
TouchCuts and TouchZoom: Enhanced Target Selection
for Touch Displays using Finger Proximity Sensing

Xing-Dong Yang1,2, Tovi Grossman1, Pourang Irani3, George Fitzmaurice1
1Autodesk Research

210 King St. East, Toronto,
ON, M5A 1J7 Canada

{firstname.lastname}@autodesk.com

2Dept. of Computing Science
University of Alberta, Edmonton,

AB, T6G 2E8 Canada
xingdong@cs.ualberta.ca

3Dept. of Computer Science
University of Manitoba, Winnipeg,

MB, R3T 2N2, Canada
lastname@cs.umanitoba.ca

ABSTRACT
Although touch-screen laptops are increasing in popularity,
users still do not comfortably rely on touch in these envi-
ronments, as current software interfaces were not designed
for being used by the finger. In this paper, we first demon-
strate the benefits of using touch as a complementary input
modality along with the keyboard and mouse or touchpad in
a laptop setting. To alleviate the frustration users experi-
ence with touch, we then design two techniques, Touch-
Cuts, a single target expansion technique, and TouchZoom,
a multiple target expansion technique. Both techniques fa-
cilitate the selection of small icons, by detecting the finger
proximity above the display surface, and expanding the
target as the finger approaches. In a controlled evaluation,
we show that our techniques improve performance in com-
parison to both the computer mouse and a baseline touch-
based target acquisition technique. We conclude by discuss-
ing other application scenarios that our techniques support.

Author Keywords
Touch input, target expansion.

ACM Classification Keywords
H5.2 [Information interfaces and presentation]: User Inter-
faces. - Graphical user interfaces.

General terms
Design, Human Factors.

INTRODUCTION
Touch input is often considered intuitive and effective [7].
It is becoming a major input modality, especially on mobile
devices. Recently, manufacturers have started producing
laptops equipped with touch-screens, allowing users to use
their fingers to directly interact with their applications.
However, legacy applications typically utilize a ribbon or
tool palette, consisting of small tiled icons, and research has
shown that such targets are difficult to select with the finger
due to occlusion [25] and accuracy [19] problems. ………

While there is an abundance of work in creating new UI
paradigms specifically for touch [17, 26], it is unlikely that
the legacy applications used most often by users would ever
go through such a transformation. Very limited work has
looked at making general purpose UIs more touch friendly,
without impacting their non-touch experience.

Ideally, software interfaces should seamlessly adapt to the
input modality [4, 8]. With the use of proximity based sens-
ing [5, 10, 16, 22], UI components could transition to a
touch-optimized variant only when the user’s hand ap-
proaches, and thus be left unaltered for mouse input. We
propose and study the benefit of this idea by introducing
two new techniques: TouchZoom (Figure 1) and TouchCuts.
Both techniques utilize target expansion as a basic UI en-
hancement to facilitate finger input on interfaces that host
many small and tiled icons, such as ribbons. Both tech-
niques only activate when a finger approaches, and there-
fore do not affect traditional cursor input.

In the following sections, we first perform a study investi-
gating the benefits of touch input in a laptop configuration.
Motivated by the high error rates found for small targets,
we describe our new techniques, TouchCuts, a single target
expansion technique, and TouchZoom, a multiple target
expansion technique. A controlled study shows that our
techniques improve performance in comparison to both the
computer mouse and a baseline touch-based target acquisi-
tion technique, Shift [25]. We conclude by discussing other
application scenarios that our techniques could support.

Figure 1 - TouchZoom. (a) The ribbon expands at the intersec-
tion of a finger’s motion vector and the top edge of the ribbon.
(b) After the expansion, finger movement is adjusted to ac-
quire the new position of the highlighted goal target icon.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.
Copyright 2011 ACM 978-1-4503-0267-8/11/05....$10.00.

CHI 2011 • Session: Touch 3: Sensing May 7–12, 2011 • Vancouver, BC, Canada

2585

RELATED WORK

Selection with Touch
Having finger input available in tandem with the mouse in a
shared UI environment allows these devices to complement
each other, thus providing numerous benefits. Researchers
have found that the finger can be faster than a mouse when
selecting targets greater than 3.2mm [24]. Nevertheless
users can perform better with a mouse than with a finger in
tasks requiring fine movement and selection [15] as also
confirmed by Forlines et al. [7].

Clearly, the size of a UI component will affect touch input.
Established guidelines suggest that the target size for touch
should be greater than 10mm [19]. However, smaller icons
(e.g. 5mm) are still common in most of the current user
interfaces. Finger based interactions also suffer from occlu-
sion problems. Proposed solutions to alleviate this concern
include the Offset Cursor [20], that relocates the cursor 0.5”
above the finger; DTMouse, which presents the cursor be-
tween two fingers [6], Shift, which dynamically places a
copy of the occluded area in a shifted callout [25], and
Dual-Finger-Selections, which supports precise selections
on multitouch displays [1].

In Shift, users slide the finger contact on the display, to fine
tune a crosshair cursor position and select the target using a
take-off gesture. Shift’s callout was designed to be trig-
gered only when necessary. However, in most cases, the
selection can be separated into 2 steps – invoking the call-
out and adjusting the cursor to make a selection. Escape
[26], allows selecting small and tiled targets by assigning a
unique directional gesture for selection. An experimental
study showed that Escape could perform 30% faster than
Shift on targets smaller than 5mm while still maintaining a
similar error rate. Similarly, Sliding widgets [17] require
users to slide on a target in a particular direction for selec-
tion. These two techniques require changing the traditional
UIs to visualize directional clues, which may not be suitable
for an interface also shared with traditional cursor input.

Mouse-based Target Expansion
Target expansion techniques for the mouse have also been
widely researched [3, 13, 27]. These techniques have been
found helpful for selecting a single target, by expanding the
target as the cursor approaches. However, in real-world
situations, targets are often laid out in a tiled arrangement.
The existing approaches for expanding tiled targets include
expanding a single item that is predicted to be the desired
target [27, 14] or expanding the predicted item as well as its
immediate neighbors [23]. Obviously, one of the limitations
of these methods is the lack of guaranteeing that the desired
target will be magnified due to prediction errors. Note that
when using a mouse the user can still make a precise selec-
tion on an unexpanded target [23]. However with finger
input, the user’s intended target may be too difficult to se-
lect if it is not expanded.

