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Figure 1: Tasca is a pocketed-based textile sensor, capable of sensing (A) common objects people carry in their pockets (e.g. a 
smartphone or car key), (B) touch and pressure gestures, and (C) NFC tags. 

ABSTRACT 
We present Project Tasca, a pocket-based textile sensor that detects 
user input and recognizes everyday objects that a user carries in 
the pockets of a pair of pants (e.g., keys, coins, electronic devices, 
or plastic items). By creating a new fabric-based sensor capable of 
detecting in-pocket touch and pressure, and recognizing metallic, 
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non-metallic, and tagged objects inside the pocket, we enable a rich 
variety of subtle, eyes-free, and always-available input, as well as 
context-driven interactions in wearable scenarios. We developed 
our prototype by integrating four distinct types of sensing methods, 
namely: inductive sensing, capacitive sensing, resistive sensing, 
and NFC in a multi-layer fabric structure into the form factor of 
a jeans pocket. Through a ten-participant study, we evaluated the 
performance of our prototype across 11 common objects including 
hands, 8 force gestures, and 30 NFC tag placements. We yielded 
a 92.3% personal cross-validation accuracy for object recognition, 
96.4% accuracy for gesture recognition, and a 100% accuracy for 
detecting NFC tags at close distance . We conclude by demonstrating 
the interactions enabled by our pocket-based sensor in several 
applications. 
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1 INTRODUCTION 
In the era of smart “things”, computing is becoming increasingly 
accessible and ubiquitous through new interface technologies de-
veloped on everyday objects in homes and work spaces, as well 
as those worn on the body. The interactivity available on these 
“things” that could be covered by (or made too) interactive fabrics 
(e.g., clothing, furniture, toys, and bags) enables numerous appli-
cations that were not previously possible [8, 20, 36, 41]. Concepts 
like interactive pockets (e.g., on a pair of pants) not only allow 
for touch interactions to occur beyond smartphones, watches or 
rings, but also be carried out in a comfortable, private, and always-
available manner to use other computing devices (e.g., head-worn 
or wall-size displays [2, 34]) in ubiquitous computing environments. 
Furthermore, understanding the items that a user has in a pocket 
(e.g., a phone) also enables a new set of applications, such as activity 
tracking [28], placement-dependent notifcation [38], or providing 
new context to the information sensed from other devices [38]. 

While prior research has explored the concept of interactive 
pockets, much of the focus was demonstrating proof-of-concepts 
and application scenarios using mockups through rigid devices 
or sensors, such as a camera [34], optical sensor panel [28], or 
capacitive touch panel [2], which are unsuitable for practical and 
daily use. 

In this paper, we introduce Tasca, an interactive pocket-based 
textile sensor integrated into a form factor that fts into the pocket 
of a pair of jeans (Figure 1). Tascais capable of sensing a wide vari-
ety of user input that exists in the current literature and beyond. 
Unlike the previous work that we build upon, our prototype was 
developed using an interactive fabric, and can sense touch [20], 
pressure [19], while also recognizing everyday items that people 
carry in their pocket such as keys, coins, electronic devices and 
some plastic items [28]. We developed our prototype using four 
diferent sensing techniques that have not been previously devel-
oped into a single fabric-based package: NFC, capacitive, inductive, 
and resistive sensing. These techniques were combined together to 
deliver a more practical solution for interactive fabrics in a wearable 
pocket context, in terms of robustness against sensor deformation 
(e.g. improved object recognition by fusing data from any pair of 
the sensors) and more capable in sensed object types (e.g. metallic, 
nonmetallic, and NFC tagged objects). 

The contributions of our work include: (1) the sensor design of 
an interactive pants pocket, capable of sensing explicit user input 

and recognizing the objects a user carries in their pocket and (2) the 
result of an experimental evaluation of the sensing performance of 
our system. 

2 RELATED WORK 
We briefy discuss the literature for interacting with fabrics, the 
diferent sensing techniques for smart fabrics, and the area of smart 
pockets. 

2.1 Interacting with Smart Fabrics 
Smart fabrics use a number of sensing methods that enable interac-
tions for users, including inductive sensing [4], capacitive touch and 
gestures, all of which can accomplished using diferent weaving, 
braiding, sewing and embroidery techniques [16, 17, 21]. Like other 
forms of input, smart fabric input can be broken into implicit and ex-
plicit input. Implicit input is often used for contextual interactions 
(e.g. activity tracking or adjusting an environment), and doesn’t 
require an explicit action from a user. Examples of such research 
include using the pressure footprint of an object to detect difer-
ent objects [23], using a pressure sensitive fabric approach [42]. 
For smart fabric interactions, implicit input has not been widely 
explored other than the work such as [4, 40]. 

Unlike implicit input on fabrics, explicit input techniques and 
their enabling technologies continue to be well explored. The most 
common technique for explicit input on smart fabrics is touch 
[18, 20] or manipulating the fabric itself (deformation) [15, 19]. 
The canonical example of explicit input on a textile is the Musi-
cal Jacket, where a fabric-based keypad was embroidered onto a 
jacket and allowed a user to play music. More recent examples in-
clude Project Jacquard [20] and GestureSleeve [27], both use touch 
gestures on diferent parts of a garment. Beyond touch based ges-
tures, mid-air gestures also have been explored by Wu et al. [39], 
where Dopper motion sensing was integrated into fabric to en-
able diferent interactions. For deformation-based input techniques, 
SmartSleeve demonstrates how common fabric-based interactions 
such as folding, stretching and pressing can be augmented as a 
means of interacting with everyday objects [19]. 

While many of the input techniques for smart fabrics have been 
explored in individual prototypes, many have not been combined 
together, providing an interesting opportunity to explore novel 
implicit and explicit input techniques. 

2.2 Sensing Techniques for Smart Fabrics 
A number of techniques have been developed in the research litera-
ture for sensing using fabrics, with the most common enabling ap-
proach being the combination of fabrics and diferent sensing coils. 
Example application scenarios for fabrics and coils include include 
wireless power charging, and inductive heart sensors [13, 14, 32, 37]. 

