
1

Surround-See: Enabling Peripheral Vision on
Smartphones during Active Use

Xing-Dong Yang2, Khalad Hasan1, Neil Bruce1, Pourang Irani1
1University of Manioba,

Winnipeg, MB,Canada, R3T 2N2
{khalad, bruce, irani}@cs.umanitoba.ca

2University of Alberta,
Edmonton, AB, Canada, T6G 2E8

xingdong@cs.ualberta.ca

ABSTRACT
Mobile devices are endowed with significant sensing
capabilities. However, their ability to ‘see’ their
surroundings, during active use, is limited. We present
Surround-See, a self-contained smartphone equipped with
an omni-directional camera that enables peripheral vision
around the device to augment daily mobile tasks. Surround-
See provides mobile devices with a field-of-view collinear
to the device screen. This capability facilitates novel mobile
tasks such as, pointing at objects in the environment to
interact with content, operating the mobile device at a
physical distance and allowing the device to detect user
activity, even when the user is not holding it. We describe
Surround-See’s architecture, and demonstrate applications
that exploit peripheral ‘seeing’ capabilities during active
use of a mobile device. Users confirm the value of
embedding peripheral vision capabilities on mobile devices
and offer insights for novel usage methods.

Author Keywords
Peripheral mobile vision, mobile ‘seeing’, mobile surround
vision.

ACM Classification Keywords
H5.2 [Information interfaces and presentation]: User
Interfaces. - Graphical user interfaces.

INTRODUCTION
Smartphones are equipped with powerful sensors, such as
accelerometers, GPS and cameras that facilitate a variety of
daily tasks. On commercial and research platforms, such
sensors have been utilized in numerous contexts such as for
distinguishing user activity [26], for sensing on, behind and
around a mobile device [5, 41], for context awareness [46]
and for interactive document exploration [13]. The
integration of an ever expanding suite of embedded sensors
is a key driver in making mobile devices smarter [26].
However, current capabilities are mostly focused on
sensing. We distinguish ‘sensing’ from ‘seeing’ in that the
latter facilitates some higher level of recognition or
interpretation of objects, people and places in the mobile
device’s surroundings. What new applications might be

possible if mobile devices had advanced seeing abilities?

We explore the above theme of empowering mobile devices
with enhanced peripheral vision capabilities. Our prototype,
Surround-See, consists of a smartphone fitted with an
omnidirectional lens that gives the device peripheral vision,
of its surroundings (Figure 1). During active use, Surround-
See effectively extends the smartphone’s limited field-of-
sight provided by its front- and back-facing cameras. With
an ability to ‘see’ the rich context of the region around the
device, smartphones can trigger environment specific
reminders and can respond to peripheral interactions, such
as pointing at a smart-appliance for efficient access to its
control panel on the mobile device.

Figure 1 - (a) Surround-See enables peripheral ‘sight’ on
smartphones by means of an omni-directional mirror attached
to the mobile device’s front facing camera. (b) Surround-See
image shows the corresponding scene. (c) The unwrapped
image can be used for recognizing the device’s peripheral
environment (after removing the user’s body – shaded in red)

The scenario below captures some of the rich applications
Surround-See enables. John, a professional is often using
his mobile device. In the morning, he reads the news on
Surround-See while his car engine warms-up. Recognizing
this, Surround-See triggers a reminder on the danger of
eyes-busy mobile use and driving. Later, as he settles into
his office while checking email on Surround-See, he points
at the speakers in the office, which Surround-See
recognizes and provides a control panel to increase the
speakers’ volume. Laura, a colleague enters his office and
asks about his weekend. John picks up his smartphone to
show Laura pictures on the phone which Surround-See
reorients as the device is positioned closer to Laura. Finally,
Laura asks John for directions to the restaurant, which John
draws using a stylus and his finger to erase, both of which
are recognized as distinct by Surround-See. Shortly after
doing some work he decides to step out for only a few

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST ’13, October 8–11, 2013, St. Andrews, UK.
Copyright 2013 ACM 978-1-4503-1580-7/12/10...$15.00

2

minutes. Surround-See recognizes this activity and asks
whether he wishes to take his device. As he is uninterested,
he declines by gesturing to the device remotely and
Surround See sets the mobile into voicemail mode.

The above scenario captures the various possibilities made
available when augmenting a mobile device with peripheral
vision. During active use Surround-See can (a) trigger
reminders based on an environment it recognizes, (b) it can
perceive specific objects in the mobile device’s periphery
(i.e. speakers), which the user can control by (c) pointing at
them. In idle mode, such as when resting on a table,
Surround-See can also identify certain activities in the
vicinity of the device, such as (d) when the user walks away
from it or (e) if the user is remotely waving at it to alter its
state, i.e. setting it to voicemail mode.

Our contributions include: (a) the concept of enabling
mobile devices to ‘see’ their surroundings; (b) a
demonstration of its value through an implementation of a
self-contained proof-of-concept prototype, Surround-See;
and (c) a set of applications that demonstrate Surround-
See’s unique capabilities over current smartphone usages.

RELATED WORK

Mobile ‘sensing’
Researchers have investigated the possibility of embedding
sensors on mobile devices to facilitate tasks in the
background. An extensive review on mobile sensing is
available in [36]. We briefly discuss state and context
awareness enabled by mobile sensors. Hinckley et al.’s [25]
seminal work on sensing techniques for mobile interaction
opened a new wave of interfaces that exploit a mobile
device’s state, such as its orientation. Such capabilities,
among others, have enabled a significant suite of
interactions including the ability to control virtual objects
on a mobile screen [47], for automatically reorienting
images [25], to support navigation in applications [15], or
to facilitate different gesture based interactions [28]. Many
of the sensors proposed in these earlier systems are now
common on commercial mobile devices, and have been
used to create a wide ecosystem of applications that depend
on sensing a device’s state.