Zhai et al. [27] suggest that if space permits it, all the tar-
gets in the view should be expanded. However, it is typical
for ribbons or toolbars to span the entire display space, so
there would not be room to expand all targets. An alterna-
tive would be to use some form of fisheye distortion [2], but
these have been shown to be harmful to pointing and selec-
tion tasks [9, 27].

Touch-Based Target Expansion
Despite its popularity in the target acquisition literature,
target expansion has not been widely explored for touch.
Olwal et al. [18] proposed using a rubbing gesture or a sec-
ond finger tap to ‘zoom into’ a small target before attempt-
ing to make a selection. Similarly, Benko et al. [1]’s two-
handed techniques also attempt to enlarge the target to ease
selection. These techniques have been proven helpful for
selecting small targets using bare fingers. However, they
have a common limitation that users need to explicitly indi-
cate a target of interest and then expand it manually.

The more traditional, automatic target expansion, has not
been explored for touch. This is likely because target ex-
pansion relies on tracking the approach of the cursor, or in
this case, the finger. This information is typically not avail-
able, as most touch devices today do not sense hover infor-
mation. However, advanced sensing technology has pushed
the detection of finger motion at a practical height above
the surface [11, 22]. Major manufacturers (Mitsubishi, Pri-
mesense, and Cypress) have already announced such types
of commercial systems or prototypes [5, 16, 21]. All of
these have made target expansion feasible on small touch-
screen devices, e.g. laptops.

In summary, target expansion for touch has not been inves-
tigated thoroughly, and is promising in that it may improve
touch selection without impacting the user interface for
traditional cursor input. However, even in the mouse-based
research, there are challenges surrounding target expansion
yet to be addressed, such as how to apply expansion in
tiled-target environments. In the next section, we first dem-
onstrate the added value of finger input in a key-
board/mouse setting. We then present our designs and stud-
ies of our techniques.

EXPERIMENT 1: EVLAUATION OF TOUCH
We believe touch input could be particular useful in a lap-
top configuration, since a mouse may not be available, and
the hands, when in a resting state on the keyboard are al-
ready quite close to the display. However, despite the pre-
valence of touch-based laptops, the efficiency of using
touch on such devices has not been investigated and is thus
not fully understood. To better understand if and when tar-
get expansion techniques would be useful, we first study
traditional target acquisition in a laptop configuration.
While previous work has compared touch to other forms of
input [7, 15, 24], here, on screen target acquisition is
unique, since the hand would be moving from a horizontal
plane of the keyboard to a vertical plane of the display. In

CHI 2011 • Session: Touch 3: Sensing May 7–12, 2011 • Vancouver, BC, Canada

2586

addition, strictly following the KLM GOMS model, we
would predict that such a task would require homing time
(switching to the touch input device) and pointing time (ac-
quiring the target). We postulate that one of the primary
benefits of using touch for target selection tasks is allowing
pointing and homing to take place in parallel. We are un-
aware of any investigation into this issue.

Motivated to answer these open questions, the goal of this
experiment is to evaluate the performance of touch versus a
mouse and touchpad in a task involving the use of a point-
ing device in conjunction with a keyboard.

Apparatus
Our study was conducted on a Dell SX2210 21.5” touch-
screen monitor, as it provided more accurate touch input
then current touch-enabled laptops. The display was used in
conjunction with a standard desktop keyboard. To simulate
a laptop configuration, we lowered the height of the touch-
screen so that the button of the display is 4 cm above the
keyboard, which is about the same distance that can be
found on a Dell TouchSmart TX2 tablet PC. The display
was tilted to a comfortable viewing angle (13° to the verti-
cal plane). A USB touchpad (97 × 78 mm) from Ergonomic
was placed below the space bar of the keyboard, and was
raised to the same height as the keyboard (Figure 2).

Figure 2 – Hardware setup for Experiment 1.

Participants
Twelve paid participants (7 males and 5 females) between
the ages of 21 and 56 participated in this study. All partici-
pants were right-handed. They were all familiar with a
computer mouse and touchpad, and had previous experi-
ence with mobile touch-screen devices.

Task and procedure
The task required participants to click a key on the key-
board and then using the same hand select a square target of
various sizes in a random location on the screen. This task
is analogous to that frequently employed by users of text
editing programs, where the main task is typing on a key-
board but requires users to switch to a mouse or a touchpad
to click an icon or other on-screen widget. The right hand
was used for the mouse and touchpad. The left hand (non-
dominant for all participants) was used for touch, since we
felt testing touch with the dominant hand may be biased,
since in some cases users may want to use the non-

dominant hand (for example, if a target is on the left side, or
if their right hand is on the mouse). Participants were told to
only use their index finger during the touch conditions.

In the mouse and touchpad conditions, participants were
asked to position a cursor inside a 0.5×0.5cm ‘Start’ square
prior to the start of a trial. A trial started after participants
pressed a keyboard key and finished after a target was suc-
cessfully selected. Ideally, we would have like to use the
‘F’ key when using touch and the ‘J’ key when using the
mouse and touchpad, as these are the typical resting keys
for the left and right hands respectively. However, we used
the ‘R’ key for touch and the ‘\’ key for mouse, and the ‘J’
key for touchpad since the distance between these keys and
their respective input devices more closely matched the
distances on a Dell TouchSmart TX2 tablet PC.

Participants were asked to finish the task as fast and as ac-
curately as possible. They were encouraged to take breaks
during the experiment, which lasted about 40 minutes.

Design
The experiment employed a 3×4×3 within-subject factorial
design. The independent variables were Pointing Device
(Finger, Mouse, and Touchpad); Target Distance (18, 24,
30, and 36cm); and Target Size (0.5, 1, and 2cm).