Beyond using solely coils for sensing on smart fabrics, sensing 
techniques for textiles have included capacitive and NFC sensing, 
and object recognition, to name a few. Capacitive sensing involves 
particular challenges for fabrics and wearables [7], but ultimately 
it can enable touch input, hand gesture and posture detection (e.g. 
detecting large swipe gestures with an entire hand) [20], and mate-
rial analysis [40]. A canonical example of capacitive sensing and 
textiles that is commercially available, is the Levi’s Jacquard jacket 
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[20], where capacitive sensing is integrated into a jacket cuf and 
touch gestures are used to interact with a phone and other devices. 

Combining diferent sensing approaches also leads to novel in-
teractions. For example, Project Zanzibar [35] combines mutual 
and self-capacitive sensing to detect touch and hand gestures, and 
also used NFC tagging to detect objects. In our work, we also com-
bine diferent sensing techniques, where we explored the fusion of 
inductive, capacitive, resistive, and NFC sensing to enable a wide 
variety of applications new to interactive pockets on a pair of jeans. 

2.3 Smart Pocket Interactions 
While the broader space of interactions as it relates to smart gar-
ments, and interactions on and around the body is well explored, 
areas located around the the thigh – specifcally the pocket – have 
been under-explored comparatively [2, 34]. Prior work has demon-
strated that in scenarios involving standing, sitting or kneeling, 
the front of the thigh is the most appropriate position to place a 
touchpad-like interface [33]. Similarly, Holleis et al. [10] used ca-
pactive buttons integrated into diferent garment form factors to 
demonstrate that the thigh area was potentially the most acceptable 
for touch-based wearable controls. 

One critical factor for acceptable interactions around the pocket 
(and thigh area) is their social acceptability. For example, prior 
research has shown that people are comfortable with interactions 
above the belt, but not near the area around a belt buckle, due to 
social statements that could be perceived (e.g. a hand near the lower 
extremities) [1]. Profta et al. [22] has also demonstrated similar 
results that pockets are not as socially acceptable because of the 
physical location to diferent (private) parts of the body. This means 
that ideally, sociably acceptable interactions should be closer to a 
resting hand position for pockets (similar to [2]). 

An early example of pocket-based interaction in the literature is 
PocketTouch [26], which demonstrated capacitive sensing through 
fabric. Their approach consisted of a capacitive sensing grid (con-
nected to a smart phone) that enabled touch interaction through 
the pocket, as well as stroke-based gestures that could be performed 
on the outside of the pocket. Through-pocket techniques have also 
been demonstrated by others [11, 25] and often rely on using the 
sensors of a mobile phone in a pocket [2]. Smart pocket prototypes 
have also been created using cameras, and other more rigid materi-
als, but aren’t practical for an everyday pocket. The closest system 
that recognizes objects in a pocket was created by Shimozuru et 
al. [29], using an array of infrared sensors, but is also impractiable 
due to its rigidness. 

In this work, we are the frst to explore how multiple sensing 
techniques can be designed and developed in combination (rather 
than in isolation), to enable diferent types of interactions in an 
everyday pocket form factor. As part of this exploration, we identify 
unique challenges due to the constraints of a pocket and demon-
strate promising solutions that are both applicable to pockets, as 
well as the wider space of smart fabrics. 

3 PROJECT TASCA 
Our goal was to implement Tasca as a pocket sensor that supports 
some of the most common input modalities, including: (1) 2D touch 
gestures commonly used on mobile and wearable devices and (2) 

force touch by pressing the fabric at diferent levels of pressure. 
Additionally, to allow for rich contextual interactions, we wanted 
the sensor to be able to (3) sense and recognize daily objects that 
users normally carry in their pants pockets. Finally, to allow cus-
tomization and enable the system to handle objects that are not 
registered in our system, we wanted the sensor to be able to (4) 
sense tags that are easy to attach to objects (e.g., NFC). We detail 
the design and implementation of our prototype to handle all of 
these requirements using four sensing techniques. 

3.1 Sensing Capabilities 
Our prototype is capable of sensing touch, pressure, metallic ob-
jects, non-metallic objects, and tagged objects by integrating four 
diferent types of sensing methods, including inductive sensing, 
capacitive sensing, resistive sensing, and NFC. We investigated the 
sensing techniques that are contact-based or the ones working in a 
short range so the operation of our sensor does not interfere with 
other personal electronic devices. 

3.1.1 Sensing Metallic Objects Using Inductive Sensing. 
Metallic objects are recognized using inductive sensing based on 
Faraday’s law of induction. When an alternating electrical current is 
fowing through a L-C resonator, composed of the spiral-shaped coil 
of the sensor (inductor) and a capacitor, an electromagnetic feld is 
generated around the sensor. If a conductive object is brought into 
the vicinity of the sensor, the electromagnetic feld will induce an 
eddy current on the surface of the object, which in turn generates 
its own electromagnetic feld, which opposes the original feld 
generated by the sensor. Therefore, a small shift in inductance 
can be observed through the sensor. The amount of the shift is 
related to the resistivity, size, and shape of the object when it is in 
proximity to the sensor. Inductive sensing works primarily with 
metallic objects (e.g., keys, coins) and those composed of metallic 
parts (e.g., electronic devices). To implement inductive sensing for 
our pocket, we used an approach similar to one described in the 
research literature [4]. However, the design of our coils is diferent 
because we also use the coils for NFC, which we discuss later. 

