and cursor control. This 
results in occlusion-free input on small devices such as 
watches. For the most part, sensor-based interaction 
metaphors are confined to a specific suite of tasks.  

Camera-based mobile interaction   
On mobile devices, vision-based systems have advanced to 
the point of complementing basic sensing mechanisms in 
real-time. Self-contained mobile-based augmented reality 
(AR) applications have flourished [50]. Examples include 
Wagner et al.’s [50] marker-based AR system, Paelke et 
al.’s [41] hand-held AR soccer game and Hansen et al.’s 
[20] camera-equipped mobile device to establish a spatial 
relationship between a virtual environment and the physical 
space to form a mixed reality space.  

Camera based input also been shown to work for 2D [51] 
and 3D navigation [19], for tracking the user’s face for 
zooming/scrolling documents [48], for detecting where 
users are standing and reorienting the screen accordingly as 
the device is placed closer to them [8, 9] or for generating 
input events (e.g., click, double-click) in real-time [31].  

In general, most camera-based interactions require that 
interactive features be used in exclusion of other tasks, as 
the user has to explicitly point the front- or back-facing 
camera at the object of interest. Ideally, vision-based 
methods on mobiles can include the devices’ periphery 
which contains rich context information. This can open new 
possibilities for integrating users’ interactions naturally into 
the ecosystem of daily mobile applications facilitating a 
broader range of implicit interactions that build on Buxton’s 
vision for foreground/background interaction [6]. 

Peripheral vision 
Researchers have explored methods for extending a 
camera’s limited field-of-view without significantly 
changing its form factor. For example, omni-directional 
cameras have been applied to robotics problems to give 
robots ‘sight’ of their periphery. Applications include 
estimating a robot’s motion [16], revealing a robot’s 
location [10], recognizing its surroundings [45], and 
navigating around obstacles [33]. Very little work has 
considered the applications of embedding peripheral vision 
on smartphones for advanced interactions.  

Walking User Interfaces 
There is a growing trend toward building interfaces to 
support walking user interfaces (WUIs) [17], including 
methods to improve text-entry accuracy to user safety. 
Surround-See, is particularly of value for WUIs, as it allows 
users to perform additional actions while using the device. 

HARDWARE DESIGN OPTIONS 
To enable a smartphone with peripheral vision capabilities 
during active use led us to explore different hardware 
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options. We frame our exploration in terms of the level of 
‘sight’ enabled by various sensing technologies, from 
coarse to fine. Coarse ‘seeing’ can detect the presence of an 
object, with limited ability to detect its motion. Finer 
‘seeing’ involves recognizing different objects and the 
ability to detect changes in the smartphone’s surroundings.  

Sensor Options 
We first considered sensors that can fit on current 
smartphones. A second requirement was to implement and 
explore use-cases with a self-contained prototype. 

Proximity sensor 
Proximity sensors (capacitive, infra-red, or ultrasound) 
detect the presence and distance of objects away from it 
(giving them coarse ‘sight’). Multiple proximity sensors in 
a sensor array can detect the motion of an object in a 2D or 
3D space [5]. However, such sensors cannot distinguish 
between different objects or detect the changes in their 
surrounding environment. The placement of proximity 
sensors is also challenged by how users hold the device 
without occluding them. 

Magnetic Sensor 
Magnetic sensors detect the presence and angular location 
of a magnet, such as on a ring, in an emitted field (giving 
them coarse ‘sight’). A magnetic sensor array can detect the 
2D or near surface 3D motion of an object [38], but like 
proximity sensors, they do not distinguish specific objects 
or content changes in the environment. 

Image Sensor 
Image sensors (CCD or CMOS) are standard on 
smartphones. They sense an optical image, which can be 
processed using computer vision techniques to detect the 
presence of an object in the image, the motion of an object 
in either 2D or 3D (with a 3D depth sensing camera), or 
recognize different objects in the surrounding environment.   

Sensing Range 
Sensors’ limited range can be alleviated by forming an 
array of multiple sensors (e.g. proximity sensor array or 
camera array). The increased field-of-operation however, 
comes with a size tradeoff which makes such solutions 
impractical for mobile devices. Other more practical 
methods for enlarging the field-of-view consists of using a 
wide-angle or omni-directional lens, which can capture a 
good portion of the 360° around a device’s periphery.  