The size of the target was chosen to be close to the size of
the icons in real-world applications. For instance, 0.5cm is
approximately the same size as the Bold button in Micro-
soft Word. Similarly, 1cm is approximately the same size as
the Paste button. Target distance was measured from the
center of the goal target to the center of the ‘Start’ position
in the mouse and touchpad conditions. Distance was meas-
ured from the center of the ‘R’ key to the center of the goal
target in the touch condition. Target locations were the
same for all conditions. The ‘Start’ square was repositioned
(in the mouse and touchpad conditions) according to the
target position to ensure it satisfied the distance condition.

Windows cursor acceleration was turned on to facilitate
pointing by using the cursor. If the user missed the target,
they had to click again until successful. In each trial, par-
ticipants performed tasks in one of each Pointing Device ×
Target Distance × Target Size combination. The experiment
consisted of 5 blocks, each consisting of 3 repetitions of
trials. The first block was used as practice trails, thus the
data was not used in analysis. The Pointing Device was
counter balanced among participants. The Target Distance
and Target Size were randomized among trials.

Results and discussion
Dependent measures included the number of errors and the
average task completion time. This data was analyzed using
Repeated-measures ANOVA and Bonferroni corrections for
pair-wise comparisons.

CHI 2011 • Session: Touch 3: Sensing May 7–12, 2011 • Vancouver, BC, Canada

2587

Task completion Time
ANOVA yielded a significant effect of Pointing Device
(F2,22 = 14.43, p < 0.001), Target Distance (F3,33 = 3.61, p
< 0.05), and Target Size (F2,22 = 101.72, p < 0.001). There
is also significant interaction effects on Input Device × Tar-
get Distance (F6,66 = 8.68, p < 0.001), Input Device × Tar-
get Width (F4,44 = 29.07, p < 0.001), and Target Distance ×
Target Width (F6,66 = 5.53, p < 0.001). The interaction ef-
fects were mainly caused by the poor performance of finger
touch on the target of 0.5cm (see Figure 3).

Overall (including trials with errors), the performance of
finger (1528ms) was significantly faster than mouse
(1639ms) (p < 0.05), which was significantly faster than
touchpad (2242ms) (p < 0.001). As expected target size has
more impact on finger than mouse or touchpad (Figure 3
left). Participants spent more time selecting the smallest
target using finger than using mouse or touchpad.

Figure 3 – Task time and error rate shown by Technique and
Target Size. (Error Bars show 95% CI in all figures)

Number of errors
ANOVA yielded a significant effect of Input Device (F2,22
= 57.46, p < 0.001), Target Distance (F3,33 = 7.68, p <
0.05), and Target Size (F2,22 = 202.36, p < 0.001). We also
found significant interaction effects on Input Device × Tar-
get Distance (F6,66 = 4.18, p = 0.001) and Input Device ×
Target Width (F4,44 = 225.43, p < 0.001).

Overall, touch made significantly more errors (23%) than
touchpad (7%) (p < 0.001), which made significantly more
errors than mouse (2%) (p < 0.001). Figure 3 right shows
that participants made closed to 60% errors using touch on
target size 0.5cm but made less errors than mouse on target
of size 2cm.

Fitts’ Law Analysis
To perform a Fitts’ Law analysis, we removed all trials in
which errors occurred. Linear regression tests indicated that
the task highly conformed to Fitts’ Law, for all three condi-
tions, showing that touch is constantly faster than mouse or
touchpad across all index of difficulties (Figure 4). It can be
seen that the main difference is due to the ‘a’ constant,
which is typically reaction time, but for this study, encom-
passes the homing time as well. This is an interesting re-
sults, as it shows that touch does allow homing and pointing
to be carried out concurrently. To repeat the analysis with-
out homing time, we subtracted the elapsed time until the
cursor began to move in the mouse and touchpad condi-

tions. After doing so, we still see a 16% advantage of touch
over the mouse (p < 0.001), and a 35% advantage over the
touchpad (p < 0.001).

Summary
The study demonstrates certain benefits of using touch in a
routine task, which requires users to switch from a key-
board to a pointing device prior to start acquiring a target.
For targets that are at least 1cm large, touch was 36% faster
than the mouse and 52% faster than the touchpad. Even
without the homing time, touch was 8% faster than the
mouse and 35% faster than the touchpad. However, as ex-
pected, the performance of touch decreased significantly
with small targets. In particular, our study shows that touch
completely fails for target sizes of 0.5×0.5cm. Unfortu-
nately, many graphical user interfaces contain targets of this
size, so further considerations must be made for touch to be
practical on desktop applications.

Figure 4 –Task completion time with homing time (left) and
without homing time (right) by the index of difficulty.

EXPANDING TARGET TECHNIQUES FOR TOUCH
The results of Experiment 1 provide an important lesson: if
targets are big enough, using touch to acquire them can
have significant advantages. However, in desktop applica-
tions, increasing the size of the targets is not practical, as it
would diminish the experience for users who never intend
to use touch. It is also impractical to expect traditional leg-
acy applications to be rewritten specifically for touch. In-
stead, we propose that UI components transition to be
optimized for touch only when the user intends to use
touch. Already, numerous technologies exist to detect the
proximity of fingers [5, 11, 16, 21, 22]. Expanding the tar-
gets as a finger approaches the screen could be an efficient
mechanism to overcome the challenges encountered in Ex-
periment 1. In this section, we initiate the investigation of
expanding targets for touch, through the design of two
techniques: TouchCuts and TouchZoom.