3.1.2 Sensing Touch and Non-Metallic Objects Using Capacitive 
Sensing. 
Touch input is sensed using capacitive sensing, which is a well-
known technique used on everyday devices ranging from smart-
phones and watches to interactive garments (e.g., Jacquard [20]). 
Aside from touch input, capacitive sensing has also been used for ob-
ject recognition [6, 43]. Unlike inductive sensing, capacitive sensing 
works better for non-metallic objects, such as food items, dinner-
ware, plastic, and paper products. As a complement for inductive 
sensing, we included capacitive sensing to recognize non-metallic 
objects (e.g. hand sanitizer and wallet), as well as sensing touch 
input, using a shared set of coplanar textile electrodes. For object 
recognition, we used a technique similar to the one described in the 
research literature [40]. Our system recognizes non-metallic objects 
based on their capacitance footprint introduced by the change in 
the capacitance of electrodes, afected by the presence of an object. 
When the electrodes are in contact with a non-metallic object, the 
electric feld applied from the electrodes causes a certain amount 
of electric displacement within the object. Objects with diferent 
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permittivity have diferent efects on the amount of the electric dis-
placement, which alters the capacitance of the object. The shift in 
the capacitance can be measured using a resonance-based approach, 
which is known to be precise and less susceptible to environmental 
noise. 

3.1.3 Sensing Pressure Using Resistive Sensing. 
Pressure sensing is based on the change in the resistance of a 
piezo-resistive material when it is pressed or deformed. As an input 
method, this resistive sensing can be used for both sensing touch in-
put [19] and recognizing objects [24]. For object recognition, unlike 
capacitive and inductive sensing, resistive sensing detects objects 
primarily based on the shape and amount of pressure exerted on 
the sensor by the objects. In the context of a pocket, using resis-
tive sensing allows our system to infer the thickness of the objects 
since higher pressure can be observed with thicker objects. Fused 
with the data from the capacitive and inductive sensor, resistive 
sensing could potentially improve the robustness and accuracy 
of object recognition. Our fabric resistive sensor implementation 
involved creating a three-layer structure with a piece of pressure 
sensitive material (e.g., velostat) sandwiched between two layers of 
conductive fabric. 

3.1.4 Sensing Tagged Objects Using NFC. 
Tagged objects are sensed using Near Field Communication (NFC), 
which is a technique commonly used in applications involving 
contactless payments or tagged detection [35]. The technique uses 
alternating electromagnetic felds for sensing and transmitting data. 
When a NFC tag is triggered by an electromagnetic interrogation 
signal from a nearby antenna coil, it transmits its data to the sensor 
coil. In our implementation, we carefully designed the coil layout 
and its circuit to ensure that the sensor can not only detect tags, 
but can also function as an inductive sensor. 

3.2 Sensor Design 
To develop these four diferent sensor modalities in a single package, 
a naive approach would be to stack them four discrete sensors on 
top of each other. However, this would increase the thickness of 
the sensor and complexity of the fabrication process and interface 
circuitry. To overcome this challenge, we designed the sensor in 
a two-layer structure (Figure 2) with the top layer composed of a 
grid of fabric resistive sensors with conductive electrodes for both 
capacitive and resistive sensing and the bottom layer composed 
of a grid of embroidered coils for inductive and NFC sensing. We 
designed our sensor to cover the space of a 100 mm x 100 mm 
region, which is roughly the size of a jeans pocket. 

3.2.1 Inductive-NFC Sensing Layer Design. 
For object recognition, inductive sensing usually requires the sensor 
coils to be arranged in a grid layout to detect the rough geometry 
of the contact area of an object. The grid arrangement also ensures 
the NFC sensor is efective across the full area. However, a tag may 
not be recognized when it is placed between two adjacent coils. We 
overcame this challenge by introducing a small overlap between 
two adjacent coils (Figure 2). Note that the overlap may impact 
the sensing resolution of the inductive sensor in the 2D space. Our 
initial test suggests that with our coil design (see details below), a 

5 mm overlap works best for balancing the coverage of NFC and 
the sensing resolution of the inductive sensor in the 2D space. 

To maximize the sensitivity to objects of diferent materials and 
shapes, the size and shape of the coils for inductive sensing can be 
determined using the approach described in a previous work [4]. 
Once the design of the coils is determined, they are shared by the 
NFC and inductive sensing circuits. A multiplexer can be used to 
swap between the two circuits, as shown in the circuit schematic 
in Figure 3. The challenge, however, is that in practice, multiplex-
ers introduce parasitic impedance that degreades performance. As 
such, we had to minimize the use of them in our design. Since 
the LDC1614 chip used in our implementation (more details later) 
supports four channels, this allowed us to implement our sensor 
using four coils without the need of any extra multiplexer except 
the one used for switching between the two circuits. This is why 
our current implementation has a grid of 2 × 2 coils. To support 
higher-resolution sensing the number of coils can be increased in 
the future with better hardware. Note that another limitation of the 
the current inductive sensing hardware is that operation becomes 
unreliable when the inductance of the coils is below 4 uH. As such, 
we designed our coils with an inductance of 4 uH (e.g., square shape, 
number of traces = 5). Figure 2 shows the detail of our coil design. 

3.2.2 Resistive-Capacitive Sensing Layer Design. 
To enable capacitive sensing we re-purposed the conductive fabric 
of the resistive sensor as the electrode for capacitive sensing. This 
approach is similar to what is described in zPatch [31]. However, 
unlike the previous work, recognizing objects and touch gestures 
requires the sensor to be arranged in a grid layout. In our imple-
mentation, we arranged the resistive sensors in a 4 × 4 grid. Note 
that the problem with the grid arrangement is the confict between 
the design for the capacitive and resistive sensor. For example, the 
row and column electrodes of the capacitive sensor need to be 
electrically separated while the row and column electrodes of the 
resistive sensor need to be electrically connected. Thus in our im-
plementation, we left the resistive sensors disconnected from each 
other. Each sensor was connected to the sensor board separately. 
This setup works well for a pocket. 