Sensor Installation and Form Factor Implications 
Proximity or magnetic sensor arrays can be placed above or 
under an open surface on a smartphone [5, 38]. This allows 
them to sense the entire space around the smartphone 
without significantly impacting the device’s form factor. 
However, during active use, these become unusable as the 
user’s hand occludes these sensors.  

While the built-in smartphone cameras can be used for the 
purpose of ‘seeing’, during active use, the front and back 
cameras face the sky and ground, respectively. The narrow 
field-of-view of such built-in cameras (43˚-56˚ on the high-

definition smartphone camera we used), does not allow 
these to capture the smartphone’s surrounding space 
(Figure 2). This limitation can be addressed by mounting a 
wide-angle or omni-directional lens on the built-in cameras.  

 

Figure 2 – (a) the environment where Figure 1b was taken 
from; (b)-(c) images taken from the phone’s back and front 
facing cameras respectively.  

SURROUND SEE HARDWARE 
To explore the interaction space for peripheral vision on a 
smartphone we create a self-contained proof-of-concept 
system, Surround-See. The prototype is a HTC Butterfly 
smartphone with an omni-directional lens from Kogeto [1] 
mounted on its front-facing camera (Figure 1a). The front 
was chosen as placing the lens on the back may make the 
phone unstable at rest, thus precluding a significant number 
of interactions.  

The smartphone runs the Android operating system on a 
Quad-core 1.5 GHz Krait CPU with 2GB of RAM. The 
front camera has a maximum resolution of 2MP. For real-
time image processing, we down-sampled the resolution to 
960×720. The omni-directional lens has a 360˚ and 56˚ 
field-of-view in the horizontal and vertical planes, 
respectively. The final prototype captures a real time RGB 
image of the 360˚ surrounding view of the device. 
Figure1b-c shows an omni-directional image captured by 
the prototype, and its unwrapped counterpart. 

SURROUND-SEE CAPABILITIES 
We implemented three primary capabilities with Surround-
See: 1) to recognize the device’s peripheral environment; 2) 
to recognize objects around the device; and 3) to recognize 
user activities in vicinity to the device. We implemented 
these features using OpenCV4Android, a JAVA wrapper 
that allows the OpenCV library to be used on Android 
platforms. It is worth mentioning that there are many 
choices for computer vision algorithms for implementing 
Surround-See features. We used and present those that have 
shown effective results in the literature and that can be 
implemented on a self-contained mobile device prototype.  

Recognizing the Device’s Peripheral Environment 
Recognizing the users’ peripheral environment was 
implemented using Local Binary Patterns (LBP) [40] and a 
machine learning classifier [7]. Before the recognition 
process starts, we pre-processed the raw omni-directional 
image by un-wrapping it to a panoramic image using the 
method described in [11]. While not technically necessary, 
unwrapping the image makes the rest of the processing 
easier. Once unwrapped, the bottom of the panoramic 
image was cropped so that it did not contain the body of the 
user (about 1/4 of the panoramic image). The resulting 
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image from this pre-process contains only a wide view of 
Surround-See’s surrounding environment (Figure 1).  

We then used LBP to describe the image using a unique 
feature vector. LBP detects microstructures inside an image 
(e.g. lines, edges). The histogram of the microstructures 
forms a feature vector of the image. LBP is orientation and 
luminance invariant, making it robust in describing images 
taken from different angles and different lighting 
conditions. The algorithm was originally proposed to 
classify textures (e.g. cloth). It has, however, been shown to 
be effective in detecting landmarks too [23]. The feature 
vector was used to train a machine learning classifier or to 
recognize a peripheral environment. We collected 20 
samples for each of the 5 peripheral environments we 
recognized (lab, office, desk, hallway, and car). We took 
ten images for each, the morning and afternoon, with the 
phone in active use position. To train the classifier, we used 
Chang and Lin’s LIBSVM library using the Support Vector 
Machine (SVM) [7]. We used a RBF Kernel with 
parameters that gave the highest 5-fold cross-validation 
scores (e.g. 96%). The trained model was loaded when the 
system starts. For every 60 seconds, the system sampled an 
image of the peripheral environment for recognition. The 
recognition process runs in a background thread, causing no 
interference to the phone’s normal activities. 