TouchCuts
TouchCuts are a basic implementation of expanding targets
for touch, where only certain targets within a UI palette,
such as a toolbar or ribbon, expand when the finger ap-
proaches it. Only this subset of targets is accessible through
touch, as surrounding targets may become occluded by
them. As such, TouchCuts are akin to keyboard shortcuts,
providing efficient access to some of an application’s com-
mands. However, they are not exhaustive or do not provide

CHI 2011 • Session: Touch 3: Sensing May 7–12, 2011 • Vancouver, BC, Canada

2588

a replacement for other command access methods. Touch-
Cuts use a visual gloss overlay, to indicate to the users
which of the targets are accessible through touch. We also
implemented a simple method to allow users to customize
which targets are TouchCuts. The user taps close to a de-
sired target using their finger, and drags the mouse to spec-
ify the size of a TouchCut (Figure 5). Similarly, tapping on
a TouchCut, followed by a mouse click on the enlarged
button can remove it. Using a transparent overlay window,
we were able to prototype an application independent im-
plementation of TouchCuts, that could be used to customize
and access TouchCuts on any windows program.

Figure 5 –Left: define a TouchCuts. Right: TouchCuts expands
when a finger approaches.

The advantage of this technique is that it is a single target
expansion, so no target prediction is required, and no tar-
gets are displaced. The limitation is that it cannot provide
access to every target within a tool palette. Therefore,
TouchCuts are most suitable for functions that are used fre-
quently. In the case when a function is not available
through TouchCuts, the user will have to use a mouse or re-
customize the TouchCuts.

TouchZoom
We also wanted to develop a technique that could provide
full access to a palette’s icons. We focus our design on the
ribbon, because it has become a common UI component for
desktop applications, but the technique would work for any
horizontal tool palette. Our approach is to magnify the en-
tire ribbon, with a center of expansion at a predicted end-
point, similar to what Zhai et al. previously proposed [27].
This ensures expansion of the desired target, even if there is
an error in the endpoint prediction. Thus, unlike TouchCuts,
the TouchZoom makes every target within the ribbon acces-
sible through touch. One concern, which will require inves-
tigation, is that the goal target may become offset from its
original location, and in the worst case, the target may be
displaced off-screen.

For prediction, a 2D motion vector is generated based on
the projection of the finger movement on the screen. We
use only the last 2 points of the sample to estimate the in-
tended vector, as it tended to perform better than other re-
gression algorithms we implemented. The intersection of
the motion vector and the top of the ribbon determines the
center of expansion (CE), and the ribbon expands once the
index finger crosses an expansion point in a sufficient
speed. If CE falls outside of the ribbon, it will be placed on
the corresponding ribbon endpoint. The CE was fixed at the
top of the ribbon in all cases. When the index finger
crosses a certain distance threshold, the CE is calculated
and the resulting ribbon expansion occurs (Figure 1). When
the prediction is wrong, the goal target will be offset from

its original location at a magnitude proportional to the pre-
diction error. To recover from an off-screen error, users can
either re-launch the expansion by moving below the dis-
tance threshold, or scrub the ribbon with a touch gesture to
pan the target back into view.

We anticipated that the accuracy of the prediction would be
dependent on the time when the ribbon expansion is trig-
gered. Expanding late might lead to better prediction since
the finger would be closer to its goal. However, considering
that no prediction algorithm works perfectly [12, 13, 14], a
user will need a certain amount of time to perceive target
displacement, and to adjust his/her finger motion accord-
ingly. Thus, it may be preferable to expand the ribbon early.

Another design option we considered is to group sets of
ribbon icons together, and to set the CE to the center of the
predicted group (For groups adjacent to the screen edge, the
CE would be set to the edge) (Figure 6). This would allow a
user to aim his/her finger movement at the group containing
the desired icon, instead of aiming at a desired icon itself.
Having this larger initial target would minimize prediction
errors, and, once expanded, the user could adjust his/her
finger movement to make the final selection. However, the
target offset would be proportional to the distance between
the target and the center of its group.

Figure 6 – (a) The ribbon expands at the center of a group of
icons shown in the blue outline. (b) User adjusts finger move-
ment to the new position of the highlighted target icon.

In the following section, we study the relevant parameters
for our TouchZoom design. In Experiment 3 we will com-
pare TouchZoom to TouchCuts and two baseline techniques.

EXPERIMENT 2: EVALUATION OF TOUCHZOOM
In this study, we were interested in measuring the impact of
the pertinent design parameters for TouchZoom, to optimize
the techniques efficiency. The parameters we investigated
were group size, target position, and expansion point.

Apparatus
The hardware setup was the same as in Experiment 1. In
addition, we used four OptiTrack motion capture cameras
to capture the off-screen movement of the user’s index fin-
ger. The cameras have 100Hz frame rates and millimeter
accuracy. We put 3 reflective markers on a user’s hand
(Figure 7). The marker on the user’s index finger was tilted
to the right side to avoid occlusion. This should be consid-

CHI 2011 • Session: Touch 3: Sensing May 7–12, 2011 • Vancouver, BC, Canada

2589

ered enabling technology only, simulating the more practi-
cal technologies discussed earlier.

Figure 7 – Reflective marker placement.

Participants
Ten paid participants (5 males and 5 females) between the
ages of 20 and 34 participated in this study. All participants
were right-handed. They were all familiar with graphical
user interfaces, and had previous experience with mobile
touch-screen devices.

Task and Procedure
The task required participants to use their left index finger
to press the ‘O’ key on a keyboard and then select a target
button in our abstracted ribbon using the same finger. Upon
pressing the ‘O’, the participants were instructed to select
the target as fast and as accurately as possible. A trial
started after the ‘O’ was pressed and finished after a target
was successfully selected. Participants were encouraged to
take breaks during the experiment. The entire experiment
lasted about 45 minutes.

Design
The ribbon was 1.5cm high and 45cm width, and was ren-
dered near the top of the screen in a window which has the
same width as the ribbon and the same height as the screen.
A 100ms animation was used for the Ribbon expansion. In
each trial, a 0.5×0.5cm goal target was shown in the ribbon.
An expansion magnification level of 3x, which was based on
Experiment 1, was used to reduce the chance of errors. The
ribbon had 90 icons across, and 3 icons in each column. The
‘O’ key was centered with the ribbon.

The experiment employed a 5×2×2×9 within-subject factorial
design. The independent variables are Group Size (1, 3, 9, 15,
and 30); Expansion Point (Late and Early); Target Y Position
(Up and Down), and Target X Position (1 to 9).