3.3 Sensor Implementation 
In this section, we detail the hardware implementation of the pocket 
sensor. 

3.3.1 Fabrication. 
The coils on the inductive-NFC sensing layer was created by stitch-
ing conductive wires onto a cotton substrate, as shown in Figure 
4A. Since our design requires some of coil traces to overlap with 
each other, we had to use insulated wires to avoid short circuits. In 
our implementation, we used the standard enamel coated copper 
wire, widely used in the smart fabric industry. Based on some ini-
tial testings with a JGVA embroidery sampling machine [12], we 
opted for the 34 AWG wire (161 um diameter) as it is both thin 
and strong enough to stand the fabrication process. The enameled 
wire was applied to the fabric substrate using a fxation top thread 
(Polyneon #40 weight) interlocked with a bottom thread (polyester 
#150 weight). 
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Figure 2: We use a two-layer structure for our sensor. The bottom layer is composed of a grid of embroidered coils for inductive 
and NFC sensing. The top layer is composed of a grid of fabric resistive sensors with conductive electrodes for both capacitive 
and resistive sensing. 

To create the electrodes for the resistive-capacitive layer, we frst 
stitched a sheet of conductive fabric (EeonTexTM NW170-PI-20) 
onto a cotton substrate. The stitches followed the grid layout of 16 
square-shaped electrodes. The conductive fabric faces the inner side 
of the sensor to allow a contact with the middle layer of a pressure-
sensitive material. Note that we chose the conductive fabric that 
was made of a non-metallic material (e.g., conductive polymer) to 
avoid interfering the signals of the other sensors (e.g., inductive 
sensor). Following the stitches, we cut the conductive fabric outside 
the electrodes using a cutting machine (Cricut Air Explorer). Next, 
we stitched a connection line from the top right corner of each 
electrode to the corresponding position of the pins on the sensor 
board using the same enameled wire. To prevent the fabric from 
being bent easily along the gap between two adjacent electrodes, 
we added a sheet of felt to hold the electrodes on their positions. 

The resistive-capacitive sensor was completed by sandwiching 
a grid of 16 square-shaped pressure-sensitive fabrics (velostat) be-
tween the two electrode layers using stitches (Figure 4B). Note that 
in order for the pressure sensor to work properly, contact between 
the velostat layer and the connection lines of the electrodes needs 
be avoided. As such, the top right corner of the velostat pieces was 
removed and replaced with a piece of felt to create an insulation 
between the top and bottom electrodes. 

The entire sensor was completed by stitching the two individual 
layers together into one piece. We also added a fabric ground shield 
on the bottom of it. To develop the sensor in a pocket form factor, 
we stitched it onto a piece of denim with an opining on the top. We 
then replaced the original pocket of a pair of jeans with our pocket 
sensor by attaching the sensor to the jeans using velcro (Figure 
4C). In our current implementation, we placed the sensor in the 
front-right pocket as it is easy for people to perform touch input. 

3.3.2 Customized Sensor Board. 
Our customized sensor board is comprised of a multiplexer module, 
a sensor module and a processing module (Figure 3 and 5). 

The multiplexer module connects the electrodes and coils to 
the corresponding sensor circuit. Our implementation has three 

Figure 3: Tasca circuit consists of a processing module, a sen-
sor module, and a multiplexer module. Due to the negative 
impact on inductive sensing from the multiplexers’ para-
sitic impedance when the coils are shared between induc-
tive and NFC sensing, we had to minimize the multiplexers 
in our circuit design. 

four-channel 2:1 multiplexers (TMUX1574, Texas Instruments), two 
for the system to switch four coils between the inductive and NFC 
sensing circuits and the other one for the system to switch between 
the capacitive and resistive sensing circuits. Additionally, we used 
four two-channel 4:1 multiplexers (FSUSB74, On Semiconductor) to 
handle the 16 electrodes for the capacitive and resistive sensor. Fur-
ther, we used an additional two-channel 4:1 multiplexer (FSUSB74, 
On Semiconductor) as the RF switching component to handle the 4 
coils for NFC. No multiplexer is needed for the inductive sensor as 
the LDC1614 chip supports four channels. 

Mounted on the multiplexer module, the sensor module hosts 
the necessary circuitry for the four diferent types of sensors. For 
inductive sensing, we used a LDC1614 4-channel inductive sensing 
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Figure 4: Tasca sensor. (A) The inductive-NFC sensing layer. 
The coils were created by embroidering enameled copper 
wires onto a cotton substrate. (B) The resistive-capacitive 
layer. The sensor grid was created by stitching the velostat 
pieces between two conductive fabric layers. (C) Tasca is in-
stalled on a front pocket of a pair of jeans using velcro 

Figure 5: Our customized sensor board is a stack of a process-
ing module, a sensor module, and a multiplexer module. A 
pluggable interface was implemented using pin headers to 
connect the sensor board to the textile sensor. 

chip from Texas Instruments running at a circuit capacitance value 
of 680 pF (3 MHz operating frequency). The capacitive sensing 
was implemented using self-capacitance with a FDC 2214 capacitor 
sensing chip also from Texas Instruments. The resistive sensing 
was implemented using a voltage divider circuit for monitoring 
the change in the resistance of the pressure sensor. Finally, the 
NFC circuit used a MFRC522 reader chip. Note that the strength of 
RF signal fuctuates when small changes occur in coil inductance 
due to inevitable sensor deformation during use. This afected the 
signal strength of NFC sensing. To allow for the strength of the 
RF signals to remain at a relatively constant level, we included 
two programmable capacitors (NCD2100, IXYS) in the system. This 
enabled dynamic adjustment of signal strength based on the coil 
inductance detected using the inductive sensor. 

Finally, mounted on top of the sensor module, the processing 
module is composed of a Teensy 3.6 development board. It reads 
the data from all the sensors at 10 Hz and transmits to a laptop via 
USB for computation. 

3.3.3 Pluggable Connection. 
The sensor board was connected to the fabric sensor through a 
pluggable interface implemented using pin headers (Figure 5). We 
soldered an array of male headers at the end of the sensor’s con-
nection lines and female ones on the sensor board. To ensure that 
the entire system can be worn on the body comfortably, we placed 
the rigid sensor board on the outside of the jeans. 

Figure 6: The heatmap images of the raw sensor data show-
ing the capacitance, pressure, and inductance footprint of a 
wallet with coins. 