In contrast to a phone’s built-in GPS, Surround-See can 
detect subtle changes in its location, e.g. movement inside 
or outside of a room or at a specific location in a room. 
When combined with GPS data, Surround-See can detect 
contextual changes happening within the GPS-sensed 
location, e.g. a crowed street vs. an empty street.  

Recognizing Peripheral Items  
Our implementation focuses on two general types of 
peripheral items: surrounding items and the user’s hand. 

Recognizing an Object in the Smartphone’s Environment 
An object in the device’s environment is recognized using 
feature point matching using the ORB algorithm [44]. ORB 
searches each input frame for a desired object using a 
reference image. The reference image contains only the 
object to be searched for (see Figure 3a-b). When the 
system starts, ORB extracts a set of feature points for the 
reference image. A feature vector (or descriptor) was then 
generated for every feature point to uniquely describe the 
characteristics of that feature point. ORB was then used to 
search for similar feature points in the input frames. If an 
object in the input frame contained at least a certain number 
of matching points (e.g. 1/8 of the total matching set), it 
was recognized as the desired object. We used OpenCV’s 
FeatureDetector class for feature point detection, and 
DescriptorMatcher class feature point matching. 

ORB is color invariant. It also performs well with objects at 
different scales. However, we found it to be error prone to 
changes of the device’s orientation. It could fail to identify 
the object if it appears at a different orientation in the input 

frame than that in the reference image. This would require 
the user to hold the device at the same orientation as when 
the reference image was sampled, which is impractical. We 
resolved this using the device’s built-in compass. When the 
system starts, Surround-See loads a list of reference images 
and their corresponding phone orientations when the 
images were taken. These initial orientations were used to 
rotate the input frames during the recognition process. In 
our implementation, we used one sample image for each 
desired object while multiple samples per object at different 
orientations is also possible. Our process however does not 
incur any performance overhead.  

 

Figure 3 - Reference images: (a) speaker and (b) monitor; (c) 
rotated input frame for more precise object detection; (d) 
recognized objects (the blue and green lines indicate the 
locations of the recognized objects – speaker and monitor). 

Recognizing the User’s Hand 
Explicit mid-air user input is possible, in Surround-See’s 
periphery. Surround-See detects the user’s hand using a 
skin color model in YCbCr color space [30, 42]. A skin 
color pixel was detected if its Cr and Cb values fall into the 
ranges [140, 166] and [135, 180] respectively. The resulting 
input frame formed a black&white binary image with its 
white region indicating the skin color pixels Figure 4 top).  

 

Figure 4– Top: binary image of skin-color pixels; Bottom: (a-
b) track fingertip (red dot); (c) detect pinch (red ellipse). 

The user’s hand was detected by looking for blobs that are 
larger than a threshold size. We found this method to be 
effective but also error prone when the background contains 
colors close to that of the user’s skin. We thus dynamically 
filtered out the background noise by removing the blobs 
that appeared in the same location for a certain fixed 
number of frames (e.g. 30 in our application). Finally, the 
hand contour was obtained by approximating a polygon of 
the detected hand blob using OpenCV’s approxPolyDP 
function  (Figure 4 bottom).  
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Tracking fingertips: Upon extracting the user’s hand 
contour, the user’s fingertips were detected by searching 
through the contour points, and identifying those with a 
curvature less than a threshold value (e.g. 50˚) [3] (Figure4 
a-b) In an omni-directional image, the position of the 
detected fingertip indicates the position of the real finger 
around the camera (Figure 5). Surround-See can also detect 
the finger’s up-and-down (vertical) motion. This is 
achieved by calculating the distance from the detected 
fingertip to the center of the omni-directional image, where 
an increase in the distance indicates that the finger is 
moving upward, and a decrease means the opposite.  

 

Figure 5- tracking finger position in the device’s periphery.  