Group Size (GS) – Group size indicates the number of icons
in a row that a group has. We chose to explore a range of
groups size, that evenly divided into the 90 targets across: 1,
3, 9, 15, and 30.

Groups were visualized using vertical bars (Figure 8). For
targets close to the screen edges, the participants were shown
that by biasing their acquisition movement towards the edge
of the screen, off-screen errors could be minimized.

Expansion Point (EP) – The distance to the goal target was
measured as the distance from the ‘O’ key to the target in 3D
space. Expansion Point took on the values 90% and 40%,
representing the amount of distance travelled to the targets,
before the expansion occurred. We chose 40% as a minimum
value because our informal test showed that the distances
below 40% could significantly impair the prediction. The

value of 90% was chosen as it has been suggested by previ-
ous expanding target techniques [13].

Target Y Position (TY) –In the Up condition, the target was
placed on the top row. In the Down condition, the target was
placed in the bottom row.

Target X Position (TX) – In each trial, the target was placed
in one of 9 different horizontal positions across the ribbon
(see Figure 8). In addition to the 9 absolute positions, we
were also interested in investigating the effects of 3 relative
positions (left, middle, and right) of a target within a group of
the ribbon. To ensure each group size had exactly 3 targets in
each of these relative positions, we slightly shifted some of
the X positions by ±1 icon

Figure 8 – Illustration of target positions (red dots) within each
of the 5 group sizes. The gradient effect was added to provide
spatial grounding. Blue bars indicate group borders.

The experiment consisted of 3 blocks, each consisting of 1
trial for each combination of Group Size (GS) × Expansion
Point (EP) × Target Y Position (TY) × Target X Position
(TX). The order of Group Size was randomized between sub-
jects. Within each group size, Expansion Point was random-
ized. Finally, target position was randomized in each Group
Size × Expansion Point pair.

Dependent measures included the number of off-screen er-
rors, the number of selection errors, and the average task
completion time. An off-screen error was recorded when a
target was pushed into off-screen space. A selection error
was recorded when a participant missed a target. Task com-
pletion time was recorded as the time elapsed from the ‘O’
being pressed to a successful selection on the target.

Results and Discussion
The results were analyzed using Repeated-measures
ANOVA and Bonferroni corrections for pair-wise compari-
sons. Before the analysis, we checked the ordering effects of
group size on all the dependent measures, and found no sig-
nificant effects.

Task completion time
ANOVA yielded a significant effect of TX (F8,72 = 13.65, p <
0.001). Interestingly, we found no significant effect of GS
(F4,36 = 1.16, p = 0.35), EP (F1,9 = 0.9, p = 0.37), and TY
(F1,9 = 0.67, p = 0.44). There were significant interaction
effects on GS × TX (F32, 288 = 7.17, p < 0.001), and TY × EP
(F1,9 = 6.1, p < 0.05).

Post-hoc analysis showed that task time decreased signifi-
cantly towards the center of the ribbon (Figure 9 left). In par-

CHI 2011 • Session: Touch 3: Sensing May 7–12, 2011 • Vancouver, BC, Canada

2590

ticular, task time at TX 1, 7, 8, and 9 were significantly
longer than at 3, 4, 5, 6 (all p < 0.05).

Task completion time without off-screen error
There was a significant difference between trials when off-
screen errors occurred (2700ms s.e. 119.74) and when off-
screen errors did not occur (1094ms s.e. 20.82) (F1,9 =
172.89, p < 0.001).

After removing these trials (7%), we found significant effects
of TX (F8,72 = 12.35, p < 0.001), EP (F1,9 = 47.13, p <
0.001), and TY (F1,9 = 14.22, p < 0.005). There was a weak
effect of GS (F4,36 = 2.88, p = 0.04), but pair-wise compari-
son showed no significant difference between group sizes.
There was a significant interaction effect on GS × TY (F4,36 =
0.67, p < 0.05). Figure 9 (left) shows the task time with and
without off-screen errors.

Figure 9 – Left: Task time shown by target position. Right: Off-
screen rate shown by target position and group size.

The participants performed the task faster when the ribbon
was expanded at 40% distance (1038ms s.e. 25.5ms) than
when it was expanded at 90% distance (1147ms, s.e. 18.8).
This is because the early expansion allowed users to adjust
their initial movement path earlier, instead of following two
separate acquisition paths (one for the group, and then one
for the goal target position resulting from the expansion).

We also analyzed the effect of the relative position of the
targets within their groups, excluding group size 1. We found
a significant effect of target position (F1,18 = 14.13, p <
0.001). Targets on the left (1116ms s.e. 24.23ms) and right
side (1133ms s.e. 28.62ms) of a group took significantly
longer than those on the center of a group (1046ms s.e.
23.68ms). This explains why we found only weak effect of
group size. Although big groups (e.g. 15 and 30) have better
prediction, their larger target displacements increase acquisi-
tion times.

Off-screen Errors
ANOVA yielded a significant effect of TX (F8,72 = 22.72, p <
0.001), GS (F4,36 = 10.68, p < 0.001), and EP (F1,9 = 2.12, p
< 0.05). There was no significant effect of TY (F1,9 = 0.67, p
= 0.44). There were also a significant interaction effect on EP
× TX (F8,72 = 2.58, p < 0.05).

The participants made more off-screen errors when the rib-
bon was expanded at 40% distance (0.09 s.e. 0.02) than when
it was expanded at 90% distance (0.05 s.e. 0.01).

Figure 9 (right) shows that most off-screen errors were made
on the targets on the left and right edge of the ribbon (TX 1
and 9). Post-hoc analysis showed that big groups (e.g. 15 and
30) introduced significantly less off-screen errors than the
smaller groups (p < 0.05). It also shows that large group sizes
can also cause off-screen errors. For instance, the participants
made significantly more off-screen errors on the targets at
position TX 2 and 8 with group size 15 than with other group
sizes (p < 0.05). Going back to Figure 8 we see that these two
target positions are at the edge of their respective groups. If a
participant aimed at the target instead of the group, there was
a chance the wrong group would be predicted, pushing the
desired group off-screen.