3.4 Data Processing 
For every 100 ms, the sensor reports a 4 × 4 grid of capacitance 
values, a 4 × 4 grid of pressure values, a 2 × 2 grid of inductance 
values, and NFC data. All the data, except from NFC, was used for 
object or gesture recognition. Before the raw sensor data was used 
for recognition, it was smoothed using a median flter with a sliding 
window of size 10. We then subtracted background noise from the 
sensor values using a 2D noise profle, created by averaging the 
sensor readings at all the locations of the sensor with a sliding 

Table 1: The feature set extracted from each sensor data for 
training our machine learning model. 

Shape-
• Local Binary Pattern (36) related 
• Hu Moments (7) Features (53) 
• Object Area (1): Number of pixels the 
object covers 

• Object Edge (1): Number of pixels on 
object’s edge 

• Average Distance (4): Average distance 
from object’s pixels to object’s center of 
gravity and geometric center (2), aver-
age distance from object’s edge pixels to 
object’s center of gravity and geometric 
center (2) 

• Object’s center of gravity and geometric 
center(4) 

Material-
• Statistical Functions (13): Sum(1),related 
Mean(1), Max (1), Binned Entropy (1), Features or 
Local Maximum Numbers (1), Median Pressure-
(1), Quantiles (3), Count above/below related 
mean (2), Variance(1), Absolute energy Features(33) 
of the object’s pixel values (1) 

• Ten-Fold Stats (20): Sort and divide the 
object’s pixel values into 10 folds and av-
erage for each fold (10), Divide grayscale 
values (e.g., 0 255) into ten intervals and 
count the number of the pixels in each 
interval (10) 
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window of size 10. For every 5s, we also updated the noise profle if 
the deltas between current sensor values and the initial ones were 
classifed as noise by a machine learning model. Upon the presence 
of an object or hand, we upscaled the sensor data to a 240 × 240 
heatmap image using linear interpolation. Figure 6 demonstrates 
an example of a a wallet with coins inside it and its corresponding 
sensor footprint shown in the heatmap image. 

3.5 Object Recognition 
Our system recognizes objects based on the inductance, capacitance, 
and pressure footprint of the contact area of the objects. For the 
data collected from each type of sensor, we derived 33 material- or 
pressure-related features and 53 shape-related features. We also 
added 16 pressure data collected when the sensor was in the idle 
model (e.g., without the presence of an object or hand). This data 
inferred how tight the sensor was worn on the user’s body. In to-
tal, 274 features (see Table 1) were collected and used to train our 
machine learning model. We used Random Forest in our imple-
mentation because it has been found to be accurate, robust, and 
computationally efcient in applications involving small wearables 
and interactive fabrics [4, 5]. 

3.6 Finger Gesture Recognition 
If a hand was recognized, the system switched to the gesture recog-
nition mode. Finger gesture recognition assumed the palm remains 
in a relatively stable position. This allowed us to use background 
subtraction to remove the palm in the heatmap image. We then 
detected the moving fngers by using OpenCV’s blob detection to 
look for blobs smaller than a threshold size. Gestures were recog-
nized if the fnger’s moving distance exceeded a certain threshold. 
This is similar to the method described in [30]. The normal force 
of the fnger pressing the sensor was detected using the resistive 
sensor. 

4 INTERACTION TECHNIQUES 
Tasca’s unique sensing capabilities enable fve diferent input modal-
ities in one fabric-based sensor: object recognition, touch gesture, 
pressure input, and activity tracking. In this section, we describe 
several example applications to illustrate potential uses of these 
modalities through eyes-free, private, always-available, and context-
driven interactions. 

4.1 Object Recognition 
Tasca understands what objects a user carries in the pants pockets. 
This enables richer contextual interactions in wearable scenarios 
beyond what is currently ofered by existing wearable devices, such 
as smartwatches or head-worn displays. For example, knowing 
what the user has or does not have in their pocket, Tasca can provide 
better personal assistance. In our implementation, the system can 
detect whether the user carries loose change (e.g., coins) (metallic) 
in their wallet that can be used to pay for street parking or to 
purchase an item from a vending machine. A reminder is sent to 
the user before they travel,if their empty wallet (non-metallic) is 
detected. 

In VR games, tagged objects (NFC) can be used as tangible tokens 
to enable a more immersive gaming experience by allowing the 

Figure 7: An NFC tagged toy sword is used as a tangible to-
ken in a VR game. (A) A user can carry the sword in their 
pocket, which is used as a physical extension of the user’s 
virtual storage for their weapons in the game. (B) The user 
can switch to the sword from the fst by grabbing the sword 
token from their pocket. 

user to physically interact with virtual items in the digital world. 
For example, when the user encounters a weapon in a game, they 
could pick it up and place its physical counterpart (e.g., the weapon 
token) in their pants pocket. This adds the item to the user’s virtual 
inventory. When the user wants to use it, they can grab the physical 
token from their pocket (Figure 7). 

4.2 Gestural Input Using The Hand 
Unlike existing work [28], our system can diferentiate between 
the hand (body) and other objects. Since the pocket is where hands 
can naturally reside, Tasca provides a useful input mechanism for 
a user to interact with computing devices. For example, a user can 
use touch gestures inside the pocket to interact with a head-worn 
display or a smartwatch. This subtle and eyes-free input method 
can be useful especially in the public settings, where repeatedly in-
teracting with the device might be considered inappropriate. When 
Tasca is used to interact with a smartwatch using the same-side 
hand wearing the smartwatch (Figure 1B), one-handed interaction 
becomes possible on a smartwatch. This type of interaction can be 
benefcial in situations where the other hand is occupied by holding 
objects or is busy with other tasks. 