Recognizing hand postures: A hand posture is recognized 
by counting the number of detected fingertips. This method 
is simple and fast. It allows 6 different hand postures in 
total – fist and 1 to 5 fingers. Other methods are also 
possible in cases where more hand postures are needed [12, 
32, 49, 52]. In our implementation, the ‘1’ posture, with the 
index finger is reserved for pointing.  

Detecting ‘pinch’-ing: Pinch is detected using Wilson’s 
method [53], where a pinch is recognized when there is a 
connected blob inside a hand contour (Figure 4c) Pinch can 
be used as a ‘mouse click’ to confirm an action or to trigger 
a command. Once a pinch is detected, the hand posture 
recognition method is disabled until the pinch is released.  

Detecting User Activities in the Periphery 
We implemented three different peripheral activity 
detection capabilities: whether the user is moving the 
device away from them, whether the user is stepping away 
from the device and remotely gesturing at the device.  

Proximity to User 
During active use, Surround-See uses the user’s upper body 
as a reference point to determine its proximity to the user. 
We demarcated a rectangular region of interest containing 
only the user’s body to detect the smartphone’s 
perpendicular motion relative to the user (Figure 6 left). 
Motion detection was implemented using optical flow [14], 
where the spreading of the motion vectors indicated that 
Surround-See was being placed closer (Figure 6b) to the 
user and the gathering of the motion vectors indicated that 
Surround-See was being moved away from the user (Figure 
6a). We found this method reliable especially in 
differentiating between the perpendicular motion and the 
other motions such as moving left or right. Unlike 
previously proposed methods (e.g. [4]), Surround-See is 
self-contained. It does not need overhead cameras or 

require users to wear sensors on their body. This is 
extremely important for mobility. 

 

Figure 6 – Left: ROI contains user’s body; Right: (a)-(b) 
optical flow vectors showing the phone is moving away and 
closer respectively.  

It is worth noting that sensing user proximity cannot occur 
by simply using the smartphone’s built-in sensors (e.g. 
accelerometer or built-in cameras). For example, the 
accelerometer can tell the direction in which the 
smartphone accelerates but cannot tell whether or not the 
user is moving with the smartphone. Similarly, the 
smartphone’s built-in front or back camera may detect its 
motion but cannot tell whether or not the user is moving at 
the same time, e.g. walking when holding the phone, as the 
user is mostly outside the view of these cameras. 

Detecting User Activity within a Region of Interest 
In idle mode, i.e. when resting on a horizontal surface, 
Surround-See can detect the user’s activity within a user-
defined region of interest (ROI). Surround-See can 
dynamically track the user-defined ROI using the same 
method described in Figure 3. Once defined, the user’s 
activities within the ROI were detected using optical flow. 
In our current implementation, Surround-See detects four 
user activities, including the user’s movement in the 
horizontal and in the perpendicular directions (Figure 7). 
Additional activities, such as rapid or groups movements 
can be detected using sophisticated methods (e.g. [39]).  

 

Figure 7 - ROI at the door (a); user moving from left to right 
(b) and right to left (c); user moving away (d) and closer (e). 

Remote Gesturing 
In idle mode, Surround-See also allows hand gestures to be 
carried out when the user is at a short distance away from 
the phone. This is convenient for situations when the phone 
is left behind on a desk and the user does not wish to walk 
up to grab it to invoke a simple command (e.g. turn on the 
voice mail). Remote gesturing assumes the phone is sitting 
on a stable platform such as a table and that the view is 
uncluttered. This allows us to use background subtraction to 
remove any skin-color noise in the background. This is 
particularly helpful as a hand blob will appear much smaller 
in the camera view when the user is not holding the phone, 
making the blob-size based noise removal error prone. 
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Surround-See uses a real-time adaptive background 
subtraction based on a Gaussian Mixture Model [29] 
(implemented in the  BackgroundSubtractorMOG class in 
OpenCV). The algorithm updates the background 
dynamically such that if a moving object in the foreground 
stalls for several frames, it will be classified as a part of the 
background. This creates an effective mechanism for 
determining the start and end of a hand gesture. For 
example, when standing still, the user is classified as a part 
of the background. When the user starts to wave his/her 
hand, the moving part of the user’s body becomes the 
foreground. This indicates the start of a gesture After the 
user stops moving the hand, Surround-See observes no 
moving object and gradually classifies the user’s body as 
background. If the user does not move the hand again, s/he 
will eventually be classified as the background in several 
frames. This indicates the end of the gesture. 