Selection Error
Overall, the average selection error rate was 6.2%. No main
effects or interaction effects were found on error rate.

HYBRID INTERPOLATION FOR TOUCHZOOM
Experiment 2 shows that reducing prediction error by in-
creasing the size of the group does not improve the efficiency
of the task, because of the larger target offsets. We also found
that off-screen errors had an overwhelming effect on overall
completion time. In this section we discuss a redesign of
TouchZoom to prevent off-screen errors.

Figure 10 - Illustration of the left side of a ribbon with buffer
zone. Red arrows associate the center of expansion for each of
the icons in the 3 zones.

As suggested by Experiment 2, larger group sizes are effec-
tive in preventing off-screen errors on targets close to the left
and right edges of the screen but can be error prone with tar-
gets closer to the center. The opposite was true for small
group sizes. To leverage the benefits of both designs, we
implemented a hybrid technique which uses a group size of
15 on the two edges, and individual ungrouped targets in
between. To further reduce the chance of off-screen errors,
we use a buffer zone between the group of 15 targets, and the
center zone. The buffer zone consists of 10 individual targets,
but their CE is based on a linear interpolation of the screen
edge and the CE of the first target in the center zone (Figure
10). Having this buffer zone minimizes the impact of a pre-
diction error when aiming at a target in the edge group. The
exact sizes of the edge groups and buffer zones were chosen
based on prediction error rates from Experiment 2, in an ef-
fort to minimize off-screen targets as much as possible.

EXPERIMENT 3
We have described two expanding target techniques for
touch, TouchCuts, and TouchZoom. In study 2 we performed
an evaluation of TouchZoom, which resulted in a resigned
hybrid interpolation. In this study, we measured the perform-

CHI 2011 • Session: Touch 3: Sensing May 7–12, 2011 • Vancouver, BC, Canada

2591

ance of the redesigned TouchZoom and TouchCuts, in com-
parison to a baseline input device – the Mouse and a baseline
touch technique – Shift.

While numerous techniques exist for aiding touch-based tar-
get acquisition, we used Shift as a baseline, since it does not
have any visual impact on the user interface, unless the tech-
nique is used. Following previous guidelines, our implemen-
tation placed the callout window (16mm in diameter) 22mm
on the right side of the initial touch point to facilitate the se-
lection on a ribbon by using the left hand. The callout was
placed on the opposite side if the touch point was within
30mm from the right end of the ribbon. We set the escalation
time to zero so that the callout popped up as soon as a user
touches the screen.

Apparatus
We used the same apparatus as in Experiment 2. Reflective
markers were used in the target expansion techniques.

Participants
Twelve paid participants (6 males and 6 females) between
the ages of 18 and 34 participated in this study. None of them
had participated in the Experiment 1 and 2. All participants
were right-handed. They were all familiar with graphical user
interfaces. All but one had previous experience with mobile
touch-screen devices.

Task and procedure
The participants were asked to press a keyboard key (‘\’ for
the cursor and ‘O’ for the others), and to select a target
(0.5×0.5cm) in a ribbon by using one of the 4 techniques.
The task was required to be carried out by using the left hand
for all the techniques except for the mouse. In the mouse
condition, prior to pressing ‘\’, the participants were asked to
place the cursor in a start square (0.5×0.5cm) rendered in the
center of the workspace. In the TouchZoom condition, we
only showed the border between the edge groups and the
buffer zone. The buffer zone and the groups of size 1 were
invisible to the users. As in Experiment 2, for targets close to
the screen edges, the participants were shown that by biasing
their acquisition movement towards the edge of the screen,
off-screen errors could be minimized. For both target expan-
sion techniques, the expansion point was set to 60%.

Prior to the study, the participants were given a 3 minute
training section for each technique. They were encouraged to
take breaks during the experiment. The entire experiment
lasted about 40 minutes. Participants filled out a post experi-
ment questionnaire upon completion.

Design
The experiment employed a 4×3 within-subject factorial de-
sign. The independent variables are Technique (TouchZoom,
TouchCuts, Shift, and Mouse Cursor) and Target zone (Edge
Group, Buffer Zone and Center Zone).

In each trial, participants performed tasks in one of each
Technique × Target zone combination. The experiment con-
sisted of 3 blocks, each consisting of 30 trials, 10 for each

target zone. In each trial, the position of the target was ran-
domized for each target zone. The target was evenly distrib-
uted to the left and right side as well as the 3 rows of the rib-
bon. The order of the presentation of the techniques was
counter balanced between participants.

Results
The data was analyzed using Repeated-measures ANOVA
and Bonferroni corrections for pair-wise comparisons.

Task completion time
ANOVA yielded a significant effect of Technique (F3,33 =
245.36, p < 0.001) and Target Zone (F2,22 = 15.82, p <
0.001). There was a significant interaction effect on Input
Technique × Target Zone (F6,66 = 4.53, p = 0.001). Figure 11
left shows average time for Target Zone by Technique.

Performance with TouchCuts (768ms) was faster than
TouchZoom (1130ms), which was faster than Mouse cursor
(1280ms) and Shift (1883ms). Post-hoc analysis showed sig-
nificant differences between all pairs of techniques. It is not
surprising that TouchCuts performed the best overall, since it
provides target expansion without any target offset. The dif-
ference between TouchCuts and TouchZoom (362 ms) is the
added cost of the target offsets that TouchZoom introduces. It
is worth reiterating that TouchCuts is slightly different from
the other techniques, in that it only provides access to a pre-
determined subset of the ribbon icons.

What was more surprising was the difference between
TouchZoom and Shift. Both techniques require initial and
adjustment pointing phases. We believe that TouchZoom
performed better because with Shift the two phases are ex-
plicitly sequential, while with the TouchZoom technique, the
adjustment phase can be predicted and integrated into the end
of the initial phase. In addition, Shift does not increase the
motor activation size of the target.