Researchers have also demonstrated methods to sense a
mobile device’s environment to alter the state of the device.
Schmidt et al. [46] augmented mobile devices with tilt, light
and heat sensors to identify if the device is resting on a
table, is in a pocket, or is being used outside. Such sensor-
based information can be used for automatically changing
the device state such as lowering its volume. Context
information is also possible with geo-locating sensors that
incorporate information about the user’s location to provide
more relevant and targeted services [15, 34].

Beyond sensing a device state or context, researchers have
introduced novel sensor-based interaction techniques to
facilitate input outside the device’s physical space, in its
periphery. Single finger interactions around a device are

possible with SideSight [5] and HoverFlow [35] which use
IR distance sensors to capture gesture-based interactions
above and to the sides of the device. Similarly, Abracadabra
[21] facilitates input by activating states of a magnetic
sensor and maps these to menu and cursor control. This
results in occlusion-free input on small devices such as
watches. For the most part, sensor-based interaction
metaphors are confined to a specific suite of tasks.

Camera-based mobile interaction
On mobile devices, vision-based systems have advanced to
the point of complementing basic sensing mechanisms in
real-time. Self-contained mobile-based augmented reality
(AR) applications have flourished [50]. Examples include
Wagner et al.’s [50] marker-based AR system, Paelke et
al.’s [41] hand-held AR soccer game and Hansen et al.’s
[20] camera-equipped mobile device to establish a spatial
relationship between a virtual environment and the physical
space to form a mixed reality space.

Camera based input also been shown to work for 2D [51]
and 3D navigation [19], for tracking the user’s face for
zooming/scrolling documents [48], for detecting where
users are standing and reorienting the screen accordingly as
the device is placed closer to them [8, 9] or for generating
input events (e.g., click, double-click) in real-time [31].

In general, most camera-based interactions require that
interactive features be used in exclusion of other tasks, as
the user has to explicitly point the front- or back-facing
camera at the object of interest. Ideally, vision-based
methods on mobiles can include the devices’ periphery
which contains rich context information. This can open new
possibilities for integrating users’ interactions naturally into
the ecosystem of daily mobile applications facilitating a
broader range of implicit interactions that build on Buxton’s
vision for foreground/background interaction [6].

Peripheral vision
Researchers have explored methods for extending a
camera’s limited field-of-view without significantly
changing its form factor. For example, omni-directional
cameras have been applied to robotics problems to give
robots ‘sight’ of their periphery. Applications include
estimating a robot’s motion [16], revealing a robot’s
location [10], recognizing its surroundings [45], and
navigating around obstacles [33]. Very little work has
considered the applications of embedding peripheral vision
on smartphones for advanced interactions.

Walking User Interfaces
There is a growing trend toward building interfaces to
support walking user interfaces (WUIs) [17], including
methods to improve text-entry accuracy to user safety.
Surround-See, is particularly of value for WUIs, as it allows
users to perform additional actions while using the device.

HARDWARE DESIGN OPTIONS
To enable a smartphone with peripheral vision capabilities
during active use led us to explore different hardware

3

options. We frame our exploration in terms of the level of
‘sight’ enabled by various sensing technologies, from
coarse to fine. Coarse ‘seeing’ can detect the presence of an
object, with limited ability to detect its motion. Finer
‘seeing’ involves recognizing different objects and the
ability to detect changes in the smartphone’s surroundings.

Sensor Options
We first considered sensors that can fit on current
smartphones. A second requirement was to implement and
explore use-cases with a self-contained prototype.

Proximity sensor
Proximity sensors (capacitive, infra-red, or ultrasound)
detect the presence and distance of objects away from it
(giving them coarse ‘sight’). Multiple proximity sensors in
a sensor array can detect the motion of an object in a 2D or
3D space [5]. However, such sensors cannot distinguish
between different objects or detect the changes in their
surrounding environment. The placement of proximity
sensors is also challenged by how users hold the device
without occluding them.

Magnetic Sensor
Magnetic sensors detect the presence and angular location
of a magnet, such as on a ring, in an emitted field (giving
them coarse ‘sight’). A magnetic sensor array can detect the
2D or near surface 3D motion of an object [38], but like
proximity sensors, they do not distinguish specific objects
or content changes in the environment.

Image Sensor
Image sensors (CCD or CMOS) are standard on
smartphones. They sense an optical image, which can be
processed using computer vision techniques to detect the
presence of an object in the image, the motion of an object
in either 2D or 3D (with a 3D depth sensing camera), or
recognize different objects in the surrounding environment.

Sensing Range
Sensors’ limited range can be alleviated by forming an
array of multiple sensors (e.g. proximity sensor array or
camera array). The increased field-of-operation however,
comes with a size tradeoff which makes such solutions
impractical for mobile devices. Other more practical
methods for enlarging the field-of-view consists of using a
wide-angle or omni-directional lens, which can capture a
good portion of the 360° around a device’s periphery.

Sensor Installation and Form Factor Implications
Proximity or magnetic sensor arrays can be placed above or
under an open surface on a smartphone [5, 38]. This allows
them to sense the entire space around the smartphone
without significantly impacting the device’s form factor.
However, during active use, these become unusable as the
user’s hand occludes these sensors.

While the built-in smartphone cameras can be used for the
purpose of ‘seeing’, during active use, the front and back
cameras face the sky and ground, respectively. The narrow
field-of-view of such built-in cameras (43˚-56˚ on the high-

definition smartphone camera we used), does not allow
these to capture the smartphone’s surrounding space
(Figure 2). This limitation can be addressed by mounting a
wide-angle or omni-directional lens on the built-in cameras.

Figure 2 – (a) the environment where Figure 1b was taken
from; (b)-(c) images taken from the phone’s back and front
facing cameras respectively.