To track the user’s hand trajectory, Surround-See finds the 
user’s hand in the foreground using the same skin-color 
model described earlier A hand trajectory is composed of 
the temporal and spatial displacement of the center of the 
detected hand blob. In our current implementation, 
Surround-See uses a simple gesture recognition algorithm, 
which identifies hand gestures based on the hand’s moving 
direction, e.g. moving left, moving right, or waving (move 
left then right or vice versa). More sophisticated algorithms 
would increase the remote gesture vocabulary set but could 
also demand higher processing power [37, 54]. 

SURROUND-SEE INTERACTIONS 
We have implemented a number of interaction techniques 
to demonstrate several key Surround-See features. Each 
technique serves as an example of one or more of Surround-
See’s capabilities. Many of the applications are novel while 
a few others show how previously proposed techniques can 
be implemented in a mobile and self-contained prototype.  

Pen vs. Touch Input 
Capacitive stylus is a valuable addition to the user’s finger 
for handwriting or drawing on smartphones and tablets. 
However, smartphones’ touchscreens cannot distinguish a 
user’s touch from that of a capacitive stylus. This problem 
can easily be solved with Surround-See as it can recognize 
objects in the environment. Surround-See can easily 
distinguish the stylus from the finger when interacting with 
the touchscreen. We implemented a simple drawing 
application to demonstrate this unique capability. Users can 
use a stylus to draw on the touchscreen and use the finger to 
erase the drawing (Figure 8a). Tracking the pen was 
implemented using the color model similar to the one used 
for detecting the user’s hand.  

Off-screen Pointing 
Accessing off-screen objects is often considered a tedious 
and time consuming task due to the repeated invocation of 
panning or scrolling operations [27]. Recent research has 
shown that such a task can be made more efficient by 
directly pointing in mid-air at the location of the object in 

the around-device space [22]. Limited work exists on 
identifying the most appropriate sensing methods to 
facilitate around-device pointing. We implemented a 
restaurant search application to demonstrate Surround-See 
off-screen pointing potential (Tracking User Finger). When 
a restaurant of interest is located outside the map view, 
users can acquire information about it by directly pointing 
at its off-screen location indicated by an arrow shown on 
the screen (Figure 8b). We developed two selection 
mechanisms, dwell and back-tap (tapping on the back of the 
phone, sensed by the built-in accelerometers). The user can 
then select the restaurant to trigger an action, e.g. to retrieve 
a discount coupon. The user can toggle between off-screen 
objects in the general direction pointed at by the user by 
moving the finger up or down vertically (another 
dimension). In comparison to techniques using infrared 
proximity sensors [5], Surround-See is capable of tracking 
continuous finger movement at the corners of the 
smartphone, which is  difficult for an array of range 
sensors. Furthermore, unlike sensors placed on the side to 
achieve this task [5], Surround-See’s range is not occluded 
by the user’s grip.  

Remote Operation 
Current smartphones can only be used when the user is 
directly interacting and in contact with the phone (e.g. by 
touching the phone’s touchscreen). It is, however, quite 
often that the user may want to operate the phone, even 
briefly, from a short distance. For example, in a meeting 
with clients, the user may leave the phone on the meeting 
table when giving a presentation at the podium. If the phone 
rings during the presentation, the user may want to be able 
to mute the phone without having to leave the podium. 
Surround-See allows the phone to be operated remotely 
(Remote Gesturing). The user can simply wave at the phone 
to mute it. This operation cannot be carried out with 
smartphones’ existing front or back camera when the phone 
is in a natural idle position. In our implementation, we map 
the user’s hand gestures to common  functions, e.g. wave 
right to mute the phone,  wave right-then-left to unmute  it, 
and wave left to turn on the voice mail (Figure 8c).  