Performance in the Edge group (1306ms) was slightly slower
than Center zone (1249ms) and Buffer zone (1241ms) (p =
0.001), while no significant difference was found between
Buffer zone and Center zone (p = 1). However, we found no
significant effect of Target Zone (F2,22 = 1.2, p = 0.321) in
the TouchZoom condition, indicating that users can perform
equally well across the ribbon.

Figure 11 – Left: average task time shown for each target zone
by technique. Right: off-screen rate shown by group sizes.
Selection Error
For selection errors, there was a significant effect of Tech-
nique (F3,33 = 8.18, p < 0.001), but no significant effect of
Target Zone (F2,22 = 0.03, p = 0.97) or interaction effects.

CHI 2011 • Session: Touch 3: Sensing May 7–12, 2011 • Vancouver, BC, Canada

2592

TouchCuts had significantly less errors (0.02 s.e. 0.01) than
the TouchZoom (0.11 s.e. 0.025), Mouse cursor (0.07 s.e.
0.01), and Shift (0.08 s.e. 0.02). We found no significant dif-
ference between TouchZoom, Mouse cursor, and Shift.

In the TouchZoom condition, we also found no significant
effect of Target zone (F2,22 = 0.07, p = 0.93). This again con-
firms that users can perform equally well across the ribbon.
Average off-screen error rate for the TouchZoom condition
was 0.014(s.e. 0.006). We also found no significant effect of
Target zone on off-screen error (F2,22 = 0.836, p = 0.45).
This was an encouraging result, demonstrating that the hy-
brid interpolation we designed based on the results of Ex-
periment 2 effectively minimized the chance of off-screen
errors, in comparison to the static group sizes (shown in Fig-
ure 11 right). Application designers could color code ribbon
or toolbar icons that indicate the zones utilized by the hybrid
interpolation.

Subjective Preference
A short questionnaire was administered after the study. All
scores reported below are based on a 7-point Likert scale,
with 7 indicating highest preference.

The participants gave an average of 6.7 to TouchCuts and 5.2
to TouchZoom as the two most easy to use techniques.
Whereas, Shift and Mouse cursor received an average of 3.7
and 4.6 respectively. Additionally, the participants gave an
average of 6.9 to TouchCuts and 5.3 to TouchZoom as the
two most enjoyable techniques. Shift and Mouse cursor re-
ceived an average of 3.9 and 4 respectively. The mouse was
rated lower because of both the switching between the key-
board and mouse, and also the small target sizes. Shift was
rated lower because of the longer acquisition times. In addi-
tion, numerous users reported Shift as being fatiguing be-
cause it required careful movements of the finger while it
was positioned on the screen. When shown a mockup of our
techniques in an actual user interface (Microsof PowerPoint),
feedback from users was gerneally encouraging. Overall,
83%, 67%, 67%, and 33% of all our participants expressed
the desire to use TouchCuts, TouchZoom, Mouse, and Shift in
the future.

DISCUSSION AND FUTURE WORK
In comparison to a mouse, TouchCuts reduced selection
times by 40%, but does not provide access to every UI ele-
ment. It will thus be important to study adoption and per-
formance of TouchCuts in realistic settings, given the poten-
tial confusion caused by only some functionality being acces-
sible. Our belief is that this may not be problematic, since
traditional hotkeys are similarly only available and used for a
subset of commands.

In contrast, TouchZoom gives the user access to an entire
ribbon, and reduced selection times by 12% in comparison to
a mouse. We also know from Experiment 1, that if the user
does not have a mouse attached to their laptop, and has to use
a touchpad, the levels of improvement would be even more
substantial.

It is worth pointing out that we are not trying to replace the
mouse. To the contrary, we made our design decisions care-
fully so that traditional cursor interaction would be unaf-
fected. Note that our techniques are particularly beneficial
when frequent mouse-keyboard switching is necessary. If the
user is already performing mouse interactions close to the top
of the screen, it may make more sense to acquire ribbon icons
with the mouse. However, if the user is performing cursor
intensive interactions, the non-dominant hand could be used
to access UI elements in parallel, saving a round trip of the
cursor (for example, changing colors while drawing). While
our studies did show that touch can be effective with the non-
dominant hand, future studies could explore this form of par-
allel, bimanual input.

Although the differences were not significant from the mouse
or Shift, TouchZoom did exhibit a higher error rate (11%) in
Experiment 3 than we expected. Our observations indicated
that some of these errors were caused by users accidently
touching the screen at the end of their first ballistic move-
ments, just after the ribbon expanded. Since this error rate
was higher than in Experiment 2 (6.2%), one potential expla-
nation is that there were detrimental transfer effects from the
Shift and TouchCuts techniques, where participants could
touch the screen imprecisely after an initial ballistic move-
ment.

Our work focused on a laptop configuration for three rea-
sons: Most major manufactures have touch-enabled laptops;
the hands are positioned close to the display; a mouse may
not be available, and the track-pad is inefficient for pointing
tasks. However, our work could generalize to desktop set-
tings as well, but fatigue issues must be considered, since
further reaching may be required. In addition, our work as-
sumed proximity sensing was available, and for TouchZoom,
the control being zoomed is horizontal. In the next section,
we discuss several design variations to demonstrate how our
techniques could generalize to other scenarios.

Further Design Alternatives
Functionality reduction controls – inspired by TouchCuts, we
introduce functionality reduction controls to facilitate finger
input. A functionality reduction control transitions to a preset
touch-optimized component, that has the same screen foot-
print, but offers a subset of the functionality of its cursor-
based counterpart. For example, we implemented a function-
ality reduction color palette, which replaces the color picker
with 12 large color icons when the finger approaches. When
users know they want to select one of these main colors, they
can do so quickly with the non-dominant hand, saving a cur-
sor round-trip.

Multi-level expansion – In this technique, the ribbon has 2
expansion points: 50% and 80%. It expands half-way if the
finger crosses the 50% distance, and fully expands after the
finger crosses the 80% distance. No discontinuity will be
seen if the finger crosses the 2 expansion point at a sufficient
speed. This technique was mainly designed to help users
learn to use the TouchZoom technique.