4.3 Pressure Input 
In addition to 2D touch gestures, pressure as an input modality 
enables a new dimension of interaction with computing devices 
through the pocket. Prior research has shown the promise of pres-
sure sensing in gestural input on smartphones [9] or text input on 
small head-worn displays [44]. In our implementation, a user can 
perform directional swipes with two levels of pressure, low and 
high. Unlike the pressure input on a rigid-body touch panel, where 
the amount of normal force is only perceived through the fngertip, 
pressing inside a pocket allows the user to feel the normal force 
also through the thigh. Therefore, in-pocket touch input through 
pressure not only expands the vocabulary of touch gestures, it also 
enriches the haptic feedback that the user can perceive to better 
support eyes-free input. 

4.4 Activity Tracking 
Sensing the hands of a user inside the pants pockets can also provide 
rich contextual information related to their current activity. For ex-
ample, a hand inside a pocket while interacting with a smartphone 



CHI ’21, May 8–13, 2021, Yokohama, Japan Te-Yen Wu, Zheer Xu, Xing-Dong Yang, Steve Hodges, and Teddy Seyed 

Figure 8: Our system can sense user activity by tracking if 
a user puts their hands in the pocket. (A) When typing us-
ing both hands, the keyboard is confgured in its maximum 
width. (B) The system detects that the user puts their hand 
in the pocket. (C) The system automatically switch the key-
board to a narrower version to facilitate typing using one 
hand. 

using the other hand indicates one-handed use of the smartphone. 
As such, the smartphone UI can be adjusted accordingly to facilitate 
input using the thumb (e.g. a narrower keyboard for one-handed 
typing) (Figure 8). 

In social scenarios, the body language expressed by the user 
putting their hands in the pants pocket is often associated with cer-
tain social meanings. For example, hands in a pocket when standing 
can be considered as a sign of low confdence [3]. Self-correction is 
often hard since body posture is driven by a subconscious process. 
The system can be setup to notify the user about their hand position 
through the vibration of a smartwatch. 

5 EVALUATION 1 - OBJECT RECOGNITION 
The goal of this study was to validate the object recognition accu-
racy of our prototype and its robustness against individual variance 
among diferent users. 

5.1 Participants and Apparatus 
Ten participants (age: 18-34, 4 males, 6 females) were recruited 
to participate in this study. The size of their hip ranged from 33 
inch to 40 inch (average: 37.5, SD = 2.2) and the size of their upper 
thigh ranged from 17 inch to 22 inch (average: 20.0, SD = 1.6). We 
customized our sensor for each participant by installing it in the 
front right pocket of a pair of skinny jeans purchased at their size. 
They wore the jeans during the study. Our study was conducted by 
following an approved Institutional Review Board (IRB) protocol 
developed specifcally to ensure the safety of our researchers and 
participants during a pandemic. 

5.2 Objects 
We tested our prototype using 10 objects that are often carried by 
people in their pants pocket (Figure 9). The tested objects vary in 
geometrical (e.g., size and shape) and material properties. Some of 
them were pure metallic or non-metallic, while many were made 
of a mixture of metallic and non-metallic materials. For the non-
metallic objects, we included a leather wallet and a bottle of hand 
sanitizer. For the metallic object, we included a door key. For the 
hybrid ones, we included a signature pen, multitool knife, car key, 

earbuds charging case, and LG Rebel 4 smartphone. We also pur-
posefully included an empty sanitizer bottle and a few coins in 
the wallet to measure how well our system can recognize diferent 
statuses of a container. For example, we tested how well the system 
can recognize if the sanitizer bottle is empty or if there are coins in 
the wallet. We let our participants to randomly choose how many 
coins they wanted to put in the wallet. We ended up collecting the 
data ranging from fve to ten coins. Further, we included the hand 
in our study to test how well our system can diferentiate between 
the hand and all the other tested objects. 

5.3 Data Collection 
The study was conducted with our participants performing the task 
in a standing position to simulate the common use scenarios of a 
pants pocket. Participants were asked to place each of the tested 
object in their pocket 10 times at a random order. Further, to test 
whether user activities such as walking may cause confusion to 
the system between the tested objects, we collected noise data by 
asking participants to walk for 30 seconds. In total, it took about 
20 minutes for the participants to complete the task. In total, we 
collected 1100 samples (10 participants × 11 objects × 10 repetitions) 
for analysis. 

5.4 Result 
We present our results using within-user accuracy and cross-user 
accuracy. Additionally, we discuss how data from diferent sensors 
contributed to the accuracy of object recognition. 

5.4.1 Within-User Accuracy. 
Within-user accuracy is the measurement of prediction accuracy, 
where training and testing data are from the same participant. 
For each participant, we conducted a fve-fold cross validation, 
where 4/5 of the data was used for training and the remaining 
data used for testing. We then calculated the overall within-user 
accuracy by averaging the results from all the participants. The 
result yielded an accuracy of 92.3% (SD = 3.2%). Figure 9 shows the 
confusion matrix. A close look at the study result reviewed that most 
objects received an accuracy over 90%. The noise could be reliably 
distinguished from the tested objects and hand. The major source 
of error, however, was from the confusion of the system between 
the full and empty bottle of hand sanitizer, which suggests that 
very small diferences in the material property of the objects is still 
challenging to distinguish. One of the potential reasons of this issue 
is related to the small inconsistency in sensor readings at diferent 
locations of the current prototype. Further, the tightness inside 
the pocket also varied at diferent locations. When the variation in 
sensor readings at diferent locations was somewhat closed to the 
impact caused by the change in the material property of an object 
(e.g., with vs without liquid in this case), a reduction in system 
performance was observed. We were thus interested in knowing 
whether system performance could be improved after removing the 
data from the most confusing object. We found that the accuracy 
increased to 95.5% (SD = 2.2%) without the empty hand sanitizer. 
Aside from the hand sanitizer, the system also sometimes confused 
the multitool with the signature pen. This is primarily due to the 
similarity in the shape and material of these two objects. We except 
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Figure 9: (Left) Objects tested in the study: (A) LG Rebel 4 smartphone, (B) earbuds charging case, (C) key, (D) full bottle of 
hand sanitizer, (E) empty hand sanitizer bottle, (F) wallet without coins, (G) wallet with coins, (H) signature pen, (I) car key, (J) 
multitool knife. (Right) The within-user confusion matrix and cross-user confusion matrix. 

that this problem can be solved by improving the 2D resolution of 
the sensor. 