Controlling Remote Objects (Physical Shortcut) 
Objects recognized in Surround-See’s periphery can be 
used to carry out contextual actions. We created a remote 
control application, which uses physical objects (e.g. 
speaker or monitor) as a handler to trigger their 
corresponding controller on the user’s smartphone. Users 
can point at a speaker to open a volume controller window 
on Surround-See to remotely adjust the speaker’s volume 
(Figure 8d) (Tracking Finger and Recognizing 
Environmental Objects). Users can also point at a monitor 
to remotely turn it on or off. Here the surrounding objects 
serve as ‘physical shortcuts’ for launching applications on 
Surround-See. Users can also create paper stickers as 
disposable shortcuts [55]. The mapping between the 
commands and the physical objects relies on the semantics 
of the physical objects (intrinsic mapping [55]). This makes 
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learning shortcuts easy, which is often time-consuming 
especially when there is a large number of them [18].  

Posture for Speed-dialing  
Hand postures can be used as an easy and intuitive method 
to rapidly trigger a command on the smartphone. In our 
implementation, we used hand postures to trigger speed-
dialing on Surround-See (Recognizing hand postures) 
(Figure 8e). We mapped 5 phone numbers to the 5 hand 
postures (from 1 to 5). To avoid unintentionally making 
calls, we allow the users to enable or disable Posture 
Speed-dial based on their needs. Unlike the other 
applications we describe here, hand posture is not exclusive 
to Surround-See, and can be carried out using the phone’s 
front or back facing cameras. Surround-See provides an 
alternative, allowing postures to be used when the hand is 
already in the peripheral space. 

Location-based Messaging  
When in active use, Surround-See can perform contextual 
actions based on its location. We implemented a location-
based messaging application, which displays a reminder or 
warning message on the screen (Recognizing Peripheral 
Environment). For example, when the application first 
recognizes that Surround-See is by the user’s office desk, it 
asks whether the user wishes to “Sync your phone?” as a 
reminder. When it first recognizes the phone is being used 
in a shared space, such as a lab, the application asks 
whether to “Mute your phone?”. Finally, it warns the user 
to stop using the phone by showing “Don’t use your phone 
when driving” on the screen when it recognizes the user is 
behind the wheel (Figure 8f). Such reminders can be 
included for safe utilization of the phone while walking and 
texting, for example [24]. Note that location detection based 
on ‘sight’ extends previous approaches using a proximity 
sensor [5], i.e. the system can distinguish car-A from car-B. 

Proximity-based Screen Rotation 
Showing others the content of the screen of a smartphone 

can sometimes be cumbersome because the user needs to 
reorient the phone to fit the viewer’s field-of-view. The 
existing approach reorients the content when the phone is 
tilted. This method is error prone as it does not distinguish 
between tilt towards and away from the viewer. It is, 
however, natural for the user to stretch their arm to place 
the phone closer to the viewer so that the content on the 
screen can be clearly visible. Based on this observation, we 
created an image browsing application, which can 
automatically rotate the orientation of the image by 180˚ 
when it detects the phone is being moved away from the 
user (Proximity to User) (Figure 8g). It can also rotate the 
image back to its initial orientation when it detects the 
phone is being moved back to the user.  

Notify to Take the Phone 
Occasionally, users may forget to take their cell phone 
when leaving their home or office. We created a 
notification application to notify the user when this 
happens. When Surround-See is idle, e.g. sits on a desk 
(Recognize Peripheral Environment), the application is on. 
It monitors users’ activities around the door of the user’s 
office (Detecting User Activity within a User-defined 
Region of Interest), by detecting the motion of the moving 
object within the door region. Upon detecting that the user 
is moving out of the door (implemented using the same 
optical flow algorithm as described in Detecting Proximity 
to User), it plays a voice message “Did you forget your 
phone?” to notify the user (Figure 8h). The user may 
choose to go back to the desk to take the phone or make a 
hand gesture to turn on the voice mail (Remote Gesture).  