SURROUND SEE HARDWARE
To explore the interaction space for peripheral vision on a
smartphone we create a self-contained proof-of-concept
system, Surround-See. The prototype is a HTC Butterfly
smartphone with an omni-directional lens from Kogeto [1]
mounted on its front-facing camera (Figure 1a). The front
was chosen as placing the lens on the back may make the
phone unstable at rest, thus precluding a significant number
of interactions.

The smartphone runs the Android operating system on a
Quad-core 1.5 GHz Krait CPU with 2GB of RAM. The
front camera has a maximum resolution of 2MP. For real-
time image processing, we down-sampled the resolution to
960×720. The omni-directional lens has a 360˚ and 56˚
field-of-view in the horizontal and vertical planes,
respectively. The final prototype captures a real time RGB
image of the 360˚ surrounding view of the device.
Figure1b-c shows an omni-directional image captured by
the prototype, and its unwrapped counterpart.

SURROUND-SEE CAPABILITIES
We implemented three primary capabilities with Surround-
See: 1) to recognize the device’s peripheral environment; 2)
to recognize objects around the device; and 3) to recognize
user activities in vicinity to the device. We implemented
these features using OpenCV4Android, a JAVA wrapper
that allows the OpenCV library to be used on Android
platforms. It is worth mentioning that there are many
choices for computer vision algorithms for implementing
Surround-See features. We used and present those that have
shown effective results in the literature and that can be
implemented on a self-contained mobile device prototype.

Recognizing the Device’s Peripheral Environment
Recognizing the users’ peripheral environment was
implemented using Local Binary Patterns (LBP) [40] and a
machine learning classifier [7]. Before the recognition
process starts, we pre-processed the raw omni-directional
image by un-wrapping it to a panoramic image using the
method described in [11]. While not technically necessary,
unwrapping the image makes the rest of the processing
easier. Once unwrapped, the bottom of the panoramic
image was cropped so that it did not contain the body of the
user (about 1/4 of the panoramic image). The resulting

4

image from this pre-process contains only a wide view of
Surround-See’s surrounding environment (Figure 1).

We then used LBP to describe the image using a unique
feature vector. LBP detects microstructures inside an image
(e.g. lines, edges). The histogram of the microstructures
forms a feature vector of the image. LBP is orientation and
luminance invariant, making it robust in describing images
taken from different angles and different lighting
conditions. The algorithm was originally proposed to
classify textures (e.g. cloth). It has, however, been shown to
be effective in detecting landmarks too [23]. The feature
vector was used to train a machine learning classifier or to
recognize a peripheral environment. We collected 20
samples for each of the 5 peripheral environments we
recognized (lab, office, desk, hallway, and car). We took
ten images for each, the morning and afternoon, with the
phone in active use position. To train the classifier, we used
Chang and Lin’s LIBSVM library using the Support Vector
Machine (SVM) [7]. We used a RBF Kernel with
parameters that gave the highest 5-fold cross-validation
scores (e.g. 96%). The trained model was loaded when the
system starts. For every 60 seconds, the system sampled an
image of the peripheral environment for recognition. The
recognition process runs in a background thread, causing no
interference to the phone’s normal activities.

In contrast to a phone’s built-in GPS, Surround-See can
detect subtle changes in its location, e.g. movement inside
or outside of a room or at a specific location in a room.
When combined with GPS data, Surround-See can detect
contextual changes happening within the GPS-sensed
location, e.g. a crowed street vs. an empty street.

Recognizing Peripheral Items
Our implementation focuses on two general types of
peripheral items: surrounding items and the user’s hand.

Recognizing an Object in the Smartphone’s Environment
An object in the device’s environment is recognized using
feature point matching using the ORB algorithm [44]. ORB
searches each input frame for a desired object using a
reference image. The reference image contains only the
object to be searched for (see Figure 3a-b). When the
system starts, ORB extracts a set of feature points for the
reference image. A feature vector (or descriptor) was then
generated for every feature point to uniquely describe the
characteristics of that feature point. ORB was then used to
search for similar feature points in the input frames. If an
object in the input frame contained at least a certain number
of matching points (e.g. 1/8 of the total matching set), it
was recognized as the desired object. We used OpenCV’s
FeatureDetector class for feature point detection, and
DescriptorMatcher class feature point matching.

ORB is color invariant. It also performs well with objects at
different scales. However, we found it to be error prone to
changes of the device’s orientation. It could fail to identify
the object if it appears at a different orientation in the input

frame than that in the reference image. This would require
the user to hold the device at the same orientation as when
the reference image was sampled, which is impractical. We
resolved this using the device’s built-in compass. When the
system starts, Surround-See loads a list of reference images
and their corresponding phone orientations when the
images were taken. These initial orientations were used to
rotate the input frames during the recognition process. In
our implementation, we used one sample image for each
desired object while multiple samples per object at different
orientations is also possible. Our process however does not
incur any performance overhead.

Figure 3 - Reference images: (a) speaker and (b) monitor; (c)
rotated input frame for more precise object detection; (d)
recognized objects (the blue and green lines indicate the
locations of the recognized objects – speaker and monitor).

Recognizing the User’s Hand
Explicit mid-air user input is possible, in Surround-See’s
periphery. Surround-See detects the user’s hand using a
skin color model in YCbCr color space [30, 42]. A skin
color pixel was detected if its Cr and Cb values fall into the
ranges [140, 166] and [135, 180] respectively. The resulting
input frame formed a black&white binary image with its
white region indicating the skin color pixels Figure 4 top).

Figure 4– Top: binary image of skin-color pixels; Bottom: (a-
b) track fingertip (red dot); (c) detect pinch (red ellipse).