CHI 2011 • Session: Touch 3: Sensing May 7–12, 2011 • Vancouver, BC, Canada

2593

Depth-based expansion – Depth-based expansion triggers the
expansion when the finger is within a threshold distance to
the screen, with the center of expansion equal to the on-
screen projection of the current finger position. The finger is
first positioned directly above the target of interest, and then
the finger moves towards the screen to trigger the expansion.
This could be particularly useful for implementing Touch-
Zoom on vertical tool palettes, since endpoint prediction
would be difficult. In addition, it could be useful on systems
with a small proximity sensing range.

Touch activated expansion – To demonstrate the use of
TouchCuts without proximity sensing, we delay expansion
until the finger actually makes contact with the screen. This
could also be used for functionality reduction controls, if
the touch-optimized layout is predictable.

CONCLUSION
We have presented 3 studies to motivate and evaluate our
design of TouchCuts and TouchZoom. We demonstrated
that finger input has the benefit of allowing homing and
pointing to be carried out concurrently, but suffers from
extremely high error rates on icons in existing legacy appli-
cations. To support touch in such applications, our tech-
niques trigger a transition of the user interface only when a
finger approaches. Thus, controls can be effectively shared
by both a traditional cursor and touch. Our study showed
positive benefits of both techniques. Furthermore, the re-
sults of our studies show the hybrid interpolation used for
TouchZoom effectively reduces the chance of off-screen
errors. Finally, we present several alternative designs to
show how our techniques could generalize to scenarios
which we did not explicitly study. We believe with the con-
tinued increase in popularity of touch-based displays, our
techniques may serve as important groundwork for integrat-
ing the benefits of touch into existing applications.

REFERENCES
1. Benko, H., Wilson, A., and Baudisch, P. (2006). Precise selec-

tion techniques for multi-touch screens. CHI’06, 1263-1272.

2. Carpendale, S., Ligh, J., and Pattison, E. (2004). Achieving
higher magnification in context. UIST’04, 71-80.

3. Cockburn, A. and Brock, P. (2006). Human on-line response to
visual and motor target expansion. GI'06, 81-87.

4. Carter, S., Hurst, A., Mankoff, J., and Li, J. (2006). Dynamically
adapting GUIs to diverse input devices. ACCESS'06, 63-70.

5. Cypress Semiconductor Co.,
http://www.cypress.com/?rID=42793.

6. Esenther, A. and Ryall, K. (2006). Fluid DTMouse: better
mouse support for touch-based interactions. AVI’06, 112-115.

7. Forlines, C., Wigdor, D., Shen, C., and Balakrishnan, R. (2007).
Direct-touch vs. mouse input for tabletop displays. CHI’07, 647-
656.

8. Gajos, K. and Weld, D. S. (2004). SUPPLE: automatically gen-
erating user interfaces. IUI '04, 93-100.

9. Gutwin, C. (2002). Improving focus targeting in interactive
fisheye views. CHI'02, 267-274.

10. Hinckley, K. and Sinclair, M. (1999). Touch-sensing input de-
vices. CHI'99, 223-230.

11. Hodges, S., Izadi, S., Butler, A., Rrustemi, A., and Buxton, B.
(2007). ThinSight: Versatile Multi-touch Sensingfor Thin Form-
factor Displays. UIST’07, 259-268.

12. Lank, E., Chun, Y., Cheng, N., and Ruiz, J. (2007). Endpoint
prediction using motion kinematics. CHI'07, 637-646.

13. McGuffin, M. J. and Balakrishnan, R. (2002). Acquisition of
Expanding Targets. CHI'02, 57-64.

14. McGuffin, M. J. and Balakrishnan, R. (2005). Fitts' Law and
Expanding Targets: Experimental Studies and Designs for User
Interfaces. TOCHI, 12(4) 388-422.

15. Meyer, S., Cohen, O., and Nilsen, E. (1994). Device compari-
sons for goal-directed drawing tasks. Extended Abstracts of the
CHI’94, 251-252.

16. Mitsubishi 3D touch panel, http://techon.nikkeibp.co.jp/ eng-
lish/NEWS_EN/20090310/166952/.

17. Moscovich, T. (2009). Contact Area Interaction with Sliding
Widgets. UIST'09 13-22.

18. Olwal, A., Feiner, S., and Heyman, S. (2008). Rubbing and
tapping for precise and rapid selection on touch-screen displays.
CHI’08, 295-304.

19. Parhi, P. Karlson, A. K. and Bederson, B. B. (2006). Target size
study for one-handed thumb use on small touch-screen devices.
MobileHci'06, 203-210.

20. Potter, R., Weldon, L., Shneiderman, B. (1988). Improving the
accuracy of touch screens: an experimental evaluation of three
strategies. CHI’88, 27-32.

21. Primesense Ltd., http://www.primesense.com/?p=486.

22. Rekimoto, J. (2002). SmartSkin: An Infrastructure for Freehand
Manipulation on Interactive Surfaces, CHI'02, 113 - 120.

23. Ruiz, J. and Lank, E. (2010). Speeding pointing in tiled widgets:
understanding the effects of target expansion and misprediction.
IUI'10, 229-238.

24. Sears, A. and Shneiderman, B. (1991). High precision touch-
screens: design strategies and comparisons with a mouse.
IJMMS, 34(4), 93–613.

25. Vogel, D. and Baudisch, P. (2007). Shift: a technique for operat-
ing pen-based interfaces using touch. CHI’07, 657-666.

26. Yatani, K., Partridge, K., Bern, M., and Newman, M. (2008).
Escape: A target selection technique using visually-cued ges-
tures. CHI’08, 285-294.

27. Zhai, S., Conversy, S., Beaudouin-Lafon, M., Guiard, Y. (2003).
Human On-Line Response to Target Expansion. CHI'03, 177-
184.

CHI 2011 • Session: Touch 3: Sensing May 7–12, 2011 • Vancouver, BC, Canada

2594