ELICITING USER APPROVAL 
We conducted a user survey as an initial step towards 
assessing users’ approval of Surround-See as a concept that 
can co-exist with common smartphone usage. Our goal was 
to examine the value proposition of Surround-See’s 
capabilities, our interaction techniques and users’ privacy 

Figure 8 – (a) Left: use pen to draw; Right: use finger to erase; (b) Picking restaurant stored in the off-screen space; (c) Remote
gesture to turn on voice mail; (d) Point at a speaker to open a volume controller window; (e) Hand posture for speed-dial; (f) Show
a warning message when the user uses the phone behind the wheel; (g) Auto screen rotation based on the proximity to user; (h)
Remind the user to take the phone when detects that the user is moving out of the door. 
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concerns. We adapted the feedback method introduced in 
[43] and participants made judgments by watching a video 
showing the Surround-See prototype (same video as the one 
included in this submission).  

Participants 
Seventeen computer science students (15 male, ages 
between 21 and 35) participated in our survey. All of them 
were smartphone users. Seven participants have used a 
smartphone for more than 3 years.    

Procedure 
The participants were shown a video presenting the 
prototype and all of Surround-See’s capabilities. They were 
also shown the interaction techniques one at a time. For 
each interaction technique, they filled out a 7-point Likert 
scale questionnaire (1: strongly dislike and 7: strongly like), 
and gave reasons to justify their answers. After ranking the 
interaction techniques, the participants were asked to rank 
overall how useful they think the techniques are. Finally, 
they ranked their level of comfort about smartphones that 
had ‘seeing’ abilities and held by others, such as family, 
friends or strangers.  

Overall, participants welcomed the idea of making the 
smartphone more ‘sight’ enabled during active use. They 
mostly like the intelligent features (Notify to Take the 
Phone and Location-based Messaging) that could help them 
with common daily slips such as forgetting to take the 
phone, to mute it in a classroom and features to support 
remote operations (Controlling Remote Objects and Remote 
Operation). These 4 features were ranked amongst the 
highest with an average score higher than 6. Three 
participants commented that they always forgot to mute 
their phone and another commented that Location-based 
Messaging is a useful feature because “it could take control, 
when you forget to do something”. People like the 
convenient features that allow them to control objects at a 
distance and indicated that these should become standard on 
smartphones. A participant commented that Remote 
Operation is “good because most of the time I leave the 
phone away and need to return briefly only to set it”. User 
reports suggest that even when users are not holding their 
smartphones they still wish to maintain a link with their 
devices, even at a distance.  

Three features (Proximity-based Screen Rotation, Posture 
for Speed-dialing, and Pen vs. Touch Input) received 
weaker approval scores between 5 and 6. Most participants 
agreed that these are handy features to have on top of the 
phone’s existing functions but they also felt these features 
are limited to a small set of applications. For example, one 
participant said Pen vs. Touch Input is “useful for drawing 
apps on my phone. I’d like to see how else it could be used 
though”. Finally, participants gave a neutral score (4.7, s.e. 
0.37) to Off-screen Pointing. Most participants did not see 
high value for this feature in their daily smartphone usage.  

Overall, participants did not complain about privacy issues 
when other people use Surround-See. They felt most 
comfortable when Surround-See is used by people they 
know. The user’s level of comfort decreases when 
Surround-See is used by people they know less. They feel 
neutral (4.3, s.e. 0.24; with 7 being strongly comfortable) 
when Surround-See is used by a stranger but also expressed 
a demand for feedback to show that Surround-See is turned 
on (5.3, s.e. 0.52) (Figure 9). Interestingly, participants 
wished to also receive feedback if family members had 
devices with peripheral vision (4.18, s.e. 0.5). This needs to 
be considered in the design of such devices.  

 

Figure 9 – Left: average user rating for Surround-See’s 
interaction techniques; Right: average user ratings for 
potential privacy concerns. 

DISCUSSION AND LIMITATIONS  
In this section, we discuss the lessons we learned and 
insights we gained from our experience. We also present 
limitations of our approach. 

Omni-directional lens: the omni-directional lens we used 
provides a 360˚ view of the peripheral space but presents 
pixel loss. First, the image from an omni-directional lens is 
distorted, especially towards the center of the concentric 
circles. During our implementation, we did not observe 
major issues caused by this distortion. However, the degree 
of distortion may vary from lens to lens. Calibration may be 
considered (e.g. checkerboard calibration) when 
implementing with different lenses. Second, the object seen 
from the omni-directional lens is smaller than what can be 
seen with a normal lens. Smaller objects have fewer pixels 
to describe their characteristics. This has made object 
recognition harder. These issues might be resolved by using 
wider angle omni-directional lenses.   