The user’s hand was detected by looking for blobs that are
larger than a threshold size. We found this method to be
effective but also error prone when the background contains
colors close to that of the user’s skin. We thus dynamically
filtered out the background noise by removing the blobs
that appeared in the same location for a certain fixed
number of frames (e.g. 30 in our application). Finally, the
hand contour was obtained by approximating a polygon of
the detected hand blob using OpenCV’s approxPolyDP
function (Figure 4 bottom).

5

Tracking fingertips: Upon extracting the user’s hand
contour, the user’s fingertips were detected by searching
through the contour points, and identifying those with a
curvature less than a threshold value (e.g. 50˚) [3] (Figure4
a-b) In an omni-directional image, the position of the
detected fingertip indicates the position of the real finger
around the camera (Figure 5). Surround-See can also detect
the finger’s up-and-down (vertical) motion. This is
achieved by calculating the distance from the detected
fingertip to the center of the omni-directional image, where
an increase in the distance indicates that the finger is
moving upward, and a decrease means the opposite.

Figure 5- tracking finger position in the device’s periphery.

Recognizing hand postures: A hand posture is recognized
by counting the number of detected fingertips. This method
is simple and fast. It allows 6 different hand postures in
total – fist and 1 to 5 fingers. Other methods are also
possible in cases where more hand postures are needed [12,
32, 49, 52]. In our implementation, the ‘1’ posture, with the
index finger is reserved for pointing.

Detecting ‘pinch’-ing: Pinch is detected using Wilson’s
method [53], where a pinch is recognized when there is a
connected blob inside a hand contour (Figure 4c) Pinch can
be used as a ‘mouse click’ to confirm an action or to trigger
a command. Once a pinch is detected, the hand posture
recognition method is disabled until the pinch is released.

Detecting User Activities in the Periphery
We implemented three different peripheral activity
detection capabilities: whether the user is moving the
device away from them, whether the user is stepping away
from the device and remotely gesturing at the device.

Proximity to User
During active use, Surround-See uses the user’s upper body
as a reference point to determine its proximity to the user.
We demarcated a rectangular region of interest containing
only the user’s body to detect the smartphone’s
perpendicular motion relative to the user (Figure 6 left).
Motion detection was implemented using optical flow [14],
where the spreading of the motion vectors indicated that
Surround-See was being placed closer (Figure 6b) to the
user and the gathering of the motion vectors indicated that
Surround-See was being moved away from the user (Figure
6a). We found this method reliable especially in
differentiating between the perpendicular motion and the
other motions such as moving left or right. Unlike
previously proposed methods (e.g. [4]), Surround-See is
self-contained. It does not need overhead cameras or

require users to wear sensors on their body. This is
extremely important for mobility.

Figure 6 – Left: ROI contains user’s body; Right: (a)-(b)
optical flow vectors showing the phone is moving away and
closer respectively.

It is worth noting that sensing user proximity cannot occur
by simply using the smartphone’s built-in sensors (e.g.
accelerometer or built-in cameras). For example, the
accelerometer can tell the direction in which the
smartphone accelerates but cannot tell whether or not the
user is moving with the smartphone. Similarly, the
smartphone’s built-in front or back camera may detect its
motion but cannot tell whether or not the user is moving at
the same time, e.g. walking when holding the phone, as the
user is mostly outside the view of these cameras.

Detecting User Activity within a Region of Interest
In idle mode, i.e. when resting on a horizontal surface,
Surround-See can detect the user’s activity within a user-
defined region of interest (ROI). Surround-See can
dynamically track the user-defined ROI using the same
method described in Figure 3. Once defined, the user’s
activities within the ROI were detected using optical flow.
In our current implementation, Surround-See detects four
user activities, including the user’s movement in the
horizontal and in the perpendicular directions (Figure 7).
Additional activities, such as rapid or groups movements
can be detected using sophisticated methods (e.g. [39]).

Figure 7 - ROI at the door (a); user moving from left to right
(b) and right to left (c); user moving away (d) and closer (e).

Remote Gesturing
In idle mode, Surround-See also allows hand gestures to be
carried out when the user is at a short distance away from
the phone. This is convenient for situations when the phone
is left behind on a desk and the user does not wish to walk
up to grab it to invoke a simple command (e.g. turn on the
voice mail). Remote gesturing assumes the phone is sitting
on a stable platform such as a table and that the view is
uncluttered. This allows us to use background subtraction to
remove any skin-color noise in the background. This is
particularly helpful as a hand blob will appear much smaller
in the camera view when the user is not holding the phone,
making the blob-size based noise removal error prone.

6

Surround-See uses a real-time adaptive background
subtraction based on a Gaussian Mixture Model [29]
(implemented in the BackgroundSubtractorMOG class in
OpenCV). The algorithm updates the background
dynamically such that if a moving object in the foreground
stalls for several frames, it will be classified as a part of the
background. This creates an effective mechanism for
determining the start and end of a hand gesture. For
example, when standing still, the user is classified as a part
of the background. When the user starts to wave his/her
hand, the moving part of the user’s body becomes the
foreground. This indicates the start of a gesture After the
user stops moving the hand, Surround-See observes no
moving object and gradually classifies the user’s body as
background. If the user does not move the hand again, s/he
will eventually be classified as the background in several
frames. This indicates the end of the gesture.

To track the user’s hand trajectory, Surround-See finds the
user’s hand in the foreground using the same skin-color
model described earlier A hand trajectory is composed of
the temporal and spatial displacement of the center of the
detected hand blob. In our current implementation,
Surround-See uses a simple gesture recognition algorithm,
which identifies hand gestures based on the hand’s moving
direction, e.g. moving left, moving right, or waving (move
left then right or vice versa). More sophisticated algorithms
would increase the remote gesture vocabulary set but could
also demand higher processing power [37, 54].

SURROUND-SEE INTERACTIONS
We have implemented a number of interaction techniques
to demonstrate several key Surround-See features. Each
technique serves as an example of one or more of Surround-
See’s capabilities. Many of the applications are novel while
a few others show how previously proposed techniques can
be implemented in a mobile and self-contained prototype.