5.4.2 Cross-User Accuracy. 
Across-user accuracy (or universality) measured how well our 
model works across diferent users. We calculated the accuracy 
by using the data from nine participants for training and the re-
maining one for testing. The overall accuracy was then calculated 
by averaging the accuracy of all the ten combinations of training 
and test data. The result yielded a 81.3% accuracy (SD: 6.0%). The 
reduced accuracy was expected as the sensor deformed diferently 
across the users, which had made it more difcult for the machine 
learning model to handle. Figure 9 shows the confusion matrix. 
Similar to the within-user condition, the full (57%) and empty hand 
sanitizer bottle (53%) contributed to most of the classifcation er-
rors. Additionly, objects that are similar in shape or made of similar 
materials began to be less distinguishable across diferent users. 
Examples include signature pen (87%) versus multitool knife (87%) 
and wallet (64%) versus empty hand sanitizer bottle (53%). The de-
cline in system performance is primarily because of the individual 
diference in the shape and diameter of the thigh, which had led to 
variations in the footprint of the tested objects. For example, the 
footprint of the hand sanitizer was wider for the participants who 
had plump thighs than those who had slim thighs because the sen-
sor was worn fatter in the former case, thus increasing the contact 
area between the objects and the sensor. Removing the signature 
pen, full and empty sanitizer bottle from the training/testing set 
increased the recognition accuracy to 90.3% (SD:6.2%). This is in 
fact quite promising as it suggests that it is technically feasible to 
use a general model across diferent users without a impact on the 
type of objects that the system can correctly recognize. 

5.4.3 The Contribution of Diferent Sensors. 
Aside from recognition accuracy, we were also interested in under-
standing how system performance was afected by the availability 

of the data form diferent types of sensors in our system. We in-
cluded the analysis of the same set of objects except that the most 
confusing ones (e.g., empty hand sanitize bottle in the within-user 
condition) were removed so the system worked in an "ideal" situ-
ation. We then calculated the recognition accuracy using only a 
subset of the sensor data. As shown in Figure 10, object recognition 
accuracy was afected by which sensor(s) was involved and how 
they were combined. As one may expect, no single sensor could 
reliably handle our diverse set of objects. However, if we combined 
any two of the sensors, the accuracy was improved. For instance, 
the combination of capacitive and resistive sensing yields a better 
accuracy (within-in user: 80.5%, SD = 6.7%; cross-user: 55.1%, SD = 
9.4%) than using the capacitive (within-in user: 73.0%, SD = 5.7%; 
cross-user: 47.3%, SD = 6.2%) or resistive sensing along (within-in 
user: 73.2, SD = 11.3; cross-user: 42.9%, SD = 6.6%). This suggested 
that even the pressure data along was unreliable for object recogni-
tion, it worked well as an addition to improve the performance of 
capacitive sensing when the sensor was deformed by the body. The 
same pattern was observed for inductive sensing with performance 
increased to above 80% for both within- and cross-user conditions. 
Considering that the 2D sensing resolution for the inductive sens-
ing is quite low in the current implementation (e .д., 2 × 2), we 
expect that the overall accuracy of our system can be improved by 
improving the 2D resolution of the inductive sensor. 

6 EVALUATION 2 - GESTURE RECOGNITION 
The goal of this study was to measure how accurate our system can 
sense some of the most common touch gestures in daily computing 
tasks. We were also interested in understanding the whether users 
can use our system to perform the gestures with diferent levels of 
pressure (e.g., low vs high). 
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Figure 10: The within-user and cross-user accuracy using a 
diferent sensor data set. The error bars are two standard de-
viations. 

Figure 11: Left: An illustration of the tested gestures. Right: 
A confusion matrix showing how well the system can detect 
the gestures. 

6.1 Participants and Apparatus 
We invited the same group of participants to participate in this 
study. The study apparatus was also same as in Evaluation 1. 

6.2 Gesture Sets 
We included in our study four directional strokes (left, right, up, 
down) that are commonly used on touchscreen devices or for navi-
gating large workspaces (e.g., a map or long list) (Figure 11). Note 
that our sensor can detect other types of common gestures for in-
teractive fabrics (e.g., deforming the fabric [19]) but according to 
our pilot study, most of them require relatively large hand motion 
that are uncomfortable to perform in a small jeans pocket. For each 
tested gesture, participants were asked to perform the gesture with 
low and high pressure. Note that our pilot study suggested that the 
perception of low versus strong force varied across diferent people. 
Therefore, we let each participant to perform the force gestures at 
their own pressure levels. 

6.3 Data Collection 
Similar to Experiment 1, the study was conducted with participants 
performing the task in a standing position. Before we started the 
experiment, participants were given several minutes to learn the 8 
gestures. During this short training session, we also customized the 
pressure threshold for each participant. After this short training 
session, each participant performed a gesture inside the pocket 
using their right hand (Figure 11). The order of the tested gestures 
was randomly assigned. Each gesture was repeated 10 times and the 

entire experiment took less than 20 minutes to complete. In total, 
we collected 800 samples (10 participants × 4 gestures × 2 forces 
× 10 repetitions). Real-time recognition accuracy was recorded for 
analyzing the study results. 

6.4 Result 
Overall, our system yielded an average gesture recognition accu-
racy of 96.1% (SD = 3%). The confusion matrix shown in Figure 
11 suggests that 6 out of the 8 tested gestures could be correctly 
recognized by the system with an accuracy of over 95%. Some of 
the gestures were harder to perform than the others. For example, 
users with long nails often performed the light swipe up (94%) by 
scratching the sensor using the nail. This has caused difculties 
for the system to properly detect the touch gesture. Further, per-
forming the swipe down gesture (90%) using two levels of pressures 
was more challenging than the other tested gestures because par-
ticipants naturally exerted more force when pushing the fnger 
downwards even in the low pressure condition. It was thus more 
challenging for the system to distinguish between the two swipe 
down gestures with diferent levels of pressure. 