Field-of-view: we believe Surround-See’s capabilities can 
be further extended if its field-of-view went beyond the 
phone’s peripheral space, ideally covering the entire 360˚ 
spherical space around the phone. With our current 
prototype, peripheral objects may not completely fall into 
the camera’s view, an issue that can be addressed with 
different omni-directional mirror styles and capabilities.  

A wider field-of-view allows the system to gain a better 
‘picture’ of its surrounding environment. For example, 
when the phone is in active use, the user’s face is mostly 
invisible. A complementary top view may allow Surround-
See to run face detection on the missing pixels and check if 
it is the authorized user who is using the phone. This can 
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also allow the users to use the original function of the front 
facing camera, which we had to sacrifice in our current 
prototype. Equally important is the wide-angle view from 
the back camera. It complements what is seen from the 
front camera, and completes the knowledge of the phone’s 
surrounding space. With more advanced image sensing 
technologies, we may see true 360˚ cameras such as [2] that 
could be mounted on mobile devices. 

Depth sensing: Surround-See can also benefit from depth 
sensing. With knowledge about peripheral objects’ distance, 
Surround-See can alert the user about incoming people or 
traffic not only in the front [24] but also from the side 
during eyes-busy interaction. A stereo omni-directional 
image may be obtained by using 2 sets of cameras and an 
omni-directional lens. This setup is mainly used on larger 
platforms, e.g. robotics. Further work is needed to explore 
this possibility.  

User recognition: user recognition could be a useful 
addition to Surround-See capabilities. Recognizing who is 
using the phone can be helpful for increasing its security. 
Knowing who is in the periphery also allows richer 
interactions to be carried out, e.g. multi-user input. Future 
work will explore different ways to recognize users. It is 
worth noting that beyond a certain distance from the phone, 
complex pattern recognition tasks are challenging due to 
inadequate pixel resolution. The set of interactions possible 
will only increase with improved technology. 

Computer vision: the performance of Surround-See relies 
on several factors, including the mobile devices’ computing 
power, the quality of the camera (including lens), and the 
choice of computer vision algorithms. Given that 
smartphone cameras don’t typically offer nearly the sensor 
sizes that appear in more traditional vision applications, and 
also have a small fixed aperture, one would expect that the 
robustness of most algorithms will suffer somewhat. On the 
other hand, the limitations of processing capabilities of 
mobile devices also places limits on the set of vision 
algorithms that can be used in the proposed applications. 
However, these issues will become less significant with 
advances in mobile imaging and processing capabilities. 

Battery life: mobile devices’ battery life is a concern in our 
implementation as batteries drain quickly when the camera 
is active. This issue can also be less problematic with newer 
ultra-low-power image sensing chips and improvements in 
battery technology.  

Form factor: The form factor of the current prototype can 
be improved. The ‘useful’ lens in our off-the-shelf sensor is 
far smaller than its casing, which can be removed to better 
integrate the lens in a future device. The lens can be further 
engineered to hide inside the smartphone when the front or 
back facing cameras are needed for other tasks. 

System evaluation: Surround-See warrants careful 
investigation of its interaction and recognition techniques. 

This will be helpful for understanding its practical usability 
across different environments and scenarios. 

CONCLUSION  
We introduced the concept of enabling mobile devices to 
‘see’ their surroundings during active use. We created a 
proof-of-concept system, Surround-See, by mounting an 
omni-directional lens on the device’s front facing camera. 
We explored Surround-See’s capabilities, and implemented 
a number of interaction techniques to demonstrate its 
unique features. In an informal setting, users welcomed the 
idea of having smartphones with advanced ‘seeing’ 
abilities. Future work will focus on increasing Surround-
See’s field-of-view to its entire surroundings and enabling 
3D depth sensing. These will include exploring hardware 
options and software applications that integrate seamlessly 
with daily mobile tasks.  
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