Pen vs. Touch Input
Capacitive stylus is a valuable addition to the user’s finger
for handwriting or drawing on smartphones and tablets.
However, smartphones’ touchscreens cannot distinguish a
user’s touch from that of a capacitive stylus. This problem
can easily be solved with Surround-See as it can recognize
objects in the environment. Surround-See can easily
distinguish the stylus from the finger when interacting with
the touchscreen. We implemented a simple drawing
application to demonstrate this unique capability. Users can
use a stylus to draw on the touchscreen and use the finger to
erase the drawing (Figure 8a). Tracking the pen was
implemented using the color model similar to the one used
for detecting the user’s hand.

Off-screen Pointing
Accessing off-screen objects is often considered a tedious
and time consuming task due to the repeated invocation of
panning or scrolling operations [27]. Recent research has
shown that such a task can be made more efficient by
directly pointing in mid-air at the location of the object in

the around-device space [22]. Limited work exists on
identifying the most appropriate sensing methods to
facilitate around-device pointing. We implemented a
restaurant search application to demonstrate Surround-See
off-screen pointing potential (Tracking User Finger). When
a restaurant of interest is located outside the map view,
users can acquire information about it by directly pointing
at its off-screen location indicated by an arrow shown on
the screen (Figure 8b). We developed two selection
mechanisms, dwell and back-tap (tapping on the back of the
phone, sensed by the built-in accelerometers). The user can
then select the restaurant to trigger an action, e.g. to retrieve
a discount coupon. The user can toggle between off-screen
objects in the general direction pointed at by the user by
moving the finger up or down vertically (another
dimension). In comparison to techniques using infrared
proximity sensors [5], Surround-See is capable of tracking
continuous finger movement at the corners of the
smartphone, which is difficult for an array of range
sensors. Furthermore, unlike sensors placed on the side to
achieve this task [5], Surround-See’s range is not occluded
by the user’s grip.

Remote Operation
Current smartphones can only be used when the user is
directly interacting and in contact with the phone (e.g. by
touching the phone’s touchscreen). It is, however, quite
often that the user may want to operate the phone, even
briefly, from a short distance. For example, in a meeting
with clients, the user may leave the phone on the meeting
table when giving a presentation at the podium. If the phone
rings during the presentation, the user may want to be able
to mute the phone without having to leave the podium.
Surround-See allows the phone to be operated remotely
(Remote Gesturing). The user can simply wave at the phone
to mute it. This operation cannot be carried out with
smartphones’ existing front or back camera when the phone
is in a natural idle position. In our implementation, we map
the user’s hand gestures to common functions, e.g. wave
right to mute the phone, wave right-then-left to unmute it,
and wave left to turn on the voice mail (Figure 8c).

Controlling Remote Objects (Physical Shortcut)
Objects recognized in Surround-See’s periphery can be
used to carry out contextual actions. We created a remote
control application, which uses physical objects (e.g.
speaker or monitor) as a handler to trigger their
corresponding controller on the user’s smartphone. Users
can point at a speaker to open a volume controller window
on Surround-See to remotely adjust the speaker’s volume
(Figure 8d) (Tracking Finger and Recognizing
Environmental Objects). Users can also point at a monitor
to remotely turn it on or off. Here the surrounding objects
serve as ‘physical shortcuts’ for launching applications on
Surround-See. Users can also create paper stickers as
disposable shortcuts [55]. The mapping between the
commands and the physical objects relies on the semantics
of the physical objects (intrinsic mapping [55]). This makes

7

learning shortcuts easy, which is often time-consuming
especially when there is a large number of them [18].

Posture for Speed-dialing
Hand postures can be used as an easy and intuitive method
to rapidly trigger a command on the smartphone. In our
implementation, we used hand postures to trigger speed-
dialing on Surround-See (Recognizing hand postures)
(Figure 8e). We mapped 5 phone numbers to the 5 hand
postures (from 1 to 5). To avoid unintentionally making
calls, we allow the users to enable or disable Posture
Speed-dial based on their needs. Unlike the other
applications we describe here, hand posture is not exclusive
to Surround-See, and can be carried out using the phone’s
front or back facing cameras. Surround-See provides an
alternative, allowing postures to be used when the hand is
already in the peripheral space.

Location-based Messaging
When in active use, Surround-See can perform contextual
actions based on its location. We implemented a location-
based messaging application, which displays a reminder or
warning message on the screen (Recognizing Peripheral
Environment). For example, when the application first
recognizes that Surround-See is by the user’s office desk, it
asks whether the user wishes to “Sync your phone?” as a
reminder. When it first recognizes the phone is being used
in a shared space, such as a lab, the application asks
whether to “Mute your phone?”. Finally, it warns the user
to stop using the phone by showing “Don’t use your phone
when driving” on the screen when it recognizes the user is
behind the wheel (Figure 8f). Such reminders can be
included for safe utilization of the phone while walking and
texting, for example [24]. Note that location detection based
on ‘sight’ extends previous approaches using a proximity
sensor [5], i.e. the system can distinguish car-A from car-B.

Proximity-based Screen Rotation
Showing others the content of the screen of a smartphone

can sometimes be cumbersome because the user needs to
reorient the phone to fit the viewer’s field-of-view. The
existing approach reorients the content when the phone is
tilted. This method is error prone as it does not distinguish
between tilt towards and away from the viewer. It is,
however, natural for the user to stretch their arm to place
the phone closer to the viewer so that the content on the
screen can be clearly visible. Based on this observation, we
created an image browsing application, which can
automatically rotate the orientation of the image by 180˚
when it detects the phone is being moved away from the
user (Proximity to User) (Figure 8g). It can also rotate the
image back to its initial orientation when it detects the
phone is being moved back to the user.