7 EVALUATION 3 - NFC TAG DETECTION 
The goal of this study was to evaluate the robustness of our NFC 
sensor in diferent tag position and distance to the sensor. 

7.1 Participants and Apparatus 
The same group of ten participants were invited to participate in 
this study. We tested our system using two common types of NFC 
tags, card and key tag (Figure 12). The distance between a tag and 
the sensor was controlled by attaching the tag to an acrylic sheet 
of certain thicknesses (Figure 12). 

7.2 Data Collection 
The data was collected with the tag placed in the center as well as 
at the four corners of the sensor. We chose these locations because 
sensor signals are weaker at the edges of the coils. Similar to Ex-
periment 1 and 2, participants were instructed to place the tags in 
the tested locations in a standing position. Note that the tags may 
appear at a small distance away from the sensor when attaching to 
an object of a certain thickness. So in this study, we also included 
three tag distances at each of the tested locations (near, medium, 
and far). In the near condition, the tag was placed in a direct contact 
with the sensor. The medium and far conditions were controlled at 
3 mm and 6 mm (about the thickness of a smartphone) respectively 
for the key tag. Note that sensor signals are stronger for the card, 
so we increased the distances for medium and far conditions for 
the card to 10 mm and 20 mm, which is about the thickness of a 
wallet. Each trial was repeated 3 times and the entire study took 
less than 15 minutes to complete. In total, we collected 900 samples 
(10 participants × 2 tags × 5 locations × 3 distances × 3 repetitions) 
for analysis. 

7.3 Result 
Figure 12 shows the result of the experiment. Overall, the recog-
nition success rate for the card was 98% across all the locations 
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Figure 12: Recognition success rate of our system with the 
NFC tags placed at diferent locations and distances to the 
sensor 

and distances. The success rate of the card dropped at both cor-
ners near inner thigh (e.g., left corners) at the longest distance of 
20 mm. We found that the signal was weaker on that side of the 
pocket, especially for those who had slim thighs. This is possibly 
because of the increase in senor deformation at the far end, which 
consequently increased the distance of the tag. The system was 
able correctly recognize the small key tag at all the tested locations 
in the 0 mm and 3 mm distance conditions. However, due to the 
drop of the signal strength at the 6 mm distance, the key tag could 
not be reliably detected. 

8 LIMITATIONS AND FUTURE WORK 
In this section, we discuss limitations of our work and suggest 
future research for exploring the space of interactive pockets. 

8.1 Sensor Hardware 
We demonstrated that our system can recognize some everyday 
objects, as well as simple fnger gestures. The sensing accuracy of 
our system for both object and gesture sensing can be improved 
in the future with the availability of better hardware (e.g., multi-
plexer). As shown in our study, the number of electrodes and coils 
impacted recognition accuracy of the tested objects in both within-
and cross-user conditions. We expect that including a denser array 
of electrodes and coils will allow the system to be more capable 
of sensing user input. Furthermore, going beyond the focus of our 
current research, incorporating diferent types of hardware design 
for sensing will likely open opportunities for a completely new set 
of applications in pocket-based computing. As a next step for future 
research, we will focus on new capabilities, such as wireless power 
transfer for charging electronic devices inside the pocket. 

8.2 Efect of Body Motion 
As a fexible wearable sensor, the readings of our prototype are 
afected by the motion or posture of a user’s body. For example, 
actions such as sitting down or jogging may introduce noises that 
can be hard to handle using a machine learning model trained in a 
stationary condition. Our initial investigations demonstrated that 
noises caused by walking had no noticeable efect on how well the 
system could distinguish between diferent types objects or hands. 
Our next step is to investigate whether our system can handle other 

types of body motion, identify other issues unique to the context of 
an interactive pocket, and explore practical solutions to overcome 
the challenges. 

8.3 Beyond Jeans Pockets 
In the context of object recognition, our current research focuses 
on pockets in a pair of jeans. This led to the design of our sensor 
primarily using contact-based techniques that require an object to 
be in contact with the sensor. This requirement can mostly be guar-
anteed on a pair of jeans, especially with popular skinny styles as 
the pockets are tight to the body. The shape of the sensor conforms 
with the user’s body, thus largely reducing the possibility of it to be 
deformed in a random way and consequently afect sensor readings. 
However, in other wearable scenarios beyond jeans (e.g., pockets in 
a hoodie, or a jacket), frm contact between an object and the sen-
sor may not be guaranteed, so it is unknown how well our current 
object detection method can work in these situations. Future work 
can further look at understanding the challenges for our system 
to be used in scenarios beyond jeans and identify novel contact-
less solutions (e.g., EM- or thermal-based sensing) to overcome the 
challenges. 

8.4 Fabric Flexibility 
With multiple layers of electrodes, coils, and substrates, it is ex-
pected that our implemented jeans pocket is harder than it was 
before instrumentation. Preserving the softness of the fabric sen-
sor is also an important consideration in our future explorations. 
We see it as a interesting future research direction to investigate 
ways to optimize the sensor based on the material properties of the 
substrates and wires, which can lead to improvements in softness 
and comfort of the sensor. 

9 CONCLUSION 
In this paper, we demonstrate a technique that combines inductive 
sensing, capacitive sensing, resistive sensing, and NFC into a multi-
layered fabric that is integrated into a pocket of a pair of jeans. First, 
we discussed our sensing principle and approaches to optimize the 
layering, which was selected based on careful research. With a 
ten-participant study, we found our approach demonstrated a 92.3% 
with-user classifcation accuracy with 11 diferent objects, 96.4% 
accuracy for gesture recognition and 100% accuracy for NFC tag 
detection at a maximum distance of 3mm (key tag) or 10mm (card). 
We demonstrated a set of new application scenarios, and believe it 
is an important step to enabling new types of interactions with an 
everyday part of garments, as well as expanding the broader input 
space for interactive fabrics. 
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