Notify to Take the Phone
Occasionally, users may forget to take their cell phone
when leaving their home or office. We created a
notification application to notify the user when this
happens. When Surround-See is idle, e.g. sits on a desk
(Recognize Peripheral Environment), the application is on.
It monitors users’ activities around the door of the user’s
office (Detecting User Activity within a User-defined
Region of Interest), by detecting the motion of the moving
object within the door region. Upon detecting that the user
is moving out of the door (implemented using the same
optical flow algorithm as described in Detecting Proximity
to User), it plays a voice message “Did you forget your
phone?” to notify the user (Figure 8h). The user may
choose to go back to the desk to take the phone or make a
hand gesture to turn on the voice mail (Remote Gesture).

ELICITING USER APPROVAL
We conducted a user survey as an initial step towards
assessing users’ approval of Surround-See as a concept that
can co-exist with common smartphone usage. Our goal was
to examine the value proposition of Surround-See’s
capabilities, our interaction techniques and users’ privacy

Figure 8 – (a) Left: use pen to draw; Right: use finger to erase; (b) Picking restaurant stored in the off-screen space; (c) Remote
gesture to turn on voice mail; (d) Point at a speaker to open a volume controller window; (e) Hand posture for speed-dial; (f) Show
a warning message when the user uses the phone behind the wheel; (g) Auto screen rotation based on the proximity to user; (h)
Remind the user to take the phone when detects that the user is moving out of the door.

8

concerns. We adapted the feedback method introduced in
[43] and participants made judgments by watching a video
showing the Surround-See prototype (same video as the one
included in this submission).

Participants
Seventeen computer science students (15 male, ages
between 21 and 35) participated in our survey. All of them
were smartphone users. Seven participants have used a
smartphone for more than 3 years.

Procedure
The participants were shown a video presenting the
prototype and all of Surround-See’s capabilities. They were
also shown the interaction techniques one at a time. For
each interaction technique, they filled out a 7-point Likert
scale questionnaire (1: strongly dislike and 7: strongly like),
and gave reasons to justify their answers. After ranking the
interaction techniques, the participants were asked to rank
overall how useful they think the techniques are. Finally,
they ranked their level of comfort about smartphones that
had ‘seeing’ abilities and held by others, such as family,
friends or strangers.

Overall, participants welcomed the idea of making the
smartphone more ‘sight’ enabled during active use. They
mostly like the intelligent features (Notify to Take the
Phone and Location-based Messaging) that could help them
with common daily slips such as forgetting to take the
phone, to mute it in a classroom and features to support
remote operations (Controlling Remote Objects and Remote
Operation). These 4 features were ranked amongst the
highest with an average score higher than 6. Three
participants commented that they always forgot to mute
their phone and another commented that Location-based
Messaging is a useful feature because “it could take control,
when you forget to do something”. People like the
convenient features that allow them to control objects at a
distance and indicated that these should become standard on
smartphones. A participant commented that Remote
Operation is “good because most of the time I leave the
phone away and need to return briefly only to set it”. User
reports suggest that even when users are not holding their
smartphones they still wish to maintain a link with their
devices, even at a distance.

Three features (Proximity-based Screen Rotation, Posture
for Speed-dialing, and Pen vs. Touch Input) received
weaker approval scores between 5 and 6. Most participants
agreed that these are handy features to have on top of the
phone’s existing functions but they also felt these features
are limited to a small set of applications. For example, one
participant said Pen vs. Touch Input is “useful for drawing
apps on my phone. I’d like to see how else it could be used
though”. Finally, participants gave a neutral score (4.7, s.e.
0.37) to Off-screen Pointing. Most participants did not see
high value for this feature in their daily smartphone usage.

Overall, participants did not complain about privacy issues
when other people use Surround-See. They felt most
comfortable when Surround-See is used by people they
know. The user’s level of comfort decreases when
Surround-See is used by people they know less. They feel
neutral (4.3, s.e. 0.24; with 7 being strongly comfortable)
when Surround-See is used by a stranger but also expressed
a demand for feedback to show that Surround-See is turned
on (5.3, s.e. 0.52) (Figure 9). Interestingly, participants
wished to also receive feedback if family members had
devices with peripheral vision (4.18, s.e. 0.5). This needs to
be considered in the design of such devices.

Figure 9 – Left: average user rating for Surround-See’s
interaction techniques; Right: average user ratings for
potential privacy concerns.

DISCUSSION AND LIMITATIONS
In this section, we discuss the lessons we learned and
insights we gained from our experience. We also present
limitations of our approach.

Omni-directional lens: the omni-directional lens we used
provides a 360˚ view of the peripheral space but presents
pixel loss. First, the image from an omni-directional lens is
distorted, especially towards the center of the concentric
circles. During our implementation, we did not observe
major issues caused by this distortion. However, the degree
of distortion may vary from lens to lens. Calibration may be
considered (e.g. checkerboard calibration) when
implementing with different lenses. Second, the object seen
from the omni-directional lens is smaller than what can be
seen with a normal lens. Smaller objects have fewer pixels
to describe their characteristics. This has made object
recognition harder. These issues might be resolved by using
wider angle omni-directional lenses.

Field-of-view: we believe Surround-See’s capabilities can
be further extended if its field-of-view went beyond the
phone’s peripheral space, ideally covering the entire 360˚
spherical space around the phone. With our current
prototype, peripheral objects may not completely fall into
the camera’s view, an issue that can be addressed with
different omni-directional mirror styles and capabilities.

A wider field-of-view allows the system to gain a better
‘picture’ of its surrounding environment. For example,
when the phone is in active use, the user’s face is mostly
invisible. A complementary top view may allow Surround-
See to run face detection on the missing pixels and check if
it is the authorized user who is using the phone. This can

9

also allow the users to use the original function of the front
facing camera, which we had to sacrifice in our current
prototype. Equally important is the wide-angle view from
the back camera. It complements what is seen from the
front camera, and completes the knowledge of the phone’s
surrounding space. With more advanced image sensing
technologies, we may see true 360˚ cameras such as [2] that
could be mounted on mobile devices.

Depth sensing: Surround-See can also benefit from depth
sensing. With knowledge about peripheral objects’ distance,
Surround-See can alert the user about incoming people or
traffic not only in the front [24] but also from the side
during eyes-busy interaction. A stereo omni-directional
image may be obtained by using 2 sets of cameras and an
omni-directional lens. This setup is mainly used on larger
platforms, e.g. robotics. Further work is needed to explore
this possibility.

User recognition: user recognition could be a useful
addition to Surround-See capabilities. Recognizing who is
using the phone can be helpful for increasing its security.
Knowing who is in the periphery also allows richer
interactions to be carried out, e.g. multi-user input. Future
work will explore different ways to recognize users. It is
worth noting that beyond a certain distance from the phone,
complex pattern recognition tasks are challenging due to
inadequate pixel resolution. The set of interactions possible
will only increase with improved technology.

Computer vision: the performance of Surround-See relies
on several factors, including the mobile devices’ computing
power, the quality of the camera (including lens), and the
choice of computer vision algorithms. Given that
smartphone cameras don’t typically offer nearly the sensor
sizes that appear in more traditional vision applications, and
also have a small fixed aperture, one would expect that the
robustness of most algorithms will suffer somewhat. On the
other hand, the limitations of processing capabilities of
mobile devices also places limits on the set of vision
algorithms that can be used in the proposed applications.
However, these issues will become less significant with
advances in mobile imaging and processing capabilities.

Battery life: mobile devices’ battery life is a concern in our
implementation as batteries drain quickly when the camera
is active. This issue can also be less problematic with newer
ultra-low-power image sensing chips and improvements in
battery technology.

Form factor: The form factor of the current prototype can
be improved. The ‘useful’ lens in our off-the-shelf sensor is
far smaller than its casing, which can be removed to better
integrate the lens in a future device. The lens can be further
engineered to hide inside the smartphone when the front or
back facing cameras are needed for other tasks.

System evaluation: Surround-See warrants careful
investigation of its interaction and recognition techniques.

This will be helpful for understanding its practical usability
across different environments and scenarios.

CONCLUSION
We introduced the concept of enabling mobile devices to
‘see’ their surroundings during active use. We created a
proof-of-concept system, Surround-See, by mounting an
omni-directional lens on the device’s front facing camera.
We explored Surround-See’s capabilities, and implemented
a number of interaction techniques to demonstrate its
unique features. In an informal setting, users welcomed the
idea of having smartphones with advanced ‘seeing’
abilities. Future work will focus on increasing Surround-
See’s field-of-view to its entire surroundings and enabling
3D depth sensing. These will include exploring hardware
options and software applications that integrate seamlessly
with daily mobile tasks.

REFERENCES
1. Kogeto http://www.kogeto.com/say-hello-to-dot

2. Ricoh's 360-degree camera http://www.ricoh.com/

3. Argyros, A. A. & Lourakis, M. I. A. Vision-Based
Interpretation of Hand Gestures for Remote Control of a
Computer Mouse. ECCV'06, 40-51.

4. Ballendat, T., Marquardt, N. &Greenberg, S. Proxemic
Interaction: Designing for a Proximity and Orientation-
Aware Environment. ITS'10. 10 pages.

5. Butler, A., Izadi, S. & Hodges, S. SideSight: multi-touch
interaction around small devices. UIST’08 201-204.

6. Buxton, W. Chunking & Phrasing and the Design of
Human-Computer Dialogues. IFIP'86. 475-480.

7. LIBSVM--A Library for Support Vector Machines.
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

8. Cheng, L.-P., Hsiao, F.-I., Liu, Y.-T. & Chen, M. Y.
iRotate: automatic screen rotation based on face
orientation. CHI’12. 2203-2210.

9. Dearman, D., Guy, R. & Truong, K. Determining the
orientation of proximate mobile devices using their back
facing camera. CHI’12. 2231-2234.

10. Drocourt , C., Delahoche, L., Pegard, C. & Clerentin, A.
Mobile robot localization based on an omnidirectional
stereoscopic vision perception system. ICRA'99. 1329-
1334.

11. El Kadmiri, O. An omnidirectional image unwrapping
approach. ICMCS'11, 1 - 4.

12. Erol, A., Bebis, G., Nicolescu, M., Boyle, R. D. &
Twombly, X. Vision-based hand pose estimation: A
review. CVIU’07, 108 (1-2), 52-73.

13. Eslambolchilar, P. & Murray-Smith, R. Tilt-Based
automatic zooming and scaling in mobile Devices-A State-
Space implementation. LNCS'04. 120-131.

14. Farneback, G. Two-frame motion estimation based on
polynomial expansion. SCIA'03. 363-370.

15. Gasimov, A., Magagna, F. & Sutanto, J. CAMB: context-
aware mobile browser. MUM’10, 1-5.

10

16. Gluckman, J. & Nayer, S. K. Ego-motion and
omnidirectional camera. ICCV'98. 999-1005.

17. Goel, M., Findlater, L. & Wobbrock, J. WalkType: using
accelerometer data to accomodate situational impairments
in mobile touch screen text entry. CHI’12. 2687-2696.

18. Grossman, T., Dragicevic, P. & Balakrishnan, R. Strategies
for accelerating on-line learning of hotkeys. CHI’07, 1591-
1600.

19. Hachet, M., Pouderoux, J. & Guitton, P. A camera-based
interface for interaction with mobile handheld computers.
I3D’05. 65-72.

20. Hansen, T. R., Eriksson, E. & Lykke-Olesen, A. Mixed
interaction space: designing for camera based interaction
with mobile devices. CHIEA’'05. 1933-1936.

21. Harrison, C. & Hudson, S. E. Abracadabra: wireless, high-
precision, and unpowered finger input for very small
mobile devices. UIST’09. 121-124.

22. Hasan, K., Ahlström, D. & Irani, P. AD-Binning:
Leveraging Around Device Space for Storing, Browsing
and Retrieving Mobile Device Content. CHI'13. 899-908.

23. Heikkilä, M., Pietikäinen, M. & Schmid, C. Description of
interest regions with local binary patterns. Pattern
Recognition, 42 (3), 425-436.

24. Hincapié, J. D. & Irani, P. CrashAlert: Enhancing
Peripheral Alertness for Eyes-Busy Mobile Interaction
while Walking. CHI'13. 3385-3388.

25. Hinckley, K., Pierce, J., Sinclair, M. & Horvitz, E. Sensing
techniques for mobile interaction. UIST '00. 91-100.

26. Hinckley, K. & Sinclair, M. Touch-sensing input devices.
CHI’99. 223-230.

27. Irani, P., Gutwin, C. & Yang., X.-D. Improving selection
of off-screen targets with hopping CHI'06 299-308.

28. Jones, E., Alexander, J., Andreou, A., Irani, P. &
Subramanian, S. GesText: accelerometer-based gestural
text-entry systems. CHI’10. 2173-2182.

29. KaewTraKulPong, P. & Bowden, R. An Improved
Adaptive Background Mixture Model for Real-time
Tracking with Shadow Detection. AVBS’01.

30. Kakumanu, P., Makrogiannis, S. & Bourbakis, N A survey
of skin-color modeling and detection methods. Pattern
Recognition, 40 (3), 1106-1122, 2007.

31. Kang, Y. & Han, S. Improvement of smartphone interface
using an AR marker. VRCAI’12. 13-16.

32. Khan, R. Z. & Ibraheem, N. A. Survey on Gesture
Recognition for Hand Image Postures. CIS, 5(3), 110-121.

33. Kim, J. & Suga, Y. An Omnidirectional Vision-Based
Moving Obstacle Detection in Mobile Robot. IJCAS’07, 5
(6), 663-673.

34. Kjeldskov, J. & Paay, J. Just-for-us: a context-aware
mobile information system facilitating sociality.
MobileHCI’05. 23-30.

35. Kratz, S. & Rohs, M. Hoverflow: exploring around-device
interaction with IR distance sensors. MobileHCI’09, 1-4.

36. Lane, N. D., Miluzzo, E., Lu, H., Peebles, D., Choudhury,
T. & Campbell, A. T. A survey of mobile phone sensing.
CM, 48 (9), 140-150.

37. Li, Y. (2010). Protractor: A Fast and Accurate Gesture
Recognizer. CHI'10. 2169-2172, 2010.

38. Liang, R.-H., Cheng, K.-Y., Su, C.-H., Weng, C.-T., Chen,
B.-Y. & Yang, D.-N.. GaussSense: Attachable Stylus
Sensing Using Magnetic Sensor Grid. UIST'12. 319--326.

39. Masoud, O. & Papanikolopoulos, N. A method for human
action recognition. IVC’03, 21 (8), 729-743.

40. Ojala, T., Pietikäinen, M. & Mäenpää, T. Multiresolution
Gray-Scale and Rotation Invariant Texture Classification
with Local Binary Patterns. PAMI’02, 24 (7), 971-987.

41. Paelke, V., Reimann, C. & Stichling, D. Foot-based mobile
interaction with games. ACE’04. 321-324.

42. Ramakers, R., Vanacken, D., Luyten, K., Coninx, K. &
Schöning, J. Carpus: a non-intrusive user identification
technique for interactive surfaces. UIST’12, 35-44.

43. Rico, J. & Brewster, S. Usable Gestures for Mobile
Interfaces: Evaluating Social Acceptability. CHI'10. 887-
896.

44. Rublee, E., Rabaud, V., Konolige, K. & Bradski, G. ORB:
an efficient alternative to SIFT or SURF. ICCV’11. 2564-
2571.

45. Runschotem, R. & Krose, B. Robust scene reconstruction
from an omnidirectional vision system. ToRA’03, 19 (2),
351-357.

46. Schilit, B., Adams, N. & Want, R.. Context-Aware
Computing Applications. MCSA'94.

47. Seo, B.-K., Choi, J., Han, J.-H., Park, H. & Park, J.-I.
(2008). One-handed interaction with augmented virtual
objects on mobile devices. VRCAI’08. 1-6.

48. Sohn, M. & Lee, G. ISeeU: camera-based user interface for
a handheld computer. MobileHCI’05, 299-302.

49. Stergiopoulou, E. & Papamarkos, N. Hand gesture
recognition using a neural network shape fitting technique.
EAAI’09, 22 (8), 1141-1158

50. Wagner, D. & Schmalstieg, D. First steps towards
handheld augmented realit. ISWC'03. 127 - 13.

51. Wang, J. & Canny, J. (2006). TinyMotion: camera phone
based interaction methods. CHIEA '06, 339-344.

52. Wang, R. Y., Paris, S. & Popovic:, J. (2011). 6D hands:
markerless hand-tracking for computer aided design.
UIST’11. 549-558.

53. Wilson, A. Robust Vision-Based Detection of Pinching for
One and Two-Handed Input. UIST’06. 255-258.

54. Wobbrock, J., Wilson, A. & Li, Y. Gestures without
libraries, toolkits or Training: a $1.00 Recognizer for User
Interface Prototypes. UIST'07. 159-168.

55. Yang, X.-D., Grossman, T., Wigdor, D. & Fitzmaurice, G.
Magic Finger: Always-Available Input through Finger
Instrumentation. UIST'12. 147–156